xref: /linux/arch/arm64/kernel/ptrace.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/ptrace.c
4  *
5  * By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  * Copyright (C) 2012 ARM Ltd.
9  */
10 
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/elf.h>
31 #include <linux/rseq.h>
32 
33 #include <asm/compat.h>
34 #include <asm/cpufeature.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/fpsimd.h>
37 #include <asm/mte.h>
38 #include <asm/pointer_auth.h>
39 #include <asm/stacktrace.h>
40 #include <asm/syscall.h>
41 #include <asm/traps.h>
42 #include <asm/system_misc.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/syscalls.h>
46 
47 struct pt_regs_offset {
48 	const char *name;
49 	int offset;
50 };
51 
52 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
53 #define REG_OFFSET_END {.name = NULL, .offset = 0}
54 #define GPR_OFFSET_NAME(r) \
55 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
56 
57 static const struct pt_regs_offset regoffset_table[] = {
58 	GPR_OFFSET_NAME(0),
59 	GPR_OFFSET_NAME(1),
60 	GPR_OFFSET_NAME(2),
61 	GPR_OFFSET_NAME(3),
62 	GPR_OFFSET_NAME(4),
63 	GPR_OFFSET_NAME(5),
64 	GPR_OFFSET_NAME(6),
65 	GPR_OFFSET_NAME(7),
66 	GPR_OFFSET_NAME(8),
67 	GPR_OFFSET_NAME(9),
68 	GPR_OFFSET_NAME(10),
69 	GPR_OFFSET_NAME(11),
70 	GPR_OFFSET_NAME(12),
71 	GPR_OFFSET_NAME(13),
72 	GPR_OFFSET_NAME(14),
73 	GPR_OFFSET_NAME(15),
74 	GPR_OFFSET_NAME(16),
75 	GPR_OFFSET_NAME(17),
76 	GPR_OFFSET_NAME(18),
77 	GPR_OFFSET_NAME(19),
78 	GPR_OFFSET_NAME(20),
79 	GPR_OFFSET_NAME(21),
80 	GPR_OFFSET_NAME(22),
81 	GPR_OFFSET_NAME(23),
82 	GPR_OFFSET_NAME(24),
83 	GPR_OFFSET_NAME(25),
84 	GPR_OFFSET_NAME(26),
85 	GPR_OFFSET_NAME(27),
86 	GPR_OFFSET_NAME(28),
87 	GPR_OFFSET_NAME(29),
88 	GPR_OFFSET_NAME(30),
89 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
90 	REG_OFFSET_NAME(sp),
91 	REG_OFFSET_NAME(pc),
92 	REG_OFFSET_NAME(pstate),
93 	REG_OFFSET_END,
94 };
95 
96 /**
97  * regs_query_register_offset() - query register offset from its name
98  * @name:	the name of a register
99  *
100  * regs_query_register_offset() returns the offset of a register in struct
101  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
102  */
103 int regs_query_register_offset(const char *name)
104 {
105 	const struct pt_regs_offset *roff;
106 
107 	for (roff = regoffset_table; roff->name != NULL; roff++)
108 		if (!strcmp(roff->name, name))
109 			return roff->offset;
110 	return -EINVAL;
111 }
112 
113 /**
114  * regs_within_kernel_stack() - check the address in the stack
115  * @regs:      pt_regs which contains kernel stack pointer.
116  * @addr:      address which is checked.
117  *
118  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
119  * If @addr is within the kernel stack, it returns true. If not, returns false.
120  */
121 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
122 {
123 	return ((addr & ~(THREAD_SIZE - 1))  ==
124 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
125 		on_irq_stack(addr, sizeof(unsigned long));
126 }
127 
128 /**
129  * regs_get_kernel_stack_nth() - get Nth entry of the stack
130  * @regs:	pt_regs which contains kernel stack pointer.
131  * @n:		stack entry number.
132  *
133  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
134  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
135  * this returns 0.
136  */
137 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
138 {
139 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
140 
141 	addr += n;
142 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
143 		return *addr;
144 	else
145 		return 0;
146 }
147 
148 /*
149  * TODO: does not yet catch signals sent when the child dies.
150  * in exit.c or in signal.c.
151  */
152 
153 /*
154  * Called by kernel/ptrace.c when detaching..
155  */
156 void ptrace_disable(struct task_struct *child)
157 {
158 	/*
159 	 * This would be better off in core code, but PTRACE_DETACH has
160 	 * grown its fair share of arch-specific worts and changing it
161 	 * is likely to cause regressions on obscure architectures.
162 	 */
163 	user_disable_single_step(child);
164 }
165 
166 #ifdef CONFIG_HAVE_HW_BREAKPOINT
167 /*
168  * Handle hitting a HW-breakpoint.
169  */
170 static void ptrace_hbptriggered(struct perf_event *bp,
171 				struct perf_sample_data *data,
172 				struct pt_regs *regs)
173 {
174 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
175 	const char *desc = "Hardware breakpoint trap (ptrace)";
176 
177 	if (is_compat_task()) {
178 		int si_errno = 0;
179 		int i;
180 
181 		for (i = 0; i < ARM_MAX_BRP; ++i) {
182 			if (current->thread.debug.hbp_break[i] == bp) {
183 				si_errno = (i << 1) + 1;
184 				break;
185 			}
186 		}
187 
188 		for (i = 0; i < ARM_MAX_WRP; ++i) {
189 			if (current->thread.debug.hbp_watch[i] == bp) {
190 				si_errno = -((i << 1) + 1);
191 				break;
192 			}
193 		}
194 		arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
195 						  desc);
196 		return;
197 	}
198 
199 	arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
200 }
201 
202 /*
203  * Unregister breakpoints from this task and reset the pointers in
204  * the thread_struct.
205  */
206 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
207 {
208 	int i;
209 	struct thread_struct *t = &tsk->thread;
210 
211 	for (i = 0; i < ARM_MAX_BRP; i++) {
212 		if (t->debug.hbp_break[i]) {
213 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
214 			t->debug.hbp_break[i] = NULL;
215 		}
216 	}
217 
218 	for (i = 0; i < ARM_MAX_WRP; i++) {
219 		if (t->debug.hbp_watch[i]) {
220 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
221 			t->debug.hbp_watch[i] = NULL;
222 		}
223 	}
224 }
225 
226 void ptrace_hw_copy_thread(struct task_struct *tsk)
227 {
228 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
229 }
230 
231 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
232 					       struct task_struct *tsk,
233 					       unsigned long idx)
234 {
235 	struct perf_event *bp = ERR_PTR(-EINVAL);
236 
237 	switch (note_type) {
238 	case NT_ARM_HW_BREAK:
239 		if (idx >= ARM_MAX_BRP)
240 			goto out;
241 		idx = array_index_nospec(idx, ARM_MAX_BRP);
242 		bp = tsk->thread.debug.hbp_break[idx];
243 		break;
244 	case NT_ARM_HW_WATCH:
245 		if (idx >= ARM_MAX_WRP)
246 			goto out;
247 		idx = array_index_nospec(idx, ARM_MAX_WRP);
248 		bp = tsk->thread.debug.hbp_watch[idx];
249 		break;
250 	}
251 
252 out:
253 	return bp;
254 }
255 
256 static int ptrace_hbp_set_event(unsigned int note_type,
257 				struct task_struct *tsk,
258 				unsigned long idx,
259 				struct perf_event *bp)
260 {
261 	int err = -EINVAL;
262 
263 	switch (note_type) {
264 	case NT_ARM_HW_BREAK:
265 		if (idx >= ARM_MAX_BRP)
266 			goto out;
267 		idx = array_index_nospec(idx, ARM_MAX_BRP);
268 		tsk->thread.debug.hbp_break[idx] = bp;
269 		err = 0;
270 		break;
271 	case NT_ARM_HW_WATCH:
272 		if (idx >= ARM_MAX_WRP)
273 			goto out;
274 		idx = array_index_nospec(idx, ARM_MAX_WRP);
275 		tsk->thread.debug.hbp_watch[idx] = bp;
276 		err = 0;
277 		break;
278 	}
279 
280 out:
281 	return err;
282 }
283 
284 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
285 					    struct task_struct *tsk,
286 					    unsigned long idx)
287 {
288 	struct perf_event *bp;
289 	struct perf_event_attr attr;
290 	int err, type;
291 
292 	switch (note_type) {
293 	case NT_ARM_HW_BREAK:
294 		type = HW_BREAKPOINT_X;
295 		break;
296 	case NT_ARM_HW_WATCH:
297 		type = HW_BREAKPOINT_RW;
298 		break;
299 	default:
300 		return ERR_PTR(-EINVAL);
301 	}
302 
303 	ptrace_breakpoint_init(&attr);
304 
305 	/*
306 	 * Initialise fields to sane defaults
307 	 * (i.e. values that will pass validation).
308 	 */
309 	attr.bp_addr	= 0;
310 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
311 	attr.bp_type	= type;
312 	attr.disabled	= 1;
313 
314 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
315 	if (IS_ERR(bp))
316 		return bp;
317 
318 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
319 	if (err)
320 		return ERR_PTR(err);
321 
322 	return bp;
323 }
324 
325 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
326 				     struct arch_hw_breakpoint_ctrl ctrl,
327 				     struct perf_event_attr *attr)
328 {
329 	int err, len, type, offset, disabled = !ctrl.enabled;
330 
331 	attr->disabled = disabled;
332 	if (disabled)
333 		return 0;
334 
335 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
336 	if (err)
337 		return err;
338 
339 	switch (note_type) {
340 	case NT_ARM_HW_BREAK:
341 		if ((type & HW_BREAKPOINT_X) != type)
342 			return -EINVAL;
343 		break;
344 	case NT_ARM_HW_WATCH:
345 		if ((type & HW_BREAKPOINT_RW) != type)
346 			return -EINVAL;
347 		break;
348 	default:
349 		return -EINVAL;
350 	}
351 
352 	attr->bp_len	= len;
353 	attr->bp_type	= type;
354 	attr->bp_addr	+= offset;
355 
356 	return 0;
357 }
358 
359 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
360 {
361 	u8 num;
362 	u32 reg = 0;
363 
364 	switch (note_type) {
365 	case NT_ARM_HW_BREAK:
366 		num = hw_breakpoint_slots(TYPE_INST);
367 		break;
368 	case NT_ARM_HW_WATCH:
369 		num = hw_breakpoint_slots(TYPE_DATA);
370 		break;
371 	default:
372 		return -EINVAL;
373 	}
374 
375 	reg |= debug_monitors_arch();
376 	reg <<= 8;
377 	reg |= num;
378 
379 	*info = reg;
380 	return 0;
381 }
382 
383 static int ptrace_hbp_get_ctrl(unsigned int note_type,
384 			       struct task_struct *tsk,
385 			       unsigned long idx,
386 			       u32 *ctrl)
387 {
388 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
389 
390 	if (IS_ERR(bp))
391 		return PTR_ERR(bp);
392 
393 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
394 	return 0;
395 }
396 
397 static int ptrace_hbp_get_addr(unsigned int note_type,
398 			       struct task_struct *tsk,
399 			       unsigned long idx,
400 			       u64 *addr)
401 {
402 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
403 
404 	if (IS_ERR(bp))
405 		return PTR_ERR(bp);
406 
407 	*addr = bp ? counter_arch_bp(bp)->address : 0;
408 	return 0;
409 }
410 
411 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
412 							struct task_struct *tsk,
413 							unsigned long idx)
414 {
415 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
416 
417 	if (!bp)
418 		bp = ptrace_hbp_create(note_type, tsk, idx);
419 
420 	return bp;
421 }
422 
423 static int ptrace_hbp_set_ctrl(unsigned int note_type,
424 			       struct task_struct *tsk,
425 			       unsigned long idx,
426 			       u32 uctrl)
427 {
428 	int err;
429 	struct perf_event *bp;
430 	struct perf_event_attr attr;
431 	struct arch_hw_breakpoint_ctrl ctrl;
432 
433 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
434 	if (IS_ERR(bp)) {
435 		err = PTR_ERR(bp);
436 		return err;
437 	}
438 
439 	attr = bp->attr;
440 	decode_ctrl_reg(uctrl, &ctrl);
441 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
442 	if (err)
443 		return err;
444 
445 	return modify_user_hw_breakpoint(bp, &attr);
446 }
447 
448 static int ptrace_hbp_set_addr(unsigned int note_type,
449 			       struct task_struct *tsk,
450 			       unsigned long idx,
451 			       u64 addr)
452 {
453 	int err;
454 	struct perf_event *bp;
455 	struct perf_event_attr attr;
456 
457 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
458 	if (IS_ERR(bp)) {
459 		err = PTR_ERR(bp);
460 		return err;
461 	}
462 
463 	attr = bp->attr;
464 	attr.bp_addr = addr;
465 	err = modify_user_hw_breakpoint(bp, &attr);
466 	return err;
467 }
468 
469 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
470 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
471 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
472 
473 static int hw_break_get(struct task_struct *target,
474 			const struct user_regset *regset,
475 			struct membuf to)
476 {
477 	unsigned int note_type = regset->core_note_type;
478 	int ret, idx = 0;
479 	u32 info, ctrl;
480 	u64 addr;
481 
482 	/* Resource info */
483 	ret = ptrace_hbp_get_resource_info(note_type, &info);
484 	if (ret)
485 		return ret;
486 
487 	membuf_write(&to, &info, sizeof(info));
488 	membuf_zero(&to, sizeof(u32));
489 	/* (address, ctrl) registers */
490 	while (to.left) {
491 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
492 		if (ret)
493 			return ret;
494 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
495 		if (ret)
496 			return ret;
497 		membuf_store(&to, addr);
498 		membuf_store(&to, ctrl);
499 		membuf_zero(&to, sizeof(u32));
500 		idx++;
501 	}
502 	return 0;
503 }
504 
505 static int hw_break_set(struct task_struct *target,
506 			const struct user_regset *regset,
507 			unsigned int pos, unsigned int count,
508 			const void *kbuf, const void __user *ubuf)
509 {
510 	unsigned int note_type = regset->core_note_type;
511 	int ret, idx = 0, offset, limit;
512 	u32 ctrl;
513 	u64 addr;
514 
515 	/* Resource info and pad */
516 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
517 	user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
518 
519 	/* (address, ctrl) registers */
520 	limit = regset->n * regset->size;
521 	while (count && offset < limit) {
522 		if (count < PTRACE_HBP_ADDR_SZ)
523 			return -EINVAL;
524 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
525 					 offset, offset + PTRACE_HBP_ADDR_SZ);
526 		if (ret)
527 			return ret;
528 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
529 		if (ret)
530 			return ret;
531 		offset += PTRACE_HBP_ADDR_SZ;
532 
533 		if (!count)
534 			break;
535 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
536 					 offset, offset + PTRACE_HBP_CTRL_SZ);
537 		if (ret)
538 			return ret;
539 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
540 		if (ret)
541 			return ret;
542 		offset += PTRACE_HBP_CTRL_SZ;
543 
544 		user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
545 					  offset, offset + PTRACE_HBP_PAD_SZ);
546 		offset += PTRACE_HBP_PAD_SZ;
547 		idx++;
548 	}
549 
550 	return 0;
551 }
552 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
553 
554 static int gpr_get(struct task_struct *target,
555 		   const struct user_regset *regset,
556 		   struct membuf to)
557 {
558 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
559 	return membuf_write(&to, uregs, sizeof(*uregs));
560 }
561 
562 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
563 		   unsigned int pos, unsigned int count,
564 		   const void *kbuf, const void __user *ubuf)
565 {
566 	int ret;
567 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
568 
569 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
570 	if (ret)
571 		return ret;
572 
573 	if (!valid_user_regs(&newregs, target))
574 		return -EINVAL;
575 
576 	task_pt_regs(target)->user_regs = newregs;
577 	return 0;
578 }
579 
580 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
581 {
582 	if (!system_supports_fpsimd())
583 		return -ENODEV;
584 	return regset->n;
585 }
586 
587 /*
588  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
589  */
590 static int __fpr_get(struct task_struct *target,
591 		     const struct user_regset *regset,
592 		     struct membuf to)
593 {
594 	struct user_fpsimd_state *uregs;
595 
596 	sve_sync_to_fpsimd(target);
597 
598 	uregs = &target->thread.uw.fpsimd_state;
599 
600 	return membuf_write(&to, uregs, sizeof(*uregs));
601 }
602 
603 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
604 		   struct membuf to)
605 {
606 	if (!system_supports_fpsimd())
607 		return -EINVAL;
608 
609 	if (target == current)
610 		fpsimd_preserve_current_state();
611 
612 	return __fpr_get(target, regset, to);
613 }
614 
615 static int __fpr_set(struct task_struct *target,
616 		     const struct user_regset *regset,
617 		     unsigned int pos, unsigned int count,
618 		     const void *kbuf, const void __user *ubuf,
619 		     unsigned int start_pos)
620 {
621 	int ret;
622 	struct user_fpsimd_state newstate;
623 
624 	/*
625 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
626 	 * short copyin can't resurrect stale data.
627 	 */
628 	sve_sync_to_fpsimd(target);
629 
630 	newstate = target->thread.uw.fpsimd_state;
631 
632 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
633 				 start_pos, start_pos + sizeof(newstate));
634 	if (ret)
635 		return ret;
636 
637 	target->thread.uw.fpsimd_state = newstate;
638 
639 	return ret;
640 }
641 
642 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
643 		   unsigned int pos, unsigned int count,
644 		   const void *kbuf, const void __user *ubuf)
645 {
646 	int ret;
647 
648 	if (!system_supports_fpsimd())
649 		return -EINVAL;
650 
651 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
652 	if (ret)
653 		return ret;
654 
655 	sve_sync_from_fpsimd_zeropad(target);
656 	fpsimd_flush_task_state(target);
657 
658 	return ret;
659 }
660 
661 static int tls_get(struct task_struct *target, const struct user_regset *regset,
662 		   struct membuf to)
663 {
664 	int ret;
665 
666 	if (target == current)
667 		tls_preserve_current_state();
668 
669 	ret = membuf_store(&to, target->thread.uw.tp_value);
670 	if (system_supports_tpidr2())
671 		ret = membuf_store(&to, target->thread.tpidr2_el0);
672 	else
673 		ret = membuf_zero(&to, sizeof(u64));
674 
675 	return ret;
676 }
677 
678 static int tls_set(struct task_struct *target, const struct user_regset *regset,
679 		   unsigned int pos, unsigned int count,
680 		   const void *kbuf, const void __user *ubuf)
681 {
682 	int ret;
683 	unsigned long tls[2];
684 
685 	tls[0] = target->thread.uw.tp_value;
686 	if (system_supports_tpidr2())
687 		tls[1] = target->thread.tpidr2_el0;
688 
689 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, tls, 0, count);
690 	if (ret)
691 		return ret;
692 
693 	target->thread.uw.tp_value = tls[0];
694 	if (system_supports_tpidr2())
695 		target->thread.tpidr2_el0 = tls[1];
696 
697 	return ret;
698 }
699 
700 static int fpmr_get(struct task_struct *target, const struct user_regset *regset,
701 		   struct membuf to)
702 {
703 	if (!system_supports_fpmr())
704 		return -EINVAL;
705 
706 	if (target == current)
707 		fpsimd_preserve_current_state();
708 
709 	return membuf_store(&to, target->thread.uw.fpmr);
710 }
711 
712 static int fpmr_set(struct task_struct *target, const struct user_regset *regset,
713 		   unsigned int pos, unsigned int count,
714 		   const void *kbuf, const void __user *ubuf)
715 {
716 	int ret;
717 	unsigned long fpmr;
718 
719 	if (!system_supports_fpmr())
720 		return -EINVAL;
721 
722 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpmr, 0, count);
723 	if (ret)
724 		return ret;
725 
726 	target->thread.uw.fpmr = fpmr;
727 
728 	fpsimd_flush_task_state(target);
729 
730 	return 0;
731 }
732 
733 static int system_call_get(struct task_struct *target,
734 			   const struct user_regset *regset,
735 			   struct membuf to)
736 {
737 	return membuf_store(&to, task_pt_regs(target)->syscallno);
738 }
739 
740 static int system_call_set(struct task_struct *target,
741 			   const struct user_regset *regset,
742 			   unsigned int pos, unsigned int count,
743 			   const void *kbuf, const void __user *ubuf)
744 {
745 	int syscallno = task_pt_regs(target)->syscallno;
746 	int ret;
747 
748 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
749 	if (ret)
750 		return ret;
751 
752 	task_pt_regs(target)->syscallno = syscallno;
753 	return ret;
754 }
755 
756 #ifdef CONFIG_ARM64_SVE
757 
758 static void sve_init_header_from_task(struct user_sve_header *header,
759 				      struct task_struct *target,
760 				      enum vec_type type)
761 {
762 	unsigned int vq;
763 	bool active;
764 	bool fpsimd_only;
765 	enum vec_type task_type;
766 
767 	memset(header, 0, sizeof(*header));
768 
769 	/* Check if the requested registers are active for the task */
770 	if (thread_sm_enabled(&target->thread))
771 		task_type = ARM64_VEC_SME;
772 	else
773 		task_type = ARM64_VEC_SVE;
774 	active = (task_type == type);
775 
776 	switch (type) {
777 	case ARM64_VEC_SVE:
778 		if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
779 			header->flags |= SVE_PT_VL_INHERIT;
780 		fpsimd_only = !test_tsk_thread_flag(target, TIF_SVE);
781 		break;
782 	case ARM64_VEC_SME:
783 		if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
784 			header->flags |= SVE_PT_VL_INHERIT;
785 		fpsimd_only = false;
786 		break;
787 	default:
788 		WARN_ON_ONCE(1);
789 		return;
790 	}
791 
792 	if (active) {
793 		if (fpsimd_only) {
794 			header->flags |= SVE_PT_REGS_FPSIMD;
795 		} else {
796 			header->flags |= SVE_PT_REGS_SVE;
797 		}
798 	}
799 
800 	header->vl = task_get_vl(target, type);
801 	vq = sve_vq_from_vl(header->vl);
802 
803 	header->max_vl = vec_max_vl(type);
804 	header->size = SVE_PT_SIZE(vq, header->flags);
805 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
806 				      SVE_PT_REGS_SVE);
807 }
808 
809 static unsigned int sve_size_from_header(struct user_sve_header const *header)
810 {
811 	return ALIGN(header->size, SVE_VQ_BYTES);
812 }
813 
814 static int sve_get_common(struct task_struct *target,
815 			  const struct user_regset *regset,
816 			  struct membuf to,
817 			  enum vec_type type)
818 {
819 	struct user_sve_header header;
820 	unsigned int vq;
821 	unsigned long start, end;
822 
823 	/* Header */
824 	sve_init_header_from_task(&header, target, type);
825 	vq = sve_vq_from_vl(header.vl);
826 
827 	membuf_write(&to, &header, sizeof(header));
828 
829 	if (target == current)
830 		fpsimd_preserve_current_state();
831 
832 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
833 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
834 
835 	switch ((header.flags & SVE_PT_REGS_MASK)) {
836 	case SVE_PT_REGS_FPSIMD:
837 		return __fpr_get(target, regset, to);
838 
839 	case SVE_PT_REGS_SVE:
840 		start = SVE_PT_SVE_OFFSET;
841 		end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
842 		membuf_write(&to, target->thread.sve_state, end - start);
843 
844 		start = end;
845 		end = SVE_PT_SVE_FPSR_OFFSET(vq);
846 		membuf_zero(&to, end - start);
847 
848 		/*
849 		 * Copy fpsr, and fpcr which must follow contiguously in
850 		 * struct fpsimd_state:
851 		 */
852 		start = end;
853 		end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
854 		membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr,
855 			     end - start);
856 
857 		start = end;
858 		end = sve_size_from_header(&header);
859 		return membuf_zero(&to, end - start);
860 
861 	default:
862 		return 0;
863 	}
864 }
865 
866 static int sve_get(struct task_struct *target,
867 		   const struct user_regset *regset,
868 		   struct membuf to)
869 {
870 	if (!system_supports_sve())
871 		return -EINVAL;
872 
873 	return sve_get_common(target, regset, to, ARM64_VEC_SVE);
874 }
875 
876 static int sve_set_common(struct task_struct *target,
877 			  const struct user_regset *regset,
878 			  unsigned int pos, unsigned int count,
879 			  const void *kbuf, const void __user *ubuf,
880 			  enum vec_type type)
881 {
882 	int ret;
883 	struct user_sve_header header;
884 	unsigned int vq;
885 	unsigned long start, end;
886 
887 	/* Header */
888 	if (count < sizeof(header))
889 		return -EINVAL;
890 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
891 				 0, sizeof(header));
892 	if (ret)
893 		goto out;
894 
895 	/*
896 	 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
897 	 * vec_set_vector_length(), which will also validate them for us:
898 	 */
899 	ret = vec_set_vector_length(target, type, header.vl,
900 		((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
901 	if (ret)
902 		goto out;
903 
904 	/* Actual VL set may be less than the user asked for: */
905 	vq = sve_vq_from_vl(task_get_vl(target, type));
906 
907 	/* Enter/exit streaming mode */
908 	if (system_supports_sme()) {
909 		u64 old_svcr = target->thread.svcr;
910 
911 		switch (type) {
912 		case ARM64_VEC_SVE:
913 			target->thread.svcr &= ~SVCR_SM_MASK;
914 			break;
915 		case ARM64_VEC_SME:
916 			target->thread.svcr |= SVCR_SM_MASK;
917 
918 			/*
919 			 * Disable traps and ensure there is SME storage but
920 			 * preserve any currently set values in ZA/ZT.
921 			 */
922 			sme_alloc(target, false);
923 			set_tsk_thread_flag(target, TIF_SME);
924 			break;
925 		default:
926 			WARN_ON_ONCE(1);
927 			ret = -EINVAL;
928 			goto out;
929 		}
930 
931 		/*
932 		 * If we switched then invalidate any existing SVE
933 		 * state and ensure there's storage.
934 		 */
935 		if (target->thread.svcr != old_svcr)
936 			sve_alloc(target, true);
937 	}
938 
939 	/* Registers: FPSIMD-only case */
940 
941 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
942 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
943 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
944 				SVE_PT_FPSIMD_OFFSET);
945 		clear_tsk_thread_flag(target, TIF_SVE);
946 		target->thread.fp_type = FP_STATE_FPSIMD;
947 		goto out;
948 	}
949 
950 	/*
951 	 * Otherwise: no registers or full SVE case.  For backwards
952 	 * compatibility reasons we treat empty flags as SVE registers.
953 	 */
954 
955 	/*
956 	 * If setting a different VL from the requested VL and there is
957 	 * register data, the data layout will be wrong: don't even
958 	 * try to set the registers in this case.
959 	 */
960 	if (count && vq != sve_vq_from_vl(header.vl)) {
961 		ret = -EIO;
962 		goto out;
963 	}
964 
965 	sve_alloc(target, true);
966 	if (!target->thread.sve_state) {
967 		ret = -ENOMEM;
968 		clear_tsk_thread_flag(target, TIF_SVE);
969 		target->thread.fp_type = FP_STATE_FPSIMD;
970 		goto out;
971 	}
972 
973 	/*
974 	 * Ensure target->thread.sve_state is up to date with target's
975 	 * FPSIMD regs, so that a short copyin leaves trailing
976 	 * registers unmodified.  Only enable SVE if we are
977 	 * configuring normal SVE, a system with streaming SVE may not
978 	 * have normal SVE.
979 	 */
980 	fpsimd_sync_to_sve(target);
981 	if (type == ARM64_VEC_SVE)
982 		set_tsk_thread_flag(target, TIF_SVE);
983 	target->thread.fp_type = FP_STATE_SVE;
984 
985 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
986 	start = SVE_PT_SVE_OFFSET;
987 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
988 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
989 				 target->thread.sve_state,
990 				 start, end);
991 	if (ret)
992 		goto out;
993 
994 	start = end;
995 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
996 	user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, start, end);
997 
998 	/*
999 	 * Copy fpsr, and fpcr which must follow contiguously in
1000 	 * struct fpsimd_state:
1001 	 */
1002 	start = end;
1003 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
1004 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1005 				 &target->thread.uw.fpsimd_state.fpsr,
1006 				 start, end);
1007 
1008 out:
1009 	fpsimd_flush_task_state(target);
1010 	return ret;
1011 }
1012 
1013 static int sve_set(struct task_struct *target,
1014 		   const struct user_regset *regset,
1015 		   unsigned int pos, unsigned int count,
1016 		   const void *kbuf, const void __user *ubuf)
1017 {
1018 	if (!system_supports_sve())
1019 		return -EINVAL;
1020 
1021 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1022 			      ARM64_VEC_SVE);
1023 }
1024 
1025 #endif /* CONFIG_ARM64_SVE */
1026 
1027 #ifdef CONFIG_ARM64_SME
1028 
1029 static int ssve_get(struct task_struct *target,
1030 		   const struct user_regset *regset,
1031 		   struct membuf to)
1032 {
1033 	if (!system_supports_sme())
1034 		return -EINVAL;
1035 
1036 	return sve_get_common(target, regset, to, ARM64_VEC_SME);
1037 }
1038 
1039 static int ssve_set(struct task_struct *target,
1040 		    const struct user_regset *regset,
1041 		    unsigned int pos, unsigned int count,
1042 		    const void *kbuf, const void __user *ubuf)
1043 {
1044 	if (!system_supports_sme())
1045 		return -EINVAL;
1046 
1047 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1048 			      ARM64_VEC_SME);
1049 }
1050 
1051 static int za_get(struct task_struct *target,
1052 		  const struct user_regset *regset,
1053 		  struct membuf to)
1054 {
1055 	struct user_za_header header;
1056 	unsigned int vq;
1057 	unsigned long start, end;
1058 
1059 	if (!system_supports_sme())
1060 		return -EINVAL;
1061 
1062 	/* Header */
1063 	memset(&header, 0, sizeof(header));
1064 
1065 	if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
1066 		header.flags |= ZA_PT_VL_INHERIT;
1067 
1068 	header.vl = task_get_sme_vl(target);
1069 	vq = sve_vq_from_vl(header.vl);
1070 	header.max_vl = sme_max_vl();
1071 	header.max_size = ZA_PT_SIZE(vq);
1072 
1073 	/* If ZA is not active there is only the header */
1074 	if (thread_za_enabled(&target->thread))
1075 		header.size = ZA_PT_SIZE(vq);
1076 	else
1077 		header.size = ZA_PT_ZA_OFFSET;
1078 
1079 	membuf_write(&to, &header, sizeof(header));
1080 
1081 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1082 	end = ZA_PT_ZA_OFFSET;
1083 
1084 	if (target == current)
1085 		fpsimd_preserve_current_state();
1086 
1087 	/* Any register data to include? */
1088 	if (thread_za_enabled(&target->thread)) {
1089 		start = end;
1090 		end = ZA_PT_SIZE(vq);
1091 		membuf_write(&to, target->thread.sme_state, end - start);
1092 	}
1093 
1094 	/* Zero any trailing padding */
1095 	start = end;
1096 	end = ALIGN(header.size, SVE_VQ_BYTES);
1097 	return membuf_zero(&to, end - start);
1098 }
1099 
1100 static int za_set(struct task_struct *target,
1101 		  const struct user_regset *regset,
1102 		  unsigned int pos, unsigned int count,
1103 		  const void *kbuf, const void __user *ubuf)
1104 {
1105 	int ret;
1106 	struct user_za_header header;
1107 	unsigned int vq;
1108 	unsigned long start, end;
1109 
1110 	if (!system_supports_sme())
1111 		return -EINVAL;
1112 
1113 	/* Header */
1114 	if (count < sizeof(header))
1115 		return -EINVAL;
1116 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
1117 				 0, sizeof(header));
1118 	if (ret)
1119 		goto out;
1120 
1121 	/*
1122 	 * All current ZA_PT_* flags are consumed by
1123 	 * vec_set_vector_length(), which will also validate them for
1124 	 * us:
1125 	 */
1126 	ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl,
1127 		((unsigned long)header.flags) << 16);
1128 	if (ret)
1129 		goto out;
1130 
1131 	/* Actual VL set may be less than the user asked for: */
1132 	vq = sve_vq_from_vl(task_get_sme_vl(target));
1133 
1134 	/* Ensure there is some SVE storage for streaming mode */
1135 	if (!target->thread.sve_state) {
1136 		sve_alloc(target, false);
1137 		if (!target->thread.sve_state) {
1138 			ret = -ENOMEM;
1139 			goto out;
1140 		}
1141 	}
1142 
1143 	/*
1144 	 * Only flush the storage if PSTATE.ZA was not already set,
1145 	 * otherwise preserve any existing data.
1146 	 */
1147 	sme_alloc(target, !thread_za_enabled(&target->thread));
1148 	if (!target->thread.sme_state)
1149 		return -ENOMEM;
1150 
1151 	/* If there is no data then disable ZA */
1152 	if (!count) {
1153 		target->thread.svcr &= ~SVCR_ZA_MASK;
1154 		goto out;
1155 	}
1156 
1157 	/*
1158 	 * If setting a different VL from the requested VL and there is
1159 	 * register data, the data layout will be wrong: don't even
1160 	 * try to set the registers in this case.
1161 	 */
1162 	if (vq != sve_vq_from_vl(header.vl)) {
1163 		ret = -EIO;
1164 		goto out;
1165 	}
1166 
1167 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1168 	start = ZA_PT_ZA_OFFSET;
1169 	end = ZA_PT_SIZE(vq);
1170 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1171 				 target->thread.sme_state,
1172 				 start, end);
1173 	if (ret)
1174 		goto out;
1175 
1176 	/* Mark ZA as active and let userspace use it */
1177 	set_tsk_thread_flag(target, TIF_SME);
1178 	target->thread.svcr |= SVCR_ZA_MASK;
1179 
1180 out:
1181 	fpsimd_flush_task_state(target);
1182 	return ret;
1183 }
1184 
1185 static int zt_get(struct task_struct *target,
1186 		  const struct user_regset *regset,
1187 		  struct membuf to)
1188 {
1189 	if (!system_supports_sme2())
1190 		return -EINVAL;
1191 
1192 	/*
1193 	 * If PSTATE.ZA is not set then ZT will be zeroed when it is
1194 	 * enabled so report the current register value as zero.
1195 	 */
1196 	if (thread_za_enabled(&target->thread))
1197 		membuf_write(&to, thread_zt_state(&target->thread),
1198 			     ZT_SIG_REG_BYTES);
1199 	else
1200 		membuf_zero(&to, ZT_SIG_REG_BYTES);
1201 
1202 	return 0;
1203 }
1204 
1205 static int zt_set(struct task_struct *target,
1206 		  const struct user_regset *regset,
1207 		  unsigned int pos, unsigned int count,
1208 		  const void *kbuf, const void __user *ubuf)
1209 {
1210 	int ret;
1211 
1212 	if (!system_supports_sme2())
1213 		return -EINVAL;
1214 
1215 	/* Ensure SVE storage in case this is first use of SME */
1216 	sve_alloc(target, false);
1217 	if (!target->thread.sve_state)
1218 		return -ENOMEM;
1219 
1220 	if (!thread_za_enabled(&target->thread)) {
1221 		sme_alloc(target, true);
1222 		if (!target->thread.sme_state)
1223 			return -ENOMEM;
1224 	}
1225 
1226 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1227 				 thread_zt_state(&target->thread),
1228 				 0, ZT_SIG_REG_BYTES);
1229 	if (ret == 0) {
1230 		target->thread.svcr |= SVCR_ZA_MASK;
1231 		set_tsk_thread_flag(target, TIF_SME);
1232 	}
1233 
1234 	fpsimd_flush_task_state(target);
1235 
1236 	return ret;
1237 }
1238 
1239 #endif /* CONFIG_ARM64_SME */
1240 
1241 #ifdef CONFIG_ARM64_PTR_AUTH
1242 static int pac_mask_get(struct task_struct *target,
1243 			const struct user_regset *regset,
1244 			struct membuf to)
1245 {
1246 	/*
1247 	 * The PAC bits can differ across data and instruction pointers
1248 	 * depending on TCR_EL1.TBID*, which we may make use of in future, so
1249 	 * we expose separate masks.
1250 	 */
1251 	unsigned long mask = ptrauth_user_pac_mask();
1252 	struct user_pac_mask uregs = {
1253 		.data_mask = mask,
1254 		.insn_mask = mask,
1255 	};
1256 
1257 	if (!system_supports_address_auth())
1258 		return -EINVAL;
1259 
1260 	return membuf_write(&to, &uregs, sizeof(uregs));
1261 }
1262 
1263 static int pac_enabled_keys_get(struct task_struct *target,
1264 				const struct user_regset *regset,
1265 				struct membuf to)
1266 {
1267 	long enabled_keys = ptrauth_get_enabled_keys(target);
1268 
1269 	if (IS_ERR_VALUE(enabled_keys))
1270 		return enabled_keys;
1271 
1272 	return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
1273 }
1274 
1275 static int pac_enabled_keys_set(struct task_struct *target,
1276 				const struct user_regset *regset,
1277 				unsigned int pos, unsigned int count,
1278 				const void *kbuf, const void __user *ubuf)
1279 {
1280 	int ret;
1281 	long enabled_keys = ptrauth_get_enabled_keys(target);
1282 
1283 	if (IS_ERR_VALUE(enabled_keys))
1284 		return enabled_keys;
1285 
1286 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
1287 				 sizeof(long));
1288 	if (ret)
1289 		return ret;
1290 
1291 	return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
1292 					enabled_keys);
1293 }
1294 
1295 #ifdef CONFIG_CHECKPOINT_RESTORE
1296 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
1297 {
1298 	return (__uint128_t)key->hi << 64 | key->lo;
1299 }
1300 
1301 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
1302 {
1303 	struct ptrauth_key key = {
1304 		.lo = (unsigned long)ukey,
1305 		.hi = (unsigned long)(ukey >> 64),
1306 	};
1307 
1308 	return key;
1309 }
1310 
1311 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1312 				     const struct ptrauth_keys_user *keys)
1313 {
1314 	ukeys->apiakey = pac_key_to_user(&keys->apia);
1315 	ukeys->apibkey = pac_key_to_user(&keys->apib);
1316 	ukeys->apdakey = pac_key_to_user(&keys->apda);
1317 	ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1318 }
1319 
1320 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
1321 				       const struct user_pac_address_keys *ukeys)
1322 {
1323 	keys->apia = pac_key_from_user(ukeys->apiakey);
1324 	keys->apib = pac_key_from_user(ukeys->apibkey);
1325 	keys->apda = pac_key_from_user(ukeys->apdakey);
1326 	keys->apdb = pac_key_from_user(ukeys->apdbkey);
1327 }
1328 
1329 static int pac_address_keys_get(struct task_struct *target,
1330 				const struct user_regset *regset,
1331 				struct membuf to)
1332 {
1333 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1334 	struct user_pac_address_keys user_keys;
1335 
1336 	if (!system_supports_address_auth())
1337 		return -EINVAL;
1338 
1339 	pac_address_keys_to_user(&user_keys, keys);
1340 
1341 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1342 }
1343 
1344 static int pac_address_keys_set(struct task_struct *target,
1345 				const struct user_regset *regset,
1346 				unsigned int pos, unsigned int count,
1347 				const void *kbuf, const void __user *ubuf)
1348 {
1349 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1350 	struct user_pac_address_keys user_keys;
1351 	int ret;
1352 
1353 	if (!system_supports_address_auth())
1354 		return -EINVAL;
1355 
1356 	pac_address_keys_to_user(&user_keys, keys);
1357 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1358 				 &user_keys, 0, -1);
1359 	if (ret)
1360 		return ret;
1361 	pac_address_keys_from_user(keys, &user_keys);
1362 
1363 	return 0;
1364 }
1365 
1366 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1367 				     const struct ptrauth_keys_user *keys)
1368 {
1369 	ukeys->apgakey = pac_key_to_user(&keys->apga);
1370 }
1371 
1372 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1373 				       const struct user_pac_generic_keys *ukeys)
1374 {
1375 	keys->apga = pac_key_from_user(ukeys->apgakey);
1376 }
1377 
1378 static int pac_generic_keys_get(struct task_struct *target,
1379 				const struct user_regset *regset,
1380 				struct membuf to)
1381 {
1382 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1383 	struct user_pac_generic_keys user_keys;
1384 
1385 	if (!system_supports_generic_auth())
1386 		return -EINVAL;
1387 
1388 	pac_generic_keys_to_user(&user_keys, keys);
1389 
1390 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1391 }
1392 
1393 static int pac_generic_keys_set(struct task_struct *target,
1394 				const struct user_regset *regset,
1395 				unsigned int pos, unsigned int count,
1396 				const void *kbuf, const void __user *ubuf)
1397 {
1398 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1399 	struct user_pac_generic_keys user_keys;
1400 	int ret;
1401 
1402 	if (!system_supports_generic_auth())
1403 		return -EINVAL;
1404 
1405 	pac_generic_keys_to_user(&user_keys, keys);
1406 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1407 				 &user_keys, 0, -1);
1408 	if (ret)
1409 		return ret;
1410 	pac_generic_keys_from_user(keys, &user_keys);
1411 
1412 	return 0;
1413 }
1414 #endif /* CONFIG_CHECKPOINT_RESTORE */
1415 #endif /* CONFIG_ARM64_PTR_AUTH */
1416 
1417 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1418 static int tagged_addr_ctrl_get(struct task_struct *target,
1419 				const struct user_regset *regset,
1420 				struct membuf to)
1421 {
1422 	long ctrl = get_tagged_addr_ctrl(target);
1423 
1424 	if (IS_ERR_VALUE(ctrl))
1425 		return ctrl;
1426 
1427 	return membuf_write(&to, &ctrl, sizeof(ctrl));
1428 }
1429 
1430 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1431 				user_regset *regset, unsigned int pos,
1432 				unsigned int count, const void *kbuf, const
1433 				void __user *ubuf)
1434 {
1435 	int ret;
1436 	long ctrl;
1437 
1438 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1439 	if (ret)
1440 		return ret;
1441 
1442 	return set_tagged_addr_ctrl(target, ctrl);
1443 }
1444 #endif
1445 
1446 enum aarch64_regset {
1447 	REGSET_GPR,
1448 	REGSET_FPR,
1449 	REGSET_TLS,
1450 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1451 	REGSET_HW_BREAK,
1452 	REGSET_HW_WATCH,
1453 #endif
1454 	REGSET_FPMR,
1455 	REGSET_SYSTEM_CALL,
1456 #ifdef CONFIG_ARM64_SVE
1457 	REGSET_SVE,
1458 #endif
1459 #ifdef CONFIG_ARM64_SME
1460 	REGSET_SSVE,
1461 	REGSET_ZA,
1462 	REGSET_ZT,
1463 #endif
1464 #ifdef CONFIG_ARM64_PTR_AUTH
1465 	REGSET_PAC_MASK,
1466 	REGSET_PAC_ENABLED_KEYS,
1467 #ifdef CONFIG_CHECKPOINT_RESTORE
1468 	REGSET_PACA_KEYS,
1469 	REGSET_PACG_KEYS,
1470 #endif
1471 #endif
1472 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1473 	REGSET_TAGGED_ADDR_CTRL,
1474 #endif
1475 };
1476 
1477 static const struct user_regset aarch64_regsets[] = {
1478 	[REGSET_GPR] = {
1479 		.core_note_type = NT_PRSTATUS,
1480 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
1481 		.size = sizeof(u64),
1482 		.align = sizeof(u64),
1483 		.regset_get = gpr_get,
1484 		.set = gpr_set
1485 	},
1486 	[REGSET_FPR] = {
1487 		.core_note_type = NT_PRFPREG,
1488 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1489 		/*
1490 		 * We pretend we have 32-bit registers because the fpsr and
1491 		 * fpcr are 32-bits wide.
1492 		 */
1493 		.size = sizeof(u32),
1494 		.align = sizeof(u32),
1495 		.active = fpr_active,
1496 		.regset_get = fpr_get,
1497 		.set = fpr_set
1498 	},
1499 	[REGSET_TLS] = {
1500 		.core_note_type = NT_ARM_TLS,
1501 		.n = 2,
1502 		.size = sizeof(void *),
1503 		.align = sizeof(void *),
1504 		.regset_get = tls_get,
1505 		.set = tls_set,
1506 	},
1507 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1508 	[REGSET_HW_BREAK] = {
1509 		.core_note_type = NT_ARM_HW_BREAK,
1510 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1511 		.size = sizeof(u32),
1512 		.align = sizeof(u32),
1513 		.regset_get = hw_break_get,
1514 		.set = hw_break_set,
1515 	},
1516 	[REGSET_HW_WATCH] = {
1517 		.core_note_type = NT_ARM_HW_WATCH,
1518 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1519 		.size = sizeof(u32),
1520 		.align = sizeof(u32),
1521 		.regset_get = hw_break_get,
1522 		.set = hw_break_set,
1523 	},
1524 #endif
1525 	[REGSET_SYSTEM_CALL] = {
1526 		.core_note_type = NT_ARM_SYSTEM_CALL,
1527 		.n = 1,
1528 		.size = sizeof(int),
1529 		.align = sizeof(int),
1530 		.regset_get = system_call_get,
1531 		.set = system_call_set,
1532 	},
1533 	[REGSET_FPMR] = {
1534 		.core_note_type = NT_ARM_FPMR,
1535 		.n = 1,
1536 		.size = sizeof(u64),
1537 		.align = sizeof(u64),
1538 		.regset_get = fpmr_get,
1539 		.set = fpmr_set,
1540 	},
1541 #ifdef CONFIG_ARM64_SVE
1542 	[REGSET_SVE] = { /* Scalable Vector Extension */
1543 		.core_note_type = NT_ARM_SVE,
1544 		.n = DIV_ROUND_UP(SVE_PT_SIZE(ARCH_SVE_VQ_MAX,
1545 					      SVE_PT_REGS_SVE),
1546 				  SVE_VQ_BYTES),
1547 		.size = SVE_VQ_BYTES,
1548 		.align = SVE_VQ_BYTES,
1549 		.regset_get = sve_get,
1550 		.set = sve_set,
1551 	},
1552 #endif
1553 #ifdef CONFIG_ARM64_SME
1554 	[REGSET_SSVE] = { /* Streaming mode SVE */
1555 		.core_note_type = NT_ARM_SSVE,
1556 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE),
1557 				  SVE_VQ_BYTES),
1558 		.size = SVE_VQ_BYTES,
1559 		.align = SVE_VQ_BYTES,
1560 		.regset_get = ssve_get,
1561 		.set = ssve_set,
1562 	},
1563 	[REGSET_ZA] = { /* SME ZA */
1564 		.core_note_type = NT_ARM_ZA,
1565 		/*
1566 		 * ZA is a single register but it's variably sized and
1567 		 * the ptrace core requires that the size of any data
1568 		 * be an exact multiple of the configured register
1569 		 * size so report as though we had SVE_VQ_BYTES
1570 		 * registers. These values aren't exposed to
1571 		 * userspace.
1572 		 */
1573 		.n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES),
1574 		.size = SVE_VQ_BYTES,
1575 		.align = SVE_VQ_BYTES,
1576 		.regset_get = za_get,
1577 		.set = za_set,
1578 	},
1579 	[REGSET_ZT] = { /* SME ZT */
1580 		.core_note_type = NT_ARM_ZT,
1581 		.n = 1,
1582 		.size = ZT_SIG_REG_BYTES,
1583 		.align = sizeof(u64),
1584 		.regset_get = zt_get,
1585 		.set = zt_set,
1586 	},
1587 #endif
1588 #ifdef CONFIG_ARM64_PTR_AUTH
1589 	[REGSET_PAC_MASK] = {
1590 		.core_note_type = NT_ARM_PAC_MASK,
1591 		.n = sizeof(struct user_pac_mask) / sizeof(u64),
1592 		.size = sizeof(u64),
1593 		.align = sizeof(u64),
1594 		.regset_get = pac_mask_get,
1595 		/* this cannot be set dynamically */
1596 	},
1597 	[REGSET_PAC_ENABLED_KEYS] = {
1598 		.core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1599 		.n = 1,
1600 		.size = sizeof(long),
1601 		.align = sizeof(long),
1602 		.regset_get = pac_enabled_keys_get,
1603 		.set = pac_enabled_keys_set,
1604 	},
1605 #ifdef CONFIG_CHECKPOINT_RESTORE
1606 	[REGSET_PACA_KEYS] = {
1607 		.core_note_type = NT_ARM_PACA_KEYS,
1608 		.n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1609 		.size = sizeof(__uint128_t),
1610 		.align = sizeof(__uint128_t),
1611 		.regset_get = pac_address_keys_get,
1612 		.set = pac_address_keys_set,
1613 	},
1614 	[REGSET_PACG_KEYS] = {
1615 		.core_note_type = NT_ARM_PACG_KEYS,
1616 		.n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1617 		.size = sizeof(__uint128_t),
1618 		.align = sizeof(__uint128_t),
1619 		.regset_get = pac_generic_keys_get,
1620 		.set = pac_generic_keys_set,
1621 	},
1622 #endif
1623 #endif
1624 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1625 	[REGSET_TAGGED_ADDR_CTRL] = {
1626 		.core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1627 		.n = 1,
1628 		.size = sizeof(long),
1629 		.align = sizeof(long),
1630 		.regset_get = tagged_addr_ctrl_get,
1631 		.set = tagged_addr_ctrl_set,
1632 	},
1633 #endif
1634 };
1635 
1636 static const struct user_regset_view user_aarch64_view = {
1637 	.name = "aarch64", .e_machine = EM_AARCH64,
1638 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1639 };
1640 
1641 enum compat_regset {
1642 	REGSET_COMPAT_GPR,
1643 	REGSET_COMPAT_VFP,
1644 };
1645 
1646 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1647 {
1648 	struct pt_regs *regs = task_pt_regs(task);
1649 
1650 	switch (idx) {
1651 	case 15:
1652 		return regs->pc;
1653 	case 16:
1654 		return pstate_to_compat_psr(regs->pstate);
1655 	case 17:
1656 		return regs->orig_x0;
1657 	default:
1658 		return regs->regs[idx];
1659 	}
1660 }
1661 
1662 static int compat_gpr_get(struct task_struct *target,
1663 			  const struct user_regset *regset,
1664 			  struct membuf to)
1665 {
1666 	int i = 0;
1667 
1668 	while (to.left)
1669 		membuf_store(&to, compat_get_user_reg(target, i++));
1670 	return 0;
1671 }
1672 
1673 static int compat_gpr_set(struct task_struct *target,
1674 			  const struct user_regset *regset,
1675 			  unsigned int pos, unsigned int count,
1676 			  const void *kbuf, const void __user *ubuf)
1677 {
1678 	struct pt_regs newregs;
1679 	int ret = 0;
1680 	unsigned int i, start, num_regs;
1681 
1682 	/* Calculate the number of AArch32 registers contained in count */
1683 	num_regs = count / regset->size;
1684 
1685 	/* Convert pos into an register number */
1686 	start = pos / regset->size;
1687 
1688 	if (start + num_regs > regset->n)
1689 		return -EIO;
1690 
1691 	newregs = *task_pt_regs(target);
1692 
1693 	for (i = 0; i < num_regs; ++i) {
1694 		unsigned int idx = start + i;
1695 		compat_ulong_t reg;
1696 
1697 		if (kbuf) {
1698 			memcpy(&reg, kbuf, sizeof(reg));
1699 			kbuf += sizeof(reg);
1700 		} else {
1701 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1702 			if (ret) {
1703 				ret = -EFAULT;
1704 				break;
1705 			}
1706 
1707 			ubuf += sizeof(reg);
1708 		}
1709 
1710 		switch (idx) {
1711 		case 15:
1712 			newregs.pc = reg;
1713 			break;
1714 		case 16:
1715 			reg = compat_psr_to_pstate(reg);
1716 			newregs.pstate = reg;
1717 			break;
1718 		case 17:
1719 			newregs.orig_x0 = reg;
1720 			break;
1721 		default:
1722 			newregs.regs[idx] = reg;
1723 		}
1724 
1725 	}
1726 
1727 	if (valid_user_regs(&newregs.user_regs, target))
1728 		*task_pt_regs(target) = newregs;
1729 	else
1730 		ret = -EINVAL;
1731 
1732 	return ret;
1733 }
1734 
1735 static int compat_vfp_get(struct task_struct *target,
1736 			  const struct user_regset *regset,
1737 			  struct membuf to)
1738 {
1739 	struct user_fpsimd_state *uregs;
1740 	compat_ulong_t fpscr;
1741 
1742 	if (!system_supports_fpsimd())
1743 		return -EINVAL;
1744 
1745 	uregs = &target->thread.uw.fpsimd_state;
1746 
1747 	if (target == current)
1748 		fpsimd_preserve_current_state();
1749 
1750 	/*
1751 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1752 	 * nicely together for us. We just need to create the fpscr separately.
1753 	 */
1754 	membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1755 	fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1756 		(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1757 	return membuf_store(&to, fpscr);
1758 }
1759 
1760 static int compat_vfp_set(struct task_struct *target,
1761 			  const struct user_regset *regset,
1762 			  unsigned int pos, unsigned int count,
1763 			  const void *kbuf, const void __user *ubuf)
1764 {
1765 	struct user_fpsimd_state *uregs;
1766 	compat_ulong_t fpscr;
1767 	int ret, vregs_end_pos;
1768 
1769 	if (!system_supports_fpsimd())
1770 		return -EINVAL;
1771 
1772 	uregs = &target->thread.uw.fpsimd_state;
1773 
1774 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1775 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1776 				 vregs_end_pos);
1777 
1778 	if (count && !ret) {
1779 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1780 					 vregs_end_pos, VFP_STATE_SIZE);
1781 		if (!ret) {
1782 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1783 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1784 		}
1785 	}
1786 
1787 	fpsimd_flush_task_state(target);
1788 	return ret;
1789 }
1790 
1791 static int compat_tls_get(struct task_struct *target,
1792 			  const struct user_regset *regset,
1793 			  struct membuf to)
1794 {
1795 	return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1796 }
1797 
1798 static int compat_tls_set(struct task_struct *target,
1799 			  const struct user_regset *regset, unsigned int pos,
1800 			  unsigned int count, const void *kbuf,
1801 			  const void __user *ubuf)
1802 {
1803 	int ret;
1804 	compat_ulong_t tls = target->thread.uw.tp_value;
1805 
1806 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1807 	if (ret)
1808 		return ret;
1809 
1810 	target->thread.uw.tp_value = tls;
1811 	return ret;
1812 }
1813 
1814 static const struct user_regset aarch32_regsets[] = {
1815 	[REGSET_COMPAT_GPR] = {
1816 		.core_note_type = NT_PRSTATUS,
1817 		.n = COMPAT_ELF_NGREG,
1818 		.size = sizeof(compat_elf_greg_t),
1819 		.align = sizeof(compat_elf_greg_t),
1820 		.regset_get = compat_gpr_get,
1821 		.set = compat_gpr_set
1822 	},
1823 	[REGSET_COMPAT_VFP] = {
1824 		.core_note_type = NT_ARM_VFP,
1825 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1826 		.size = sizeof(compat_ulong_t),
1827 		.align = sizeof(compat_ulong_t),
1828 		.active = fpr_active,
1829 		.regset_get = compat_vfp_get,
1830 		.set = compat_vfp_set
1831 	},
1832 };
1833 
1834 static const struct user_regset_view user_aarch32_view = {
1835 	.name = "aarch32", .e_machine = EM_ARM,
1836 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1837 };
1838 
1839 static const struct user_regset aarch32_ptrace_regsets[] = {
1840 	[REGSET_GPR] = {
1841 		.core_note_type = NT_PRSTATUS,
1842 		.n = COMPAT_ELF_NGREG,
1843 		.size = sizeof(compat_elf_greg_t),
1844 		.align = sizeof(compat_elf_greg_t),
1845 		.regset_get = compat_gpr_get,
1846 		.set = compat_gpr_set
1847 	},
1848 	[REGSET_FPR] = {
1849 		.core_note_type = NT_ARM_VFP,
1850 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1851 		.size = sizeof(compat_ulong_t),
1852 		.align = sizeof(compat_ulong_t),
1853 		.regset_get = compat_vfp_get,
1854 		.set = compat_vfp_set
1855 	},
1856 	[REGSET_TLS] = {
1857 		.core_note_type = NT_ARM_TLS,
1858 		.n = 1,
1859 		.size = sizeof(compat_ulong_t),
1860 		.align = sizeof(compat_ulong_t),
1861 		.regset_get = compat_tls_get,
1862 		.set = compat_tls_set,
1863 	},
1864 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1865 	[REGSET_HW_BREAK] = {
1866 		.core_note_type = NT_ARM_HW_BREAK,
1867 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1868 		.size = sizeof(u32),
1869 		.align = sizeof(u32),
1870 		.regset_get = hw_break_get,
1871 		.set = hw_break_set,
1872 	},
1873 	[REGSET_HW_WATCH] = {
1874 		.core_note_type = NT_ARM_HW_WATCH,
1875 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1876 		.size = sizeof(u32),
1877 		.align = sizeof(u32),
1878 		.regset_get = hw_break_get,
1879 		.set = hw_break_set,
1880 	},
1881 #endif
1882 	[REGSET_SYSTEM_CALL] = {
1883 		.core_note_type = NT_ARM_SYSTEM_CALL,
1884 		.n = 1,
1885 		.size = sizeof(int),
1886 		.align = sizeof(int),
1887 		.regset_get = system_call_get,
1888 		.set = system_call_set,
1889 	},
1890 };
1891 
1892 static const struct user_regset_view user_aarch32_ptrace_view = {
1893 	.name = "aarch32", .e_machine = EM_ARM,
1894 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1895 };
1896 
1897 #ifdef CONFIG_COMPAT
1898 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1899 				   compat_ulong_t __user *ret)
1900 {
1901 	compat_ulong_t tmp;
1902 
1903 	if (off & 3)
1904 		return -EIO;
1905 
1906 	if (off == COMPAT_PT_TEXT_ADDR)
1907 		tmp = tsk->mm->start_code;
1908 	else if (off == COMPAT_PT_DATA_ADDR)
1909 		tmp = tsk->mm->start_data;
1910 	else if (off == COMPAT_PT_TEXT_END_ADDR)
1911 		tmp = tsk->mm->end_code;
1912 	else if (off < sizeof(compat_elf_gregset_t))
1913 		tmp = compat_get_user_reg(tsk, off >> 2);
1914 	else if (off >= COMPAT_USER_SZ)
1915 		return -EIO;
1916 	else
1917 		tmp = 0;
1918 
1919 	return put_user(tmp, ret);
1920 }
1921 
1922 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1923 				    compat_ulong_t val)
1924 {
1925 	struct pt_regs newregs = *task_pt_regs(tsk);
1926 	unsigned int idx = off / 4;
1927 
1928 	if (off & 3 || off >= COMPAT_USER_SZ)
1929 		return -EIO;
1930 
1931 	if (off >= sizeof(compat_elf_gregset_t))
1932 		return 0;
1933 
1934 	switch (idx) {
1935 	case 15:
1936 		newregs.pc = val;
1937 		break;
1938 	case 16:
1939 		newregs.pstate = compat_psr_to_pstate(val);
1940 		break;
1941 	case 17:
1942 		newregs.orig_x0 = val;
1943 		break;
1944 	default:
1945 		newregs.regs[idx] = val;
1946 	}
1947 
1948 	if (!valid_user_regs(&newregs.user_regs, tsk))
1949 		return -EINVAL;
1950 
1951 	*task_pt_regs(tsk) = newregs;
1952 	return 0;
1953 }
1954 
1955 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1956 
1957 /*
1958  * Convert a virtual register number into an index for a thread_info
1959  * breakpoint array. Breakpoints are identified using positive numbers
1960  * whilst watchpoints are negative. The registers are laid out as pairs
1961  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1962  * Register 0 is reserved for describing resource information.
1963  */
1964 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1965 {
1966 	return (abs(num) - 1) >> 1;
1967 }
1968 
1969 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1970 {
1971 	u8 num_brps, num_wrps, debug_arch, wp_len;
1972 	u32 reg = 0;
1973 
1974 	num_brps	= hw_breakpoint_slots(TYPE_INST);
1975 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
1976 
1977 	debug_arch	= debug_monitors_arch();
1978 	wp_len		= 8;
1979 	reg		|= debug_arch;
1980 	reg		<<= 8;
1981 	reg		|= wp_len;
1982 	reg		<<= 8;
1983 	reg		|= num_wrps;
1984 	reg		<<= 8;
1985 	reg		|= num_brps;
1986 
1987 	*kdata = reg;
1988 	return 0;
1989 }
1990 
1991 static int compat_ptrace_hbp_get(unsigned int note_type,
1992 				 struct task_struct *tsk,
1993 				 compat_long_t num,
1994 				 u32 *kdata)
1995 {
1996 	u64 addr = 0;
1997 	u32 ctrl = 0;
1998 
1999 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
2000 
2001 	if (num & 1) {
2002 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
2003 		*kdata = (u32)addr;
2004 	} else {
2005 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
2006 		*kdata = ctrl;
2007 	}
2008 
2009 	return err;
2010 }
2011 
2012 static int compat_ptrace_hbp_set(unsigned int note_type,
2013 				 struct task_struct *tsk,
2014 				 compat_long_t num,
2015 				 u32 *kdata)
2016 {
2017 	u64 addr;
2018 	u32 ctrl;
2019 
2020 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
2021 
2022 	if (num & 1) {
2023 		addr = *kdata;
2024 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
2025 	} else {
2026 		ctrl = *kdata;
2027 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
2028 	}
2029 
2030 	return err;
2031 }
2032 
2033 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
2034 				    compat_ulong_t __user *data)
2035 {
2036 	int ret;
2037 	u32 kdata;
2038 
2039 	/* Watchpoint */
2040 	if (num < 0) {
2041 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
2042 	/* Resource info */
2043 	} else if (num == 0) {
2044 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
2045 	/* Breakpoint */
2046 	} else {
2047 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
2048 	}
2049 
2050 	if (!ret)
2051 		ret = put_user(kdata, data);
2052 
2053 	return ret;
2054 }
2055 
2056 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
2057 				    compat_ulong_t __user *data)
2058 {
2059 	int ret;
2060 	u32 kdata = 0;
2061 
2062 	if (num == 0)
2063 		return 0;
2064 
2065 	ret = get_user(kdata, data);
2066 	if (ret)
2067 		return ret;
2068 
2069 	if (num < 0)
2070 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
2071 	else
2072 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
2073 
2074 	return ret;
2075 }
2076 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
2077 
2078 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
2079 			compat_ulong_t caddr, compat_ulong_t cdata)
2080 {
2081 	unsigned long addr = caddr;
2082 	unsigned long data = cdata;
2083 	void __user *datap = compat_ptr(data);
2084 	int ret;
2085 
2086 	switch (request) {
2087 		case PTRACE_PEEKUSR:
2088 			ret = compat_ptrace_read_user(child, addr, datap);
2089 			break;
2090 
2091 		case PTRACE_POKEUSR:
2092 			ret = compat_ptrace_write_user(child, addr, data);
2093 			break;
2094 
2095 		case COMPAT_PTRACE_GETREGS:
2096 			ret = copy_regset_to_user(child,
2097 						  &user_aarch32_view,
2098 						  REGSET_COMPAT_GPR,
2099 						  0, sizeof(compat_elf_gregset_t),
2100 						  datap);
2101 			break;
2102 
2103 		case COMPAT_PTRACE_SETREGS:
2104 			ret = copy_regset_from_user(child,
2105 						    &user_aarch32_view,
2106 						    REGSET_COMPAT_GPR,
2107 						    0, sizeof(compat_elf_gregset_t),
2108 						    datap);
2109 			break;
2110 
2111 		case COMPAT_PTRACE_GET_THREAD_AREA:
2112 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
2113 				       (compat_ulong_t __user *)datap);
2114 			break;
2115 
2116 		case COMPAT_PTRACE_SET_SYSCALL:
2117 			task_pt_regs(child)->syscallno = data;
2118 			ret = 0;
2119 			break;
2120 
2121 		case COMPAT_PTRACE_GETVFPREGS:
2122 			ret = copy_regset_to_user(child,
2123 						  &user_aarch32_view,
2124 						  REGSET_COMPAT_VFP,
2125 						  0, VFP_STATE_SIZE,
2126 						  datap);
2127 			break;
2128 
2129 		case COMPAT_PTRACE_SETVFPREGS:
2130 			ret = copy_regset_from_user(child,
2131 						    &user_aarch32_view,
2132 						    REGSET_COMPAT_VFP,
2133 						    0, VFP_STATE_SIZE,
2134 						    datap);
2135 			break;
2136 
2137 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2138 		case COMPAT_PTRACE_GETHBPREGS:
2139 			ret = compat_ptrace_gethbpregs(child, addr, datap);
2140 			break;
2141 
2142 		case COMPAT_PTRACE_SETHBPREGS:
2143 			ret = compat_ptrace_sethbpregs(child, addr, datap);
2144 			break;
2145 #endif
2146 
2147 		default:
2148 			ret = compat_ptrace_request(child, request, addr,
2149 						    data);
2150 			break;
2151 	}
2152 
2153 	return ret;
2154 }
2155 #endif /* CONFIG_COMPAT */
2156 
2157 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2158 {
2159 	/*
2160 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
2161 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
2162 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
2163 	 * access to the TLS register.
2164 	 */
2165 	if (is_compat_task())
2166 		return &user_aarch32_view;
2167 	else if (is_compat_thread(task_thread_info(task)))
2168 		return &user_aarch32_ptrace_view;
2169 
2170 	return &user_aarch64_view;
2171 }
2172 
2173 long arch_ptrace(struct task_struct *child, long request,
2174 		 unsigned long addr, unsigned long data)
2175 {
2176 	switch (request) {
2177 	case PTRACE_PEEKMTETAGS:
2178 	case PTRACE_POKEMTETAGS:
2179 		return mte_ptrace_copy_tags(child, request, addr, data);
2180 	}
2181 
2182 	return ptrace_request(child, request, addr, data);
2183 }
2184 
2185 enum ptrace_syscall_dir {
2186 	PTRACE_SYSCALL_ENTER = 0,
2187 	PTRACE_SYSCALL_EXIT,
2188 };
2189 
2190 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
2191 {
2192 	int regno;
2193 	unsigned long saved_reg;
2194 
2195 	/*
2196 	 * We have some ABI weirdness here in the way that we handle syscall
2197 	 * exit stops because we indicate whether or not the stop has been
2198 	 * signalled from syscall entry or syscall exit by clobbering a general
2199 	 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
2200 	 * and restoring its old value after the stop. This means that:
2201 	 *
2202 	 * - Any writes by the tracer to this register during the stop are
2203 	 *   ignored/discarded.
2204 	 *
2205 	 * - The actual value of the register is not available during the stop,
2206 	 *   so the tracer cannot save it and restore it later.
2207 	 *
2208 	 * - Syscall stops behave differently to seccomp and pseudo-step traps
2209 	 *   (the latter do not nobble any registers).
2210 	 */
2211 	regno = (is_compat_task() ? 12 : 7);
2212 	saved_reg = regs->regs[regno];
2213 	regs->regs[regno] = dir;
2214 
2215 	if (dir == PTRACE_SYSCALL_ENTER) {
2216 		if (ptrace_report_syscall_entry(regs))
2217 			forget_syscall(regs);
2218 		regs->regs[regno] = saved_reg;
2219 	} else if (!test_thread_flag(TIF_SINGLESTEP)) {
2220 		ptrace_report_syscall_exit(regs, 0);
2221 		regs->regs[regno] = saved_reg;
2222 	} else {
2223 		regs->regs[regno] = saved_reg;
2224 
2225 		/*
2226 		 * Signal a pseudo-step exception since we are stepping but
2227 		 * tracer modifications to the registers may have rewound the
2228 		 * state machine.
2229 		 */
2230 		ptrace_report_syscall_exit(regs, 1);
2231 	}
2232 }
2233 
2234 int syscall_trace_enter(struct pt_regs *regs)
2235 {
2236 	unsigned long flags = read_thread_flags();
2237 
2238 	if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
2239 		report_syscall(regs, PTRACE_SYSCALL_ENTER);
2240 		if (flags & _TIF_SYSCALL_EMU)
2241 			return NO_SYSCALL;
2242 	}
2243 
2244 	/* Do the secure computing after ptrace; failures should be fast. */
2245 	if (secure_computing() == -1)
2246 		return NO_SYSCALL;
2247 
2248 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
2249 		trace_sys_enter(regs, regs->syscallno);
2250 
2251 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
2252 			    regs->regs[2], regs->regs[3]);
2253 
2254 	return regs->syscallno;
2255 }
2256 
2257 void syscall_trace_exit(struct pt_regs *regs)
2258 {
2259 	unsigned long flags = read_thread_flags();
2260 
2261 	audit_syscall_exit(regs);
2262 
2263 	if (flags & _TIF_SYSCALL_TRACEPOINT)
2264 		trace_sys_exit(regs, syscall_get_return_value(current, regs));
2265 
2266 	if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
2267 		report_syscall(regs, PTRACE_SYSCALL_EXIT);
2268 
2269 	rseq_syscall(regs);
2270 }
2271 
2272 /*
2273  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
2274  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
2275  * not described in ARM DDI 0487D.a.
2276  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
2277  * be allocated an EL0 meaning in future.
2278  * Userspace cannot use these until they have an architectural meaning.
2279  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
2280  * We also reserve IL for the kernel; SS is handled dynamically.
2281  */
2282 #define SPSR_EL1_AARCH64_RES0_BITS \
2283 	(GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
2284 	 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
2285 #define SPSR_EL1_AARCH32_RES0_BITS \
2286 	(GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
2287 
2288 static int valid_compat_regs(struct user_pt_regs *regs)
2289 {
2290 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
2291 
2292 	if (!system_supports_mixed_endian_el0()) {
2293 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
2294 			regs->pstate |= PSR_AA32_E_BIT;
2295 		else
2296 			regs->pstate &= ~PSR_AA32_E_BIT;
2297 	}
2298 
2299 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
2300 	    (regs->pstate & PSR_AA32_A_BIT) == 0 &&
2301 	    (regs->pstate & PSR_AA32_I_BIT) == 0 &&
2302 	    (regs->pstate & PSR_AA32_F_BIT) == 0) {
2303 		return 1;
2304 	}
2305 
2306 	/*
2307 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
2308 	 * arch/arm.
2309 	 */
2310 	regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
2311 			PSR_AA32_C_BIT | PSR_AA32_V_BIT |
2312 			PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
2313 			PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
2314 			PSR_AA32_T_BIT;
2315 	regs->pstate |= PSR_MODE32_BIT;
2316 
2317 	return 0;
2318 }
2319 
2320 static int valid_native_regs(struct user_pt_regs *regs)
2321 {
2322 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
2323 
2324 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
2325 	    (regs->pstate & PSR_D_BIT) == 0 &&
2326 	    (regs->pstate & PSR_A_BIT) == 0 &&
2327 	    (regs->pstate & PSR_I_BIT) == 0 &&
2328 	    (regs->pstate & PSR_F_BIT) == 0) {
2329 		return 1;
2330 	}
2331 
2332 	/* Force PSR to a valid 64-bit EL0t */
2333 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
2334 
2335 	return 0;
2336 }
2337 
2338 /*
2339  * Are the current registers suitable for user mode? (used to maintain
2340  * security in signal handlers)
2341  */
2342 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
2343 {
2344 	/* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
2345 	user_regs_reset_single_step(regs, task);
2346 
2347 	if (is_compat_thread(task_thread_info(task)))
2348 		return valid_compat_regs(regs);
2349 	else
2350 		return valid_native_regs(regs);
2351 }
2352