1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/ptrace.c 4 * 5 * By Ross Biro 1/23/92 6 * edited by Linus Torvalds 7 * ARM modifications Copyright (C) 2000 Russell King 8 * Copyright (C) 2012 ARM Ltd. 9 */ 10 11 #include <linux/audit.h> 12 #include <linux/compat.h> 13 #include <linux/kernel.h> 14 #include <linux/sched/signal.h> 15 #include <linux/sched/task_stack.h> 16 #include <linux/mm.h> 17 #include <linux/nospec.h> 18 #include <linux/smp.h> 19 #include <linux/ptrace.h> 20 #include <linux/user.h> 21 #include <linux/seccomp.h> 22 #include <linux/security.h> 23 #include <linux/init.h> 24 #include <linux/signal.h> 25 #include <linux/string.h> 26 #include <linux/uaccess.h> 27 #include <linux/perf_event.h> 28 #include <linux/hw_breakpoint.h> 29 #include <linux/regset.h> 30 #include <linux/elf.h> 31 #include <linux/rseq.h> 32 33 #include <asm/compat.h> 34 #include <asm/cpufeature.h> 35 #include <asm/debug-monitors.h> 36 #include <asm/fpsimd.h> 37 #include <asm/mte.h> 38 #include <asm/pointer_auth.h> 39 #include <asm/stacktrace.h> 40 #include <asm/syscall.h> 41 #include <asm/traps.h> 42 #include <asm/system_misc.h> 43 44 #define CREATE_TRACE_POINTS 45 #include <trace/events/syscalls.h> 46 47 struct pt_regs_offset { 48 const char *name; 49 int offset; 50 }; 51 52 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)} 53 #define REG_OFFSET_END {.name = NULL, .offset = 0} 54 #define GPR_OFFSET_NAME(r) \ 55 {.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])} 56 57 static const struct pt_regs_offset regoffset_table[] = { 58 GPR_OFFSET_NAME(0), 59 GPR_OFFSET_NAME(1), 60 GPR_OFFSET_NAME(2), 61 GPR_OFFSET_NAME(3), 62 GPR_OFFSET_NAME(4), 63 GPR_OFFSET_NAME(5), 64 GPR_OFFSET_NAME(6), 65 GPR_OFFSET_NAME(7), 66 GPR_OFFSET_NAME(8), 67 GPR_OFFSET_NAME(9), 68 GPR_OFFSET_NAME(10), 69 GPR_OFFSET_NAME(11), 70 GPR_OFFSET_NAME(12), 71 GPR_OFFSET_NAME(13), 72 GPR_OFFSET_NAME(14), 73 GPR_OFFSET_NAME(15), 74 GPR_OFFSET_NAME(16), 75 GPR_OFFSET_NAME(17), 76 GPR_OFFSET_NAME(18), 77 GPR_OFFSET_NAME(19), 78 GPR_OFFSET_NAME(20), 79 GPR_OFFSET_NAME(21), 80 GPR_OFFSET_NAME(22), 81 GPR_OFFSET_NAME(23), 82 GPR_OFFSET_NAME(24), 83 GPR_OFFSET_NAME(25), 84 GPR_OFFSET_NAME(26), 85 GPR_OFFSET_NAME(27), 86 GPR_OFFSET_NAME(28), 87 GPR_OFFSET_NAME(29), 88 GPR_OFFSET_NAME(30), 89 {.name = "lr", .offset = offsetof(struct pt_regs, regs[30])}, 90 REG_OFFSET_NAME(sp), 91 REG_OFFSET_NAME(pc), 92 REG_OFFSET_NAME(pstate), 93 REG_OFFSET_END, 94 }; 95 96 /** 97 * regs_query_register_offset() - query register offset from its name 98 * @name: the name of a register 99 * 100 * regs_query_register_offset() returns the offset of a register in struct 101 * pt_regs from its name. If the name is invalid, this returns -EINVAL; 102 */ 103 int regs_query_register_offset(const char *name) 104 { 105 const struct pt_regs_offset *roff; 106 107 for (roff = regoffset_table; roff->name != NULL; roff++) 108 if (!strcmp(roff->name, name)) 109 return roff->offset; 110 return -EINVAL; 111 } 112 113 /** 114 * regs_within_kernel_stack() - check the address in the stack 115 * @regs: pt_regs which contains kernel stack pointer. 116 * @addr: address which is checked. 117 * 118 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). 119 * If @addr is within the kernel stack, it returns true. If not, returns false. 120 */ 121 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) 122 { 123 return ((addr & ~(THREAD_SIZE - 1)) == 124 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) || 125 on_irq_stack(addr, sizeof(unsigned long)); 126 } 127 128 /** 129 * regs_get_kernel_stack_nth() - get Nth entry of the stack 130 * @regs: pt_regs which contains kernel stack pointer. 131 * @n: stack entry number. 132 * 133 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which 134 * is specified by @regs. If the @n th entry is NOT in the kernel stack, 135 * this returns 0. 136 */ 137 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) 138 { 139 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs); 140 141 addr += n; 142 if (regs_within_kernel_stack(regs, (unsigned long)addr)) 143 return *addr; 144 else 145 return 0; 146 } 147 148 /* 149 * TODO: does not yet catch signals sent when the child dies. 150 * in exit.c or in signal.c. 151 */ 152 153 /* 154 * Called by kernel/ptrace.c when detaching.. 155 */ 156 void ptrace_disable(struct task_struct *child) 157 { 158 /* 159 * This would be better off in core code, but PTRACE_DETACH has 160 * grown its fair share of arch-specific worts and changing it 161 * is likely to cause regressions on obscure architectures. 162 */ 163 user_disable_single_step(child); 164 } 165 166 #ifdef CONFIG_HAVE_HW_BREAKPOINT 167 /* 168 * Handle hitting a HW-breakpoint. 169 */ 170 static void ptrace_hbptriggered(struct perf_event *bp, 171 struct perf_sample_data *data, 172 struct pt_regs *regs) 173 { 174 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp); 175 const char *desc = "Hardware breakpoint trap (ptrace)"; 176 177 #ifdef CONFIG_COMPAT 178 if (is_compat_task()) { 179 int si_errno = 0; 180 int i; 181 182 for (i = 0; i < ARM_MAX_BRP; ++i) { 183 if (current->thread.debug.hbp_break[i] == bp) { 184 si_errno = (i << 1) + 1; 185 break; 186 } 187 } 188 189 for (i = 0; i < ARM_MAX_WRP; ++i) { 190 if (current->thread.debug.hbp_watch[i] == bp) { 191 si_errno = -((i << 1) + 1); 192 break; 193 } 194 } 195 arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger, 196 desc); 197 return; 198 } 199 #endif 200 arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc); 201 } 202 203 /* 204 * Unregister breakpoints from this task and reset the pointers in 205 * the thread_struct. 206 */ 207 void flush_ptrace_hw_breakpoint(struct task_struct *tsk) 208 { 209 int i; 210 struct thread_struct *t = &tsk->thread; 211 212 for (i = 0; i < ARM_MAX_BRP; i++) { 213 if (t->debug.hbp_break[i]) { 214 unregister_hw_breakpoint(t->debug.hbp_break[i]); 215 t->debug.hbp_break[i] = NULL; 216 } 217 } 218 219 for (i = 0; i < ARM_MAX_WRP; i++) { 220 if (t->debug.hbp_watch[i]) { 221 unregister_hw_breakpoint(t->debug.hbp_watch[i]); 222 t->debug.hbp_watch[i] = NULL; 223 } 224 } 225 } 226 227 void ptrace_hw_copy_thread(struct task_struct *tsk) 228 { 229 memset(&tsk->thread.debug, 0, sizeof(struct debug_info)); 230 } 231 232 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type, 233 struct task_struct *tsk, 234 unsigned long idx) 235 { 236 struct perf_event *bp = ERR_PTR(-EINVAL); 237 238 switch (note_type) { 239 case NT_ARM_HW_BREAK: 240 if (idx >= ARM_MAX_BRP) 241 goto out; 242 idx = array_index_nospec(idx, ARM_MAX_BRP); 243 bp = tsk->thread.debug.hbp_break[idx]; 244 break; 245 case NT_ARM_HW_WATCH: 246 if (idx >= ARM_MAX_WRP) 247 goto out; 248 idx = array_index_nospec(idx, ARM_MAX_WRP); 249 bp = tsk->thread.debug.hbp_watch[idx]; 250 break; 251 } 252 253 out: 254 return bp; 255 } 256 257 static int ptrace_hbp_set_event(unsigned int note_type, 258 struct task_struct *tsk, 259 unsigned long idx, 260 struct perf_event *bp) 261 { 262 int err = -EINVAL; 263 264 switch (note_type) { 265 case NT_ARM_HW_BREAK: 266 if (idx >= ARM_MAX_BRP) 267 goto out; 268 idx = array_index_nospec(idx, ARM_MAX_BRP); 269 tsk->thread.debug.hbp_break[idx] = bp; 270 err = 0; 271 break; 272 case NT_ARM_HW_WATCH: 273 if (idx >= ARM_MAX_WRP) 274 goto out; 275 idx = array_index_nospec(idx, ARM_MAX_WRP); 276 tsk->thread.debug.hbp_watch[idx] = bp; 277 err = 0; 278 break; 279 } 280 281 out: 282 return err; 283 } 284 285 static struct perf_event *ptrace_hbp_create(unsigned int note_type, 286 struct task_struct *tsk, 287 unsigned long idx) 288 { 289 struct perf_event *bp; 290 struct perf_event_attr attr; 291 int err, type; 292 293 switch (note_type) { 294 case NT_ARM_HW_BREAK: 295 type = HW_BREAKPOINT_X; 296 break; 297 case NT_ARM_HW_WATCH: 298 type = HW_BREAKPOINT_RW; 299 break; 300 default: 301 return ERR_PTR(-EINVAL); 302 } 303 304 ptrace_breakpoint_init(&attr); 305 306 /* 307 * Initialise fields to sane defaults 308 * (i.e. values that will pass validation). 309 */ 310 attr.bp_addr = 0; 311 attr.bp_len = HW_BREAKPOINT_LEN_4; 312 attr.bp_type = type; 313 attr.disabled = 1; 314 315 bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk); 316 if (IS_ERR(bp)) 317 return bp; 318 319 err = ptrace_hbp_set_event(note_type, tsk, idx, bp); 320 if (err) 321 return ERR_PTR(err); 322 323 return bp; 324 } 325 326 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type, 327 struct arch_hw_breakpoint_ctrl ctrl, 328 struct perf_event_attr *attr) 329 { 330 int err, len, type, offset, disabled = !ctrl.enabled; 331 332 attr->disabled = disabled; 333 if (disabled) 334 return 0; 335 336 err = arch_bp_generic_fields(ctrl, &len, &type, &offset); 337 if (err) 338 return err; 339 340 switch (note_type) { 341 case NT_ARM_HW_BREAK: 342 if ((type & HW_BREAKPOINT_X) != type) 343 return -EINVAL; 344 break; 345 case NT_ARM_HW_WATCH: 346 if ((type & HW_BREAKPOINT_RW) != type) 347 return -EINVAL; 348 break; 349 default: 350 return -EINVAL; 351 } 352 353 attr->bp_len = len; 354 attr->bp_type = type; 355 attr->bp_addr += offset; 356 357 return 0; 358 } 359 360 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info) 361 { 362 u8 num; 363 u32 reg = 0; 364 365 switch (note_type) { 366 case NT_ARM_HW_BREAK: 367 num = hw_breakpoint_slots(TYPE_INST); 368 break; 369 case NT_ARM_HW_WATCH: 370 num = hw_breakpoint_slots(TYPE_DATA); 371 break; 372 default: 373 return -EINVAL; 374 } 375 376 reg |= debug_monitors_arch(); 377 reg <<= 8; 378 reg |= num; 379 380 *info = reg; 381 return 0; 382 } 383 384 static int ptrace_hbp_get_ctrl(unsigned int note_type, 385 struct task_struct *tsk, 386 unsigned long idx, 387 u32 *ctrl) 388 { 389 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx); 390 391 if (IS_ERR(bp)) 392 return PTR_ERR(bp); 393 394 *ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0; 395 return 0; 396 } 397 398 static int ptrace_hbp_get_addr(unsigned int note_type, 399 struct task_struct *tsk, 400 unsigned long idx, 401 u64 *addr) 402 { 403 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx); 404 405 if (IS_ERR(bp)) 406 return PTR_ERR(bp); 407 408 *addr = bp ? counter_arch_bp(bp)->address : 0; 409 return 0; 410 } 411 412 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type, 413 struct task_struct *tsk, 414 unsigned long idx) 415 { 416 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx); 417 418 if (!bp) 419 bp = ptrace_hbp_create(note_type, tsk, idx); 420 421 return bp; 422 } 423 424 static int ptrace_hbp_set_ctrl(unsigned int note_type, 425 struct task_struct *tsk, 426 unsigned long idx, 427 u32 uctrl) 428 { 429 int err; 430 struct perf_event *bp; 431 struct perf_event_attr attr; 432 struct arch_hw_breakpoint_ctrl ctrl; 433 434 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx); 435 if (IS_ERR(bp)) { 436 err = PTR_ERR(bp); 437 return err; 438 } 439 440 attr = bp->attr; 441 decode_ctrl_reg(uctrl, &ctrl); 442 err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr); 443 if (err) 444 return err; 445 446 return modify_user_hw_breakpoint(bp, &attr); 447 } 448 449 static int ptrace_hbp_set_addr(unsigned int note_type, 450 struct task_struct *tsk, 451 unsigned long idx, 452 u64 addr) 453 { 454 int err; 455 struct perf_event *bp; 456 struct perf_event_attr attr; 457 458 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx); 459 if (IS_ERR(bp)) { 460 err = PTR_ERR(bp); 461 return err; 462 } 463 464 attr = bp->attr; 465 attr.bp_addr = addr; 466 err = modify_user_hw_breakpoint(bp, &attr); 467 return err; 468 } 469 470 #define PTRACE_HBP_ADDR_SZ sizeof(u64) 471 #define PTRACE_HBP_CTRL_SZ sizeof(u32) 472 #define PTRACE_HBP_PAD_SZ sizeof(u32) 473 474 static int hw_break_get(struct task_struct *target, 475 const struct user_regset *regset, 476 struct membuf to) 477 { 478 unsigned int note_type = regset->core_note_type; 479 int ret, idx = 0; 480 u32 info, ctrl; 481 u64 addr; 482 483 /* Resource info */ 484 ret = ptrace_hbp_get_resource_info(note_type, &info); 485 if (ret) 486 return ret; 487 488 membuf_write(&to, &info, sizeof(info)); 489 membuf_zero(&to, sizeof(u32)); 490 /* (address, ctrl) registers */ 491 while (to.left) { 492 ret = ptrace_hbp_get_addr(note_type, target, idx, &addr); 493 if (ret) 494 return ret; 495 ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl); 496 if (ret) 497 return ret; 498 membuf_store(&to, addr); 499 membuf_store(&to, ctrl); 500 membuf_zero(&to, sizeof(u32)); 501 idx++; 502 } 503 return 0; 504 } 505 506 static int hw_break_set(struct task_struct *target, 507 const struct user_regset *regset, 508 unsigned int pos, unsigned int count, 509 const void *kbuf, const void __user *ubuf) 510 { 511 unsigned int note_type = regset->core_note_type; 512 int ret, idx = 0, offset, limit; 513 u32 ctrl; 514 u64 addr; 515 516 /* Resource info and pad */ 517 offset = offsetof(struct user_hwdebug_state, dbg_regs); 518 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset); 519 520 /* (address, ctrl) registers */ 521 limit = regset->n * regset->size; 522 while (count && offset < limit) { 523 if (count < PTRACE_HBP_ADDR_SZ) 524 return -EINVAL; 525 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr, 526 offset, offset + PTRACE_HBP_ADDR_SZ); 527 if (ret) 528 return ret; 529 ret = ptrace_hbp_set_addr(note_type, target, idx, addr); 530 if (ret) 531 return ret; 532 offset += PTRACE_HBP_ADDR_SZ; 533 534 if (!count) 535 break; 536 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 537 offset, offset + PTRACE_HBP_CTRL_SZ); 538 if (ret) 539 return ret; 540 ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl); 541 if (ret) 542 return ret; 543 offset += PTRACE_HBP_CTRL_SZ; 544 545 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 546 offset, offset + PTRACE_HBP_PAD_SZ); 547 offset += PTRACE_HBP_PAD_SZ; 548 idx++; 549 } 550 551 return 0; 552 } 553 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 554 555 static int gpr_get(struct task_struct *target, 556 const struct user_regset *regset, 557 struct membuf to) 558 { 559 struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs; 560 return membuf_write(&to, uregs, sizeof(*uregs)); 561 } 562 563 static int gpr_set(struct task_struct *target, const struct user_regset *regset, 564 unsigned int pos, unsigned int count, 565 const void *kbuf, const void __user *ubuf) 566 { 567 int ret; 568 struct user_pt_regs newregs = task_pt_regs(target)->user_regs; 569 570 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1); 571 if (ret) 572 return ret; 573 574 if (!valid_user_regs(&newregs, target)) 575 return -EINVAL; 576 577 task_pt_regs(target)->user_regs = newregs; 578 return 0; 579 } 580 581 static int fpr_active(struct task_struct *target, const struct user_regset *regset) 582 { 583 if (!system_supports_fpsimd()) 584 return -ENODEV; 585 return regset->n; 586 } 587 588 /* 589 * TODO: update fp accessors for lazy context switching (sync/flush hwstate) 590 */ 591 static int __fpr_get(struct task_struct *target, 592 const struct user_regset *regset, 593 struct membuf to) 594 { 595 struct user_fpsimd_state *uregs; 596 597 sve_sync_to_fpsimd(target); 598 599 uregs = &target->thread.uw.fpsimd_state; 600 601 return membuf_write(&to, uregs, sizeof(*uregs)); 602 } 603 604 static int fpr_get(struct task_struct *target, const struct user_regset *regset, 605 struct membuf to) 606 { 607 if (!system_supports_fpsimd()) 608 return -EINVAL; 609 610 if (target == current) 611 fpsimd_preserve_current_state(); 612 613 return __fpr_get(target, regset, to); 614 } 615 616 static int __fpr_set(struct task_struct *target, 617 const struct user_regset *regset, 618 unsigned int pos, unsigned int count, 619 const void *kbuf, const void __user *ubuf, 620 unsigned int start_pos) 621 { 622 int ret; 623 struct user_fpsimd_state newstate; 624 625 /* 626 * Ensure target->thread.uw.fpsimd_state is up to date, so that a 627 * short copyin can't resurrect stale data. 628 */ 629 sve_sync_to_fpsimd(target); 630 631 newstate = target->thread.uw.fpsimd_state; 632 633 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate, 634 start_pos, start_pos + sizeof(newstate)); 635 if (ret) 636 return ret; 637 638 target->thread.uw.fpsimd_state = newstate; 639 640 return ret; 641 } 642 643 static int fpr_set(struct task_struct *target, const struct user_regset *regset, 644 unsigned int pos, unsigned int count, 645 const void *kbuf, const void __user *ubuf) 646 { 647 int ret; 648 649 if (!system_supports_fpsimd()) 650 return -EINVAL; 651 652 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0); 653 if (ret) 654 return ret; 655 656 sve_sync_from_fpsimd_zeropad(target); 657 fpsimd_flush_task_state(target); 658 659 return ret; 660 } 661 662 static int tls_get(struct task_struct *target, const struct user_regset *regset, 663 struct membuf to) 664 { 665 int ret; 666 667 if (target == current) 668 tls_preserve_current_state(); 669 670 ret = membuf_store(&to, target->thread.uw.tp_value); 671 if (system_supports_tpidr2()) 672 ret = membuf_store(&to, target->thread.tpidr2_el0); 673 else 674 ret = membuf_zero(&to, sizeof(u64)); 675 676 return ret; 677 } 678 679 static int tls_set(struct task_struct *target, const struct user_regset *regset, 680 unsigned int pos, unsigned int count, 681 const void *kbuf, const void __user *ubuf) 682 { 683 int ret; 684 unsigned long tls[2]; 685 686 tls[0] = target->thread.uw.tp_value; 687 if (system_supports_tpidr2()) 688 tls[1] = target->thread.tpidr2_el0; 689 690 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, tls, 0, count); 691 if (ret) 692 return ret; 693 694 target->thread.uw.tp_value = tls[0]; 695 if (system_supports_tpidr2()) 696 target->thread.tpidr2_el0 = tls[1]; 697 698 return ret; 699 } 700 701 static int system_call_get(struct task_struct *target, 702 const struct user_regset *regset, 703 struct membuf to) 704 { 705 return membuf_store(&to, task_pt_regs(target)->syscallno); 706 } 707 708 static int system_call_set(struct task_struct *target, 709 const struct user_regset *regset, 710 unsigned int pos, unsigned int count, 711 const void *kbuf, const void __user *ubuf) 712 { 713 int syscallno = task_pt_regs(target)->syscallno; 714 int ret; 715 716 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1); 717 if (ret) 718 return ret; 719 720 task_pt_regs(target)->syscallno = syscallno; 721 return ret; 722 } 723 724 #ifdef CONFIG_ARM64_SVE 725 726 static void sve_init_header_from_task(struct user_sve_header *header, 727 struct task_struct *target, 728 enum vec_type type) 729 { 730 unsigned int vq; 731 bool active; 732 bool fpsimd_only; 733 enum vec_type task_type; 734 735 memset(header, 0, sizeof(*header)); 736 737 /* Check if the requested registers are active for the task */ 738 if (thread_sm_enabled(&target->thread)) 739 task_type = ARM64_VEC_SME; 740 else 741 task_type = ARM64_VEC_SVE; 742 active = (task_type == type); 743 744 switch (type) { 745 case ARM64_VEC_SVE: 746 if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT)) 747 header->flags |= SVE_PT_VL_INHERIT; 748 fpsimd_only = !test_tsk_thread_flag(target, TIF_SVE); 749 break; 750 case ARM64_VEC_SME: 751 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT)) 752 header->flags |= SVE_PT_VL_INHERIT; 753 fpsimd_only = false; 754 break; 755 default: 756 WARN_ON_ONCE(1); 757 return; 758 } 759 760 if (active) { 761 if (fpsimd_only) { 762 header->flags |= SVE_PT_REGS_FPSIMD; 763 } else { 764 header->flags |= SVE_PT_REGS_SVE; 765 } 766 } 767 768 header->vl = task_get_vl(target, type); 769 vq = sve_vq_from_vl(header->vl); 770 771 header->max_vl = vec_max_vl(type); 772 header->size = SVE_PT_SIZE(vq, header->flags); 773 header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl), 774 SVE_PT_REGS_SVE); 775 } 776 777 static unsigned int sve_size_from_header(struct user_sve_header const *header) 778 { 779 return ALIGN(header->size, SVE_VQ_BYTES); 780 } 781 782 static int sve_get_common(struct task_struct *target, 783 const struct user_regset *regset, 784 struct membuf to, 785 enum vec_type type) 786 { 787 struct user_sve_header header; 788 unsigned int vq; 789 unsigned long start, end; 790 791 /* Header */ 792 sve_init_header_from_task(&header, target, type); 793 vq = sve_vq_from_vl(header.vl); 794 795 membuf_write(&to, &header, sizeof(header)); 796 797 if (target == current) 798 fpsimd_preserve_current_state(); 799 800 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header)); 801 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header)); 802 803 switch ((header.flags & SVE_PT_REGS_MASK)) { 804 case SVE_PT_REGS_FPSIMD: 805 return __fpr_get(target, regset, to); 806 807 case SVE_PT_REGS_SVE: 808 start = SVE_PT_SVE_OFFSET; 809 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq); 810 membuf_write(&to, target->thread.sve_state, end - start); 811 812 start = end; 813 end = SVE_PT_SVE_FPSR_OFFSET(vq); 814 membuf_zero(&to, end - start); 815 816 /* 817 * Copy fpsr, and fpcr which must follow contiguously in 818 * struct fpsimd_state: 819 */ 820 start = end; 821 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE; 822 membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr, 823 end - start); 824 825 start = end; 826 end = sve_size_from_header(&header); 827 return membuf_zero(&to, end - start); 828 829 default: 830 return 0; 831 } 832 } 833 834 static int sve_get(struct task_struct *target, 835 const struct user_regset *regset, 836 struct membuf to) 837 { 838 if (!system_supports_sve()) 839 return -EINVAL; 840 841 return sve_get_common(target, regset, to, ARM64_VEC_SVE); 842 } 843 844 static int sve_set_common(struct task_struct *target, 845 const struct user_regset *regset, 846 unsigned int pos, unsigned int count, 847 const void *kbuf, const void __user *ubuf, 848 enum vec_type type) 849 { 850 int ret; 851 struct user_sve_header header; 852 unsigned int vq; 853 unsigned long start, end; 854 855 /* Header */ 856 if (count < sizeof(header)) 857 return -EINVAL; 858 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header, 859 0, sizeof(header)); 860 if (ret) 861 goto out; 862 863 /* 864 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by 865 * vec_set_vector_length(), which will also validate them for us: 866 */ 867 ret = vec_set_vector_length(target, type, header.vl, 868 ((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16); 869 if (ret) 870 goto out; 871 872 /* Actual VL set may be less than the user asked for: */ 873 vq = sve_vq_from_vl(task_get_vl(target, type)); 874 875 /* Enter/exit streaming mode */ 876 if (system_supports_sme()) { 877 u64 old_svcr = target->thread.svcr; 878 879 switch (type) { 880 case ARM64_VEC_SVE: 881 target->thread.svcr &= ~SVCR_SM_MASK; 882 break; 883 case ARM64_VEC_SME: 884 target->thread.svcr |= SVCR_SM_MASK; 885 886 /* 887 * Disable traps and ensure there is SME storage but 888 * preserve any currently set values in ZA/ZT. 889 */ 890 sme_alloc(target, false); 891 set_tsk_thread_flag(target, TIF_SME); 892 break; 893 default: 894 WARN_ON_ONCE(1); 895 ret = -EINVAL; 896 goto out; 897 } 898 899 /* 900 * If we switched then invalidate any existing SVE 901 * state and ensure there's storage. 902 */ 903 if (target->thread.svcr != old_svcr) 904 sve_alloc(target, true); 905 } 906 907 /* Registers: FPSIMD-only case */ 908 909 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header)); 910 if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) { 911 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 912 SVE_PT_FPSIMD_OFFSET); 913 clear_tsk_thread_flag(target, TIF_SVE); 914 target->thread.fp_type = FP_STATE_FPSIMD; 915 goto out; 916 } 917 918 /* 919 * Otherwise: no registers or full SVE case. For backwards 920 * compatibility reasons we treat empty flags as SVE registers. 921 */ 922 923 /* 924 * If setting a different VL from the requested VL and there is 925 * register data, the data layout will be wrong: don't even 926 * try to set the registers in this case. 927 */ 928 if (count && vq != sve_vq_from_vl(header.vl)) { 929 ret = -EIO; 930 goto out; 931 } 932 933 sve_alloc(target, true); 934 if (!target->thread.sve_state) { 935 ret = -ENOMEM; 936 clear_tsk_thread_flag(target, TIF_SVE); 937 target->thread.fp_type = FP_STATE_FPSIMD; 938 goto out; 939 } 940 941 /* 942 * Ensure target->thread.sve_state is up to date with target's 943 * FPSIMD regs, so that a short copyin leaves trailing 944 * registers unmodified. Only enable SVE if we are 945 * configuring normal SVE, a system with streaming SVE may not 946 * have normal SVE. 947 */ 948 fpsimd_sync_to_sve(target); 949 if (type == ARM64_VEC_SVE) 950 set_tsk_thread_flag(target, TIF_SVE); 951 target->thread.fp_type = FP_STATE_SVE; 952 953 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header)); 954 start = SVE_PT_SVE_OFFSET; 955 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq); 956 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 957 target->thread.sve_state, 958 start, end); 959 if (ret) 960 goto out; 961 962 start = end; 963 end = SVE_PT_SVE_FPSR_OFFSET(vq); 964 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, start, end); 965 966 /* 967 * Copy fpsr, and fpcr which must follow contiguously in 968 * struct fpsimd_state: 969 */ 970 start = end; 971 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE; 972 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 973 &target->thread.uw.fpsimd_state.fpsr, 974 start, end); 975 976 out: 977 fpsimd_flush_task_state(target); 978 return ret; 979 } 980 981 static int sve_set(struct task_struct *target, 982 const struct user_regset *regset, 983 unsigned int pos, unsigned int count, 984 const void *kbuf, const void __user *ubuf) 985 { 986 if (!system_supports_sve()) 987 return -EINVAL; 988 989 return sve_set_common(target, regset, pos, count, kbuf, ubuf, 990 ARM64_VEC_SVE); 991 } 992 993 #endif /* CONFIG_ARM64_SVE */ 994 995 #ifdef CONFIG_ARM64_SME 996 997 static int ssve_get(struct task_struct *target, 998 const struct user_regset *regset, 999 struct membuf to) 1000 { 1001 if (!system_supports_sme()) 1002 return -EINVAL; 1003 1004 return sve_get_common(target, regset, to, ARM64_VEC_SME); 1005 } 1006 1007 static int ssve_set(struct task_struct *target, 1008 const struct user_regset *regset, 1009 unsigned int pos, unsigned int count, 1010 const void *kbuf, const void __user *ubuf) 1011 { 1012 if (!system_supports_sme()) 1013 return -EINVAL; 1014 1015 return sve_set_common(target, regset, pos, count, kbuf, ubuf, 1016 ARM64_VEC_SME); 1017 } 1018 1019 static int za_get(struct task_struct *target, 1020 const struct user_regset *regset, 1021 struct membuf to) 1022 { 1023 struct user_za_header header; 1024 unsigned int vq; 1025 unsigned long start, end; 1026 1027 if (!system_supports_sme()) 1028 return -EINVAL; 1029 1030 /* Header */ 1031 memset(&header, 0, sizeof(header)); 1032 1033 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT)) 1034 header.flags |= ZA_PT_VL_INHERIT; 1035 1036 header.vl = task_get_sme_vl(target); 1037 vq = sve_vq_from_vl(header.vl); 1038 header.max_vl = sme_max_vl(); 1039 header.max_size = ZA_PT_SIZE(vq); 1040 1041 /* If ZA is not active there is only the header */ 1042 if (thread_za_enabled(&target->thread)) 1043 header.size = ZA_PT_SIZE(vq); 1044 else 1045 header.size = ZA_PT_ZA_OFFSET; 1046 1047 membuf_write(&to, &header, sizeof(header)); 1048 1049 BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header)); 1050 end = ZA_PT_ZA_OFFSET; 1051 1052 if (target == current) 1053 fpsimd_preserve_current_state(); 1054 1055 /* Any register data to include? */ 1056 if (thread_za_enabled(&target->thread)) { 1057 start = end; 1058 end = ZA_PT_SIZE(vq); 1059 membuf_write(&to, target->thread.sme_state, end - start); 1060 } 1061 1062 /* Zero any trailing padding */ 1063 start = end; 1064 end = ALIGN(header.size, SVE_VQ_BYTES); 1065 return membuf_zero(&to, end - start); 1066 } 1067 1068 static int za_set(struct task_struct *target, 1069 const struct user_regset *regset, 1070 unsigned int pos, unsigned int count, 1071 const void *kbuf, const void __user *ubuf) 1072 { 1073 int ret; 1074 struct user_za_header header; 1075 unsigned int vq; 1076 unsigned long start, end; 1077 1078 if (!system_supports_sme()) 1079 return -EINVAL; 1080 1081 /* Header */ 1082 if (count < sizeof(header)) 1083 return -EINVAL; 1084 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header, 1085 0, sizeof(header)); 1086 if (ret) 1087 goto out; 1088 1089 /* 1090 * All current ZA_PT_* flags are consumed by 1091 * vec_set_vector_length(), which will also validate them for 1092 * us: 1093 */ 1094 ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl, 1095 ((unsigned long)header.flags) << 16); 1096 if (ret) 1097 goto out; 1098 1099 /* Actual VL set may be less than the user asked for: */ 1100 vq = sve_vq_from_vl(task_get_sme_vl(target)); 1101 1102 /* Ensure there is some SVE storage for streaming mode */ 1103 if (!target->thread.sve_state) { 1104 sve_alloc(target, false); 1105 if (!target->thread.sve_state) { 1106 ret = -ENOMEM; 1107 goto out; 1108 } 1109 } 1110 1111 /* 1112 * Only flush the storage if PSTATE.ZA was not already set, 1113 * otherwise preserve any existing data. 1114 */ 1115 sme_alloc(target, !thread_za_enabled(&target->thread)); 1116 if (!target->thread.sme_state) 1117 return -ENOMEM; 1118 1119 /* If there is no data then disable ZA */ 1120 if (!count) { 1121 target->thread.svcr &= ~SVCR_ZA_MASK; 1122 goto out; 1123 } 1124 1125 /* 1126 * If setting a different VL from the requested VL and there is 1127 * register data, the data layout will be wrong: don't even 1128 * try to set the registers in this case. 1129 */ 1130 if (vq != sve_vq_from_vl(header.vl)) { 1131 ret = -EIO; 1132 goto out; 1133 } 1134 1135 BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header)); 1136 start = ZA_PT_ZA_OFFSET; 1137 end = ZA_PT_SIZE(vq); 1138 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1139 target->thread.sme_state, 1140 start, end); 1141 if (ret) 1142 goto out; 1143 1144 /* Mark ZA as active and let userspace use it */ 1145 set_tsk_thread_flag(target, TIF_SME); 1146 target->thread.svcr |= SVCR_ZA_MASK; 1147 1148 out: 1149 fpsimd_flush_task_state(target); 1150 return ret; 1151 } 1152 1153 static int zt_get(struct task_struct *target, 1154 const struct user_regset *regset, 1155 struct membuf to) 1156 { 1157 if (!system_supports_sme2()) 1158 return -EINVAL; 1159 1160 /* 1161 * If PSTATE.ZA is not set then ZT will be zeroed when it is 1162 * enabled so report the current register value as zero. 1163 */ 1164 if (thread_za_enabled(&target->thread)) 1165 membuf_write(&to, thread_zt_state(&target->thread), 1166 ZT_SIG_REG_BYTES); 1167 else 1168 membuf_zero(&to, ZT_SIG_REG_BYTES); 1169 1170 return 0; 1171 } 1172 1173 static int zt_set(struct task_struct *target, 1174 const struct user_regset *regset, 1175 unsigned int pos, unsigned int count, 1176 const void *kbuf, const void __user *ubuf) 1177 { 1178 int ret; 1179 1180 if (!system_supports_sme2()) 1181 return -EINVAL; 1182 1183 /* Ensure SVE storage in case this is first use of SME */ 1184 sve_alloc(target, false); 1185 if (!target->thread.sve_state) 1186 return -ENOMEM; 1187 1188 if (!thread_za_enabled(&target->thread)) { 1189 sme_alloc(target, true); 1190 if (!target->thread.sme_state) 1191 return -ENOMEM; 1192 } 1193 1194 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1195 thread_zt_state(&target->thread), 1196 0, ZT_SIG_REG_BYTES); 1197 if (ret == 0) { 1198 target->thread.svcr |= SVCR_ZA_MASK; 1199 set_tsk_thread_flag(target, TIF_SME); 1200 } 1201 1202 fpsimd_flush_task_state(target); 1203 1204 return ret; 1205 } 1206 1207 #endif /* CONFIG_ARM64_SME */ 1208 1209 #ifdef CONFIG_ARM64_PTR_AUTH 1210 static int pac_mask_get(struct task_struct *target, 1211 const struct user_regset *regset, 1212 struct membuf to) 1213 { 1214 /* 1215 * The PAC bits can differ across data and instruction pointers 1216 * depending on TCR_EL1.TBID*, which we may make use of in future, so 1217 * we expose separate masks. 1218 */ 1219 unsigned long mask = ptrauth_user_pac_mask(); 1220 struct user_pac_mask uregs = { 1221 .data_mask = mask, 1222 .insn_mask = mask, 1223 }; 1224 1225 if (!system_supports_address_auth()) 1226 return -EINVAL; 1227 1228 return membuf_write(&to, &uregs, sizeof(uregs)); 1229 } 1230 1231 static int pac_enabled_keys_get(struct task_struct *target, 1232 const struct user_regset *regset, 1233 struct membuf to) 1234 { 1235 long enabled_keys = ptrauth_get_enabled_keys(target); 1236 1237 if (IS_ERR_VALUE(enabled_keys)) 1238 return enabled_keys; 1239 1240 return membuf_write(&to, &enabled_keys, sizeof(enabled_keys)); 1241 } 1242 1243 static int pac_enabled_keys_set(struct task_struct *target, 1244 const struct user_regset *regset, 1245 unsigned int pos, unsigned int count, 1246 const void *kbuf, const void __user *ubuf) 1247 { 1248 int ret; 1249 long enabled_keys = ptrauth_get_enabled_keys(target); 1250 1251 if (IS_ERR_VALUE(enabled_keys)) 1252 return enabled_keys; 1253 1254 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0, 1255 sizeof(long)); 1256 if (ret) 1257 return ret; 1258 1259 return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK, 1260 enabled_keys); 1261 } 1262 1263 #ifdef CONFIG_CHECKPOINT_RESTORE 1264 static __uint128_t pac_key_to_user(const struct ptrauth_key *key) 1265 { 1266 return (__uint128_t)key->hi << 64 | key->lo; 1267 } 1268 1269 static struct ptrauth_key pac_key_from_user(__uint128_t ukey) 1270 { 1271 struct ptrauth_key key = { 1272 .lo = (unsigned long)ukey, 1273 .hi = (unsigned long)(ukey >> 64), 1274 }; 1275 1276 return key; 1277 } 1278 1279 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys, 1280 const struct ptrauth_keys_user *keys) 1281 { 1282 ukeys->apiakey = pac_key_to_user(&keys->apia); 1283 ukeys->apibkey = pac_key_to_user(&keys->apib); 1284 ukeys->apdakey = pac_key_to_user(&keys->apda); 1285 ukeys->apdbkey = pac_key_to_user(&keys->apdb); 1286 } 1287 1288 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys, 1289 const struct user_pac_address_keys *ukeys) 1290 { 1291 keys->apia = pac_key_from_user(ukeys->apiakey); 1292 keys->apib = pac_key_from_user(ukeys->apibkey); 1293 keys->apda = pac_key_from_user(ukeys->apdakey); 1294 keys->apdb = pac_key_from_user(ukeys->apdbkey); 1295 } 1296 1297 static int pac_address_keys_get(struct task_struct *target, 1298 const struct user_regset *regset, 1299 struct membuf to) 1300 { 1301 struct ptrauth_keys_user *keys = &target->thread.keys_user; 1302 struct user_pac_address_keys user_keys; 1303 1304 if (!system_supports_address_auth()) 1305 return -EINVAL; 1306 1307 pac_address_keys_to_user(&user_keys, keys); 1308 1309 return membuf_write(&to, &user_keys, sizeof(user_keys)); 1310 } 1311 1312 static int pac_address_keys_set(struct task_struct *target, 1313 const struct user_regset *regset, 1314 unsigned int pos, unsigned int count, 1315 const void *kbuf, const void __user *ubuf) 1316 { 1317 struct ptrauth_keys_user *keys = &target->thread.keys_user; 1318 struct user_pac_address_keys user_keys; 1319 int ret; 1320 1321 if (!system_supports_address_auth()) 1322 return -EINVAL; 1323 1324 pac_address_keys_to_user(&user_keys, keys); 1325 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1326 &user_keys, 0, -1); 1327 if (ret) 1328 return ret; 1329 pac_address_keys_from_user(keys, &user_keys); 1330 1331 return 0; 1332 } 1333 1334 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys, 1335 const struct ptrauth_keys_user *keys) 1336 { 1337 ukeys->apgakey = pac_key_to_user(&keys->apga); 1338 } 1339 1340 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys, 1341 const struct user_pac_generic_keys *ukeys) 1342 { 1343 keys->apga = pac_key_from_user(ukeys->apgakey); 1344 } 1345 1346 static int pac_generic_keys_get(struct task_struct *target, 1347 const struct user_regset *regset, 1348 struct membuf to) 1349 { 1350 struct ptrauth_keys_user *keys = &target->thread.keys_user; 1351 struct user_pac_generic_keys user_keys; 1352 1353 if (!system_supports_generic_auth()) 1354 return -EINVAL; 1355 1356 pac_generic_keys_to_user(&user_keys, keys); 1357 1358 return membuf_write(&to, &user_keys, sizeof(user_keys)); 1359 } 1360 1361 static int pac_generic_keys_set(struct task_struct *target, 1362 const struct user_regset *regset, 1363 unsigned int pos, unsigned int count, 1364 const void *kbuf, const void __user *ubuf) 1365 { 1366 struct ptrauth_keys_user *keys = &target->thread.keys_user; 1367 struct user_pac_generic_keys user_keys; 1368 int ret; 1369 1370 if (!system_supports_generic_auth()) 1371 return -EINVAL; 1372 1373 pac_generic_keys_to_user(&user_keys, keys); 1374 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1375 &user_keys, 0, -1); 1376 if (ret) 1377 return ret; 1378 pac_generic_keys_from_user(keys, &user_keys); 1379 1380 return 0; 1381 } 1382 #endif /* CONFIG_CHECKPOINT_RESTORE */ 1383 #endif /* CONFIG_ARM64_PTR_AUTH */ 1384 1385 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 1386 static int tagged_addr_ctrl_get(struct task_struct *target, 1387 const struct user_regset *regset, 1388 struct membuf to) 1389 { 1390 long ctrl = get_tagged_addr_ctrl(target); 1391 1392 if (IS_ERR_VALUE(ctrl)) 1393 return ctrl; 1394 1395 return membuf_write(&to, &ctrl, sizeof(ctrl)); 1396 } 1397 1398 static int tagged_addr_ctrl_set(struct task_struct *target, const struct 1399 user_regset *regset, unsigned int pos, 1400 unsigned int count, const void *kbuf, const 1401 void __user *ubuf) 1402 { 1403 int ret; 1404 long ctrl; 1405 1406 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1); 1407 if (ret) 1408 return ret; 1409 1410 return set_tagged_addr_ctrl(target, ctrl); 1411 } 1412 #endif 1413 1414 enum aarch64_regset { 1415 REGSET_GPR, 1416 REGSET_FPR, 1417 REGSET_TLS, 1418 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1419 REGSET_HW_BREAK, 1420 REGSET_HW_WATCH, 1421 #endif 1422 REGSET_SYSTEM_CALL, 1423 #ifdef CONFIG_ARM64_SVE 1424 REGSET_SVE, 1425 #endif 1426 #ifdef CONFIG_ARM64_SME 1427 REGSET_SSVE, 1428 REGSET_ZA, 1429 REGSET_ZT, 1430 #endif 1431 #ifdef CONFIG_ARM64_PTR_AUTH 1432 REGSET_PAC_MASK, 1433 REGSET_PAC_ENABLED_KEYS, 1434 #ifdef CONFIG_CHECKPOINT_RESTORE 1435 REGSET_PACA_KEYS, 1436 REGSET_PACG_KEYS, 1437 #endif 1438 #endif 1439 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 1440 REGSET_TAGGED_ADDR_CTRL, 1441 #endif 1442 }; 1443 1444 static const struct user_regset aarch64_regsets[] = { 1445 [REGSET_GPR] = { 1446 .core_note_type = NT_PRSTATUS, 1447 .n = sizeof(struct user_pt_regs) / sizeof(u64), 1448 .size = sizeof(u64), 1449 .align = sizeof(u64), 1450 .regset_get = gpr_get, 1451 .set = gpr_set 1452 }, 1453 [REGSET_FPR] = { 1454 .core_note_type = NT_PRFPREG, 1455 .n = sizeof(struct user_fpsimd_state) / sizeof(u32), 1456 /* 1457 * We pretend we have 32-bit registers because the fpsr and 1458 * fpcr are 32-bits wide. 1459 */ 1460 .size = sizeof(u32), 1461 .align = sizeof(u32), 1462 .active = fpr_active, 1463 .regset_get = fpr_get, 1464 .set = fpr_set 1465 }, 1466 [REGSET_TLS] = { 1467 .core_note_type = NT_ARM_TLS, 1468 .n = 2, 1469 .size = sizeof(void *), 1470 .align = sizeof(void *), 1471 .regset_get = tls_get, 1472 .set = tls_set, 1473 }, 1474 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1475 [REGSET_HW_BREAK] = { 1476 .core_note_type = NT_ARM_HW_BREAK, 1477 .n = sizeof(struct user_hwdebug_state) / sizeof(u32), 1478 .size = sizeof(u32), 1479 .align = sizeof(u32), 1480 .regset_get = hw_break_get, 1481 .set = hw_break_set, 1482 }, 1483 [REGSET_HW_WATCH] = { 1484 .core_note_type = NT_ARM_HW_WATCH, 1485 .n = sizeof(struct user_hwdebug_state) / sizeof(u32), 1486 .size = sizeof(u32), 1487 .align = sizeof(u32), 1488 .regset_get = hw_break_get, 1489 .set = hw_break_set, 1490 }, 1491 #endif 1492 [REGSET_SYSTEM_CALL] = { 1493 .core_note_type = NT_ARM_SYSTEM_CALL, 1494 .n = 1, 1495 .size = sizeof(int), 1496 .align = sizeof(int), 1497 .regset_get = system_call_get, 1498 .set = system_call_set, 1499 }, 1500 #ifdef CONFIG_ARM64_SVE 1501 [REGSET_SVE] = { /* Scalable Vector Extension */ 1502 .core_note_type = NT_ARM_SVE, 1503 .n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE), 1504 SVE_VQ_BYTES), 1505 .size = SVE_VQ_BYTES, 1506 .align = SVE_VQ_BYTES, 1507 .regset_get = sve_get, 1508 .set = sve_set, 1509 }, 1510 #endif 1511 #ifdef CONFIG_ARM64_SME 1512 [REGSET_SSVE] = { /* Streaming mode SVE */ 1513 .core_note_type = NT_ARM_SSVE, 1514 .n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE), 1515 SVE_VQ_BYTES), 1516 .size = SVE_VQ_BYTES, 1517 .align = SVE_VQ_BYTES, 1518 .regset_get = ssve_get, 1519 .set = ssve_set, 1520 }, 1521 [REGSET_ZA] = { /* SME ZA */ 1522 .core_note_type = NT_ARM_ZA, 1523 /* 1524 * ZA is a single register but it's variably sized and 1525 * the ptrace core requires that the size of any data 1526 * be an exact multiple of the configured register 1527 * size so report as though we had SVE_VQ_BYTES 1528 * registers. These values aren't exposed to 1529 * userspace. 1530 */ 1531 .n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES), 1532 .size = SVE_VQ_BYTES, 1533 .align = SVE_VQ_BYTES, 1534 .regset_get = za_get, 1535 .set = za_set, 1536 }, 1537 [REGSET_ZT] = { /* SME ZT */ 1538 .core_note_type = NT_ARM_ZT, 1539 .n = 1, 1540 .size = ZT_SIG_REG_BYTES, 1541 .align = sizeof(u64), 1542 .regset_get = zt_get, 1543 .set = zt_set, 1544 }, 1545 #endif 1546 #ifdef CONFIG_ARM64_PTR_AUTH 1547 [REGSET_PAC_MASK] = { 1548 .core_note_type = NT_ARM_PAC_MASK, 1549 .n = sizeof(struct user_pac_mask) / sizeof(u64), 1550 .size = sizeof(u64), 1551 .align = sizeof(u64), 1552 .regset_get = pac_mask_get, 1553 /* this cannot be set dynamically */ 1554 }, 1555 [REGSET_PAC_ENABLED_KEYS] = { 1556 .core_note_type = NT_ARM_PAC_ENABLED_KEYS, 1557 .n = 1, 1558 .size = sizeof(long), 1559 .align = sizeof(long), 1560 .regset_get = pac_enabled_keys_get, 1561 .set = pac_enabled_keys_set, 1562 }, 1563 #ifdef CONFIG_CHECKPOINT_RESTORE 1564 [REGSET_PACA_KEYS] = { 1565 .core_note_type = NT_ARM_PACA_KEYS, 1566 .n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t), 1567 .size = sizeof(__uint128_t), 1568 .align = sizeof(__uint128_t), 1569 .regset_get = pac_address_keys_get, 1570 .set = pac_address_keys_set, 1571 }, 1572 [REGSET_PACG_KEYS] = { 1573 .core_note_type = NT_ARM_PACG_KEYS, 1574 .n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t), 1575 .size = sizeof(__uint128_t), 1576 .align = sizeof(__uint128_t), 1577 .regset_get = pac_generic_keys_get, 1578 .set = pac_generic_keys_set, 1579 }, 1580 #endif 1581 #endif 1582 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 1583 [REGSET_TAGGED_ADDR_CTRL] = { 1584 .core_note_type = NT_ARM_TAGGED_ADDR_CTRL, 1585 .n = 1, 1586 .size = sizeof(long), 1587 .align = sizeof(long), 1588 .regset_get = tagged_addr_ctrl_get, 1589 .set = tagged_addr_ctrl_set, 1590 }, 1591 #endif 1592 }; 1593 1594 static const struct user_regset_view user_aarch64_view = { 1595 .name = "aarch64", .e_machine = EM_AARCH64, 1596 .regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets) 1597 }; 1598 1599 #ifdef CONFIG_COMPAT 1600 enum compat_regset { 1601 REGSET_COMPAT_GPR, 1602 REGSET_COMPAT_VFP, 1603 }; 1604 1605 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx) 1606 { 1607 struct pt_regs *regs = task_pt_regs(task); 1608 1609 switch (idx) { 1610 case 15: 1611 return regs->pc; 1612 case 16: 1613 return pstate_to_compat_psr(regs->pstate); 1614 case 17: 1615 return regs->orig_x0; 1616 default: 1617 return regs->regs[idx]; 1618 } 1619 } 1620 1621 static int compat_gpr_get(struct task_struct *target, 1622 const struct user_regset *regset, 1623 struct membuf to) 1624 { 1625 int i = 0; 1626 1627 while (to.left) 1628 membuf_store(&to, compat_get_user_reg(target, i++)); 1629 return 0; 1630 } 1631 1632 static int compat_gpr_set(struct task_struct *target, 1633 const struct user_regset *regset, 1634 unsigned int pos, unsigned int count, 1635 const void *kbuf, const void __user *ubuf) 1636 { 1637 struct pt_regs newregs; 1638 int ret = 0; 1639 unsigned int i, start, num_regs; 1640 1641 /* Calculate the number of AArch32 registers contained in count */ 1642 num_regs = count / regset->size; 1643 1644 /* Convert pos into an register number */ 1645 start = pos / regset->size; 1646 1647 if (start + num_regs > regset->n) 1648 return -EIO; 1649 1650 newregs = *task_pt_regs(target); 1651 1652 for (i = 0; i < num_regs; ++i) { 1653 unsigned int idx = start + i; 1654 compat_ulong_t reg; 1655 1656 if (kbuf) { 1657 memcpy(®, kbuf, sizeof(reg)); 1658 kbuf += sizeof(reg); 1659 } else { 1660 ret = copy_from_user(®, ubuf, sizeof(reg)); 1661 if (ret) { 1662 ret = -EFAULT; 1663 break; 1664 } 1665 1666 ubuf += sizeof(reg); 1667 } 1668 1669 switch (idx) { 1670 case 15: 1671 newregs.pc = reg; 1672 break; 1673 case 16: 1674 reg = compat_psr_to_pstate(reg); 1675 newregs.pstate = reg; 1676 break; 1677 case 17: 1678 newregs.orig_x0 = reg; 1679 break; 1680 default: 1681 newregs.regs[idx] = reg; 1682 } 1683 1684 } 1685 1686 if (valid_user_regs(&newregs.user_regs, target)) 1687 *task_pt_regs(target) = newregs; 1688 else 1689 ret = -EINVAL; 1690 1691 return ret; 1692 } 1693 1694 static int compat_vfp_get(struct task_struct *target, 1695 const struct user_regset *regset, 1696 struct membuf to) 1697 { 1698 struct user_fpsimd_state *uregs; 1699 compat_ulong_t fpscr; 1700 1701 if (!system_supports_fpsimd()) 1702 return -EINVAL; 1703 1704 uregs = &target->thread.uw.fpsimd_state; 1705 1706 if (target == current) 1707 fpsimd_preserve_current_state(); 1708 1709 /* 1710 * The VFP registers are packed into the fpsimd_state, so they all sit 1711 * nicely together for us. We just need to create the fpscr separately. 1712 */ 1713 membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t)); 1714 fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) | 1715 (uregs->fpcr & VFP_FPSCR_CTRL_MASK); 1716 return membuf_store(&to, fpscr); 1717 } 1718 1719 static int compat_vfp_set(struct task_struct *target, 1720 const struct user_regset *regset, 1721 unsigned int pos, unsigned int count, 1722 const void *kbuf, const void __user *ubuf) 1723 { 1724 struct user_fpsimd_state *uregs; 1725 compat_ulong_t fpscr; 1726 int ret, vregs_end_pos; 1727 1728 if (!system_supports_fpsimd()) 1729 return -EINVAL; 1730 1731 uregs = &target->thread.uw.fpsimd_state; 1732 1733 vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t); 1734 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0, 1735 vregs_end_pos); 1736 1737 if (count && !ret) { 1738 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr, 1739 vregs_end_pos, VFP_STATE_SIZE); 1740 if (!ret) { 1741 uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK; 1742 uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK; 1743 } 1744 } 1745 1746 fpsimd_flush_task_state(target); 1747 return ret; 1748 } 1749 1750 static int compat_tls_get(struct task_struct *target, 1751 const struct user_regset *regset, 1752 struct membuf to) 1753 { 1754 return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value); 1755 } 1756 1757 static int compat_tls_set(struct task_struct *target, 1758 const struct user_regset *regset, unsigned int pos, 1759 unsigned int count, const void *kbuf, 1760 const void __user *ubuf) 1761 { 1762 int ret; 1763 compat_ulong_t tls = target->thread.uw.tp_value; 1764 1765 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1); 1766 if (ret) 1767 return ret; 1768 1769 target->thread.uw.tp_value = tls; 1770 return ret; 1771 } 1772 1773 static const struct user_regset aarch32_regsets[] = { 1774 [REGSET_COMPAT_GPR] = { 1775 .core_note_type = NT_PRSTATUS, 1776 .n = COMPAT_ELF_NGREG, 1777 .size = sizeof(compat_elf_greg_t), 1778 .align = sizeof(compat_elf_greg_t), 1779 .regset_get = compat_gpr_get, 1780 .set = compat_gpr_set 1781 }, 1782 [REGSET_COMPAT_VFP] = { 1783 .core_note_type = NT_ARM_VFP, 1784 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t), 1785 .size = sizeof(compat_ulong_t), 1786 .align = sizeof(compat_ulong_t), 1787 .active = fpr_active, 1788 .regset_get = compat_vfp_get, 1789 .set = compat_vfp_set 1790 }, 1791 }; 1792 1793 static const struct user_regset_view user_aarch32_view = { 1794 .name = "aarch32", .e_machine = EM_ARM, 1795 .regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets) 1796 }; 1797 1798 static const struct user_regset aarch32_ptrace_regsets[] = { 1799 [REGSET_GPR] = { 1800 .core_note_type = NT_PRSTATUS, 1801 .n = COMPAT_ELF_NGREG, 1802 .size = sizeof(compat_elf_greg_t), 1803 .align = sizeof(compat_elf_greg_t), 1804 .regset_get = compat_gpr_get, 1805 .set = compat_gpr_set 1806 }, 1807 [REGSET_FPR] = { 1808 .core_note_type = NT_ARM_VFP, 1809 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t), 1810 .size = sizeof(compat_ulong_t), 1811 .align = sizeof(compat_ulong_t), 1812 .regset_get = compat_vfp_get, 1813 .set = compat_vfp_set 1814 }, 1815 [REGSET_TLS] = { 1816 .core_note_type = NT_ARM_TLS, 1817 .n = 1, 1818 .size = sizeof(compat_ulong_t), 1819 .align = sizeof(compat_ulong_t), 1820 .regset_get = compat_tls_get, 1821 .set = compat_tls_set, 1822 }, 1823 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1824 [REGSET_HW_BREAK] = { 1825 .core_note_type = NT_ARM_HW_BREAK, 1826 .n = sizeof(struct user_hwdebug_state) / sizeof(u32), 1827 .size = sizeof(u32), 1828 .align = sizeof(u32), 1829 .regset_get = hw_break_get, 1830 .set = hw_break_set, 1831 }, 1832 [REGSET_HW_WATCH] = { 1833 .core_note_type = NT_ARM_HW_WATCH, 1834 .n = sizeof(struct user_hwdebug_state) / sizeof(u32), 1835 .size = sizeof(u32), 1836 .align = sizeof(u32), 1837 .regset_get = hw_break_get, 1838 .set = hw_break_set, 1839 }, 1840 #endif 1841 [REGSET_SYSTEM_CALL] = { 1842 .core_note_type = NT_ARM_SYSTEM_CALL, 1843 .n = 1, 1844 .size = sizeof(int), 1845 .align = sizeof(int), 1846 .regset_get = system_call_get, 1847 .set = system_call_set, 1848 }, 1849 }; 1850 1851 static const struct user_regset_view user_aarch32_ptrace_view = { 1852 .name = "aarch32", .e_machine = EM_ARM, 1853 .regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets) 1854 }; 1855 1856 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off, 1857 compat_ulong_t __user *ret) 1858 { 1859 compat_ulong_t tmp; 1860 1861 if (off & 3) 1862 return -EIO; 1863 1864 if (off == COMPAT_PT_TEXT_ADDR) 1865 tmp = tsk->mm->start_code; 1866 else if (off == COMPAT_PT_DATA_ADDR) 1867 tmp = tsk->mm->start_data; 1868 else if (off == COMPAT_PT_TEXT_END_ADDR) 1869 tmp = tsk->mm->end_code; 1870 else if (off < sizeof(compat_elf_gregset_t)) 1871 tmp = compat_get_user_reg(tsk, off >> 2); 1872 else if (off >= COMPAT_USER_SZ) 1873 return -EIO; 1874 else 1875 tmp = 0; 1876 1877 return put_user(tmp, ret); 1878 } 1879 1880 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off, 1881 compat_ulong_t val) 1882 { 1883 struct pt_regs newregs = *task_pt_regs(tsk); 1884 unsigned int idx = off / 4; 1885 1886 if (off & 3 || off >= COMPAT_USER_SZ) 1887 return -EIO; 1888 1889 if (off >= sizeof(compat_elf_gregset_t)) 1890 return 0; 1891 1892 switch (idx) { 1893 case 15: 1894 newregs.pc = val; 1895 break; 1896 case 16: 1897 newregs.pstate = compat_psr_to_pstate(val); 1898 break; 1899 case 17: 1900 newregs.orig_x0 = val; 1901 break; 1902 default: 1903 newregs.regs[idx] = val; 1904 } 1905 1906 if (!valid_user_regs(&newregs.user_regs, tsk)) 1907 return -EINVAL; 1908 1909 *task_pt_regs(tsk) = newregs; 1910 return 0; 1911 } 1912 1913 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1914 1915 /* 1916 * Convert a virtual register number into an index for a thread_info 1917 * breakpoint array. Breakpoints are identified using positive numbers 1918 * whilst watchpoints are negative. The registers are laid out as pairs 1919 * of (address, control), each pair mapping to a unique hw_breakpoint struct. 1920 * Register 0 is reserved for describing resource information. 1921 */ 1922 static int compat_ptrace_hbp_num_to_idx(compat_long_t num) 1923 { 1924 return (abs(num) - 1) >> 1; 1925 } 1926 1927 static int compat_ptrace_hbp_get_resource_info(u32 *kdata) 1928 { 1929 u8 num_brps, num_wrps, debug_arch, wp_len; 1930 u32 reg = 0; 1931 1932 num_brps = hw_breakpoint_slots(TYPE_INST); 1933 num_wrps = hw_breakpoint_slots(TYPE_DATA); 1934 1935 debug_arch = debug_monitors_arch(); 1936 wp_len = 8; 1937 reg |= debug_arch; 1938 reg <<= 8; 1939 reg |= wp_len; 1940 reg <<= 8; 1941 reg |= num_wrps; 1942 reg <<= 8; 1943 reg |= num_brps; 1944 1945 *kdata = reg; 1946 return 0; 1947 } 1948 1949 static int compat_ptrace_hbp_get(unsigned int note_type, 1950 struct task_struct *tsk, 1951 compat_long_t num, 1952 u32 *kdata) 1953 { 1954 u64 addr = 0; 1955 u32 ctrl = 0; 1956 1957 int err, idx = compat_ptrace_hbp_num_to_idx(num); 1958 1959 if (num & 1) { 1960 err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr); 1961 *kdata = (u32)addr; 1962 } else { 1963 err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl); 1964 *kdata = ctrl; 1965 } 1966 1967 return err; 1968 } 1969 1970 static int compat_ptrace_hbp_set(unsigned int note_type, 1971 struct task_struct *tsk, 1972 compat_long_t num, 1973 u32 *kdata) 1974 { 1975 u64 addr; 1976 u32 ctrl; 1977 1978 int err, idx = compat_ptrace_hbp_num_to_idx(num); 1979 1980 if (num & 1) { 1981 addr = *kdata; 1982 err = ptrace_hbp_set_addr(note_type, tsk, idx, addr); 1983 } else { 1984 ctrl = *kdata; 1985 err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl); 1986 } 1987 1988 return err; 1989 } 1990 1991 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num, 1992 compat_ulong_t __user *data) 1993 { 1994 int ret; 1995 u32 kdata; 1996 1997 /* Watchpoint */ 1998 if (num < 0) { 1999 ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata); 2000 /* Resource info */ 2001 } else if (num == 0) { 2002 ret = compat_ptrace_hbp_get_resource_info(&kdata); 2003 /* Breakpoint */ 2004 } else { 2005 ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata); 2006 } 2007 2008 if (!ret) 2009 ret = put_user(kdata, data); 2010 2011 return ret; 2012 } 2013 2014 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num, 2015 compat_ulong_t __user *data) 2016 { 2017 int ret; 2018 u32 kdata = 0; 2019 2020 if (num == 0) 2021 return 0; 2022 2023 ret = get_user(kdata, data); 2024 if (ret) 2025 return ret; 2026 2027 if (num < 0) 2028 ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata); 2029 else 2030 ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata); 2031 2032 return ret; 2033 } 2034 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 2035 2036 long compat_arch_ptrace(struct task_struct *child, compat_long_t request, 2037 compat_ulong_t caddr, compat_ulong_t cdata) 2038 { 2039 unsigned long addr = caddr; 2040 unsigned long data = cdata; 2041 void __user *datap = compat_ptr(data); 2042 int ret; 2043 2044 switch (request) { 2045 case PTRACE_PEEKUSR: 2046 ret = compat_ptrace_read_user(child, addr, datap); 2047 break; 2048 2049 case PTRACE_POKEUSR: 2050 ret = compat_ptrace_write_user(child, addr, data); 2051 break; 2052 2053 case COMPAT_PTRACE_GETREGS: 2054 ret = copy_regset_to_user(child, 2055 &user_aarch32_view, 2056 REGSET_COMPAT_GPR, 2057 0, sizeof(compat_elf_gregset_t), 2058 datap); 2059 break; 2060 2061 case COMPAT_PTRACE_SETREGS: 2062 ret = copy_regset_from_user(child, 2063 &user_aarch32_view, 2064 REGSET_COMPAT_GPR, 2065 0, sizeof(compat_elf_gregset_t), 2066 datap); 2067 break; 2068 2069 case COMPAT_PTRACE_GET_THREAD_AREA: 2070 ret = put_user((compat_ulong_t)child->thread.uw.tp_value, 2071 (compat_ulong_t __user *)datap); 2072 break; 2073 2074 case COMPAT_PTRACE_SET_SYSCALL: 2075 task_pt_regs(child)->syscallno = data; 2076 ret = 0; 2077 break; 2078 2079 case COMPAT_PTRACE_GETVFPREGS: 2080 ret = copy_regset_to_user(child, 2081 &user_aarch32_view, 2082 REGSET_COMPAT_VFP, 2083 0, VFP_STATE_SIZE, 2084 datap); 2085 break; 2086 2087 case COMPAT_PTRACE_SETVFPREGS: 2088 ret = copy_regset_from_user(child, 2089 &user_aarch32_view, 2090 REGSET_COMPAT_VFP, 2091 0, VFP_STATE_SIZE, 2092 datap); 2093 break; 2094 2095 #ifdef CONFIG_HAVE_HW_BREAKPOINT 2096 case COMPAT_PTRACE_GETHBPREGS: 2097 ret = compat_ptrace_gethbpregs(child, addr, datap); 2098 break; 2099 2100 case COMPAT_PTRACE_SETHBPREGS: 2101 ret = compat_ptrace_sethbpregs(child, addr, datap); 2102 break; 2103 #endif 2104 2105 default: 2106 ret = compat_ptrace_request(child, request, addr, 2107 data); 2108 break; 2109 } 2110 2111 return ret; 2112 } 2113 #endif /* CONFIG_COMPAT */ 2114 2115 const struct user_regset_view *task_user_regset_view(struct task_struct *task) 2116 { 2117 #ifdef CONFIG_COMPAT 2118 /* 2119 * Core dumping of 32-bit tasks or compat ptrace requests must use the 2120 * user_aarch32_view compatible with arm32. Native ptrace requests on 2121 * 32-bit children use an extended user_aarch32_ptrace_view to allow 2122 * access to the TLS register. 2123 */ 2124 if (is_compat_task()) 2125 return &user_aarch32_view; 2126 else if (is_compat_thread(task_thread_info(task))) 2127 return &user_aarch32_ptrace_view; 2128 #endif 2129 return &user_aarch64_view; 2130 } 2131 2132 long arch_ptrace(struct task_struct *child, long request, 2133 unsigned long addr, unsigned long data) 2134 { 2135 switch (request) { 2136 case PTRACE_PEEKMTETAGS: 2137 case PTRACE_POKEMTETAGS: 2138 return mte_ptrace_copy_tags(child, request, addr, data); 2139 } 2140 2141 return ptrace_request(child, request, addr, data); 2142 } 2143 2144 enum ptrace_syscall_dir { 2145 PTRACE_SYSCALL_ENTER = 0, 2146 PTRACE_SYSCALL_EXIT, 2147 }; 2148 2149 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir) 2150 { 2151 int regno; 2152 unsigned long saved_reg; 2153 2154 /* 2155 * We have some ABI weirdness here in the way that we handle syscall 2156 * exit stops because we indicate whether or not the stop has been 2157 * signalled from syscall entry or syscall exit by clobbering a general 2158 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee 2159 * and restoring its old value after the stop. This means that: 2160 * 2161 * - Any writes by the tracer to this register during the stop are 2162 * ignored/discarded. 2163 * 2164 * - The actual value of the register is not available during the stop, 2165 * so the tracer cannot save it and restore it later. 2166 * 2167 * - Syscall stops behave differently to seccomp and pseudo-step traps 2168 * (the latter do not nobble any registers). 2169 */ 2170 regno = (is_compat_task() ? 12 : 7); 2171 saved_reg = regs->regs[regno]; 2172 regs->regs[regno] = dir; 2173 2174 if (dir == PTRACE_SYSCALL_ENTER) { 2175 if (ptrace_report_syscall_entry(regs)) 2176 forget_syscall(regs); 2177 regs->regs[regno] = saved_reg; 2178 } else if (!test_thread_flag(TIF_SINGLESTEP)) { 2179 ptrace_report_syscall_exit(regs, 0); 2180 regs->regs[regno] = saved_reg; 2181 } else { 2182 regs->regs[regno] = saved_reg; 2183 2184 /* 2185 * Signal a pseudo-step exception since we are stepping but 2186 * tracer modifications to the registers may have rewound the 2187 * state machine. 2188 */ 2189 ptrace_report_syscall_exit(regs, 1); 2190 } 2191 } 2192 2193 int syscall_trace_enter(struct pt_regs *regs) 2194 { 2195 unsigned long flags = read_thread_flags(); 2196 2197 if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) { 2198 report_syscall(regs, PTRACE_SYSCALL_ENTER); 2199 if (flags & _TIF_SYSCALL_EMU) 2200 return NO_SYSCALL; 2201 } 2202 2203 /* Do the secure computing after ptrace; failures should be fast. */ 2204 if (secure_computing() == -1) 2205 return NO_SYSCALL; 2206 2207 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT)) 2208 trace_sys_enter(regs, regs->syscallno); 2209 2210 audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1], 2211 regs->regs[2], regs->regs[3]); 2212 2213 return regs->syscallno; 2214 } 2215 2216 void syscall_trace_exit(struct pt_regs *regs) 2217 { 2218 unsigned long flags = read_thread_flags(); 2219 2220 audit_syscall_exit(regs); 2221 2222 if (flags & _TIF_SYSCALL_TRACEPOINT) 2223 trace_sys_exit(regs, syscall_get_return_value(current, regs)); 2224 2225 if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP)) 2226 report_syscall(regs, PTRACE_SYSCALL_EXIT); 2227 2228 rseq_syscall(regs); 2229 } 2230 2231 /* 2232 * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a. 2233 * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is 2234 * not described in ARM DDI 0487D.a. 2235 * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may 2236 * be allocated an EL0 meaning in future. 2237 * Userspace cannot use these until they have an architectural meaning. 2238 * Note that this follows the SPSR_ELx format, not the AArch32 PSR format. 2239 * We also reserve IL for the kernel; SS is handled dynamically. 2240 */ 2241 #define SPSR_EL1_AARCH64_RES0_BITS \ 2242 (GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \ 2243 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5)) 2244 #define SPSR_EL1_AARCH32_RES0_BITS \ 2245 (GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20)) 2246 2247 static int valid_compat_regs(struct user_pt_regs *regs) 2248 { 2249 regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS; 2250 2251 if (!system_supports_mixed_endian_el0()) { 2252 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) 2253 regs->pstate |= PSR_AA32_E_BIT; 2254 else 2255 regs->pstate &= ~PSR_AA32_E_BIT; 2256 } 2257 2258 if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) && 2259 (regs->pstate & PSR_AA32_A_BIT) == 0 && 2260 (regs->pstate & PSR_AA32_I_BIT) == 0 && 2261 (regs->pstate & PSR_AA32_F_BIT) == 0) { 2262 return 1; 2263 } 2264 2265 /* 2266 * Force PSR to a valid 32-bit EL0t, preserving the same bits as 2267 * arch/arm. 2268 */ 2269 regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT | 2270 PSR_AA32_C_BIT | PSR_AA32_V_BIT | 2271 PSR_AA32_Q_BIT | PSR_AA32_IT_MASK | 2272 PSR_AA32_GE_MASK | PSR_AA32_E_BIT | 2273 PSR_AA32_T_BIT; 2274 regs->pstate |= PSR_MODE32_BIT; 2275 2276 return 0; 2277 } 2278 2279 static int valid_native_regs(struct user_pt_regs *regs) 2280 { 2281 regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS; 2282 2283 if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) && 2284 (regs->pstate & PSR_D_BIT) == 0 && 2285 (regs->pstate & PSR_A_BIT) == 0 && 2286 (regs->pstate & PSR_I_BIT) == 0 && 2287 (regs->pstate & PSR_F_BIT) == 0) { 2288 return 1; 2289 } 2290 2291 /* Force PSR to a valid 64-bit EL0t */ 2292 regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT; 2293 2294 return 0; 2295 } 2296 2297 /* 2298 * Are the current registers suitable for user mode? (used to maintain 2299 * security in signal handlers) 2300 */ 2301 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task) 2302 { 2303 /* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */ 2304 user_regs_reset_single_step(regs, task); 2305 2306 if (is_compat_thread(task_thread_info(task))) 2307 return valid_compat_regs(regs); 2308 else 2309 return valid_native_regs(regs); 2310 } 2311