xref: /linux/arch/arm64/kernel/ptrace.c (revision d003d772e64df08af04ee63609d47169ee82ae0e)
1 /*
2  * Based on arch/arm/kernel/ptrace.c
3  *
4  * By Ross Biro 1/23/92
5  * edited by Linus Torvalds
6  * ARM modifications Copyright (C) 2000 Russell King
7  * Copyright (C) 2012 ARM Ltd.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include <linux/audit.h>
23 #include <linux/compat.h>
24 #include <linux/kernel.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/mm.h>
28 #include <linux/nospec.h>
29 #include <linux/smp.h>
30 #include <linux/ptrace.h>
31 #include <linux/user.h>
32 #include <linux/seccomp.h>
33 #include <linux/security.h>
34 #include <linux/init.h>
35 #include <linux/signal.h>
36 #include <linux/string.h>
37 #include <linux/uaccess.h>
38 #include <linux/perf_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/regset.h>
41 #include <linux/tracehook.h>
42 #include <linux/elf.h>
43 
44 #include <asm/compat.h>
45 #include <asm/cpufeature.h>
46 #include <asm/debug-monitors.h>
47 #include <asm/fpsimd.h>
48 #include <asm/pgtable.h>
49 #include <asm/pointer_auth.h>
50 #include <asm/stacktrace.h>
51 #include <asm/syscall.h>
52 #include <asm/traps.h>
53 #include <asm/system_misc.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/syscalls.h>
57 
58 struct pt_regs_offset {
59 	const char *name;
60 	int offset;
61 };
62 
63 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
64 #define REG_OFFSET_END {.name = NULL, .offset = 0}
65 #define GPR_OFFSET_NAME(r) \
66 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
67 
68 static const struct pt_regs_offset regoffset_table[] = {
69 	GPR_OFFSET_NAME(0),
70 	GPR_OFFSET_NAME(1),
71 	GPR_OFFSET_NAME(2),
72 	GPR_OFFSET_NAME(3),
73 	GPR_OFFSET_NAME(4),
74 	GPR_OFFSET_NAME(5),
75 	GPR_OFFSET_NAME(6),
76 	GPR_OFFSET_NAME(7),
77 	GPR_OFFSET_NAME(8),
78 	GPR_OFFSET_NAME(9),
79 	GPR_OFFSET_NAME(10),
80 	GPR_OFFSET_NAME(11),
81 	GPR_OFFSET_NAME(12),
82 	GPR_OFFSET_NAME(13),
83 	GPR_OFFSET_NAME(14),
84 	GPR_OFFSET_NAME(15),
85 	GPR_OFFSET_NAME(16),
86 	GPR_OFFSET_NAME(17),
87 	GPR_OFFSET_NAME(18),
88 	GPR_OFFSET_NAME(19),
89 	GPR_OFFSET_NAME(20),
90 	GPR_OFFSET_NAME(21),
91 	GPR_OFFSET_NAME(22),
92 	GPR_OFFSET_NAME(23),
93 	GPR_OFFSET_NAME(24),
94 	GPR_OFFSET_NAME(25),
95 	GPR_OFFSET_NAME(26),
96 	GPR_OFFSET_NAME(27),
97 	GPR_OFFSET_NAME(28),
98 	GPR_OFFSET_NAME(29),
99 	GPR_OFFSET_NAME(30),
100 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
101 	REG_OFFSET_NAME(sp),
102 	REG_OFFSET_NAME(pc),
103 	REG_OFFSET_NAME(pstate),
104 	REG_OFFSET_END,
105 };
106 
107 /**
108  * regs_query_register_offset() - query register offset from its name
109  * @name:	the name of a register
110  *
111  * regs_query_register_offset() returns the offset of a register in struct
112  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
113  */
114 int regs_query_register_offset(const char *name)
115 {
116 	const struct pt_regs_offset *roff;
117 
118 	for (roff = regoffset_table; roff->name != NULL; roff++)
119 		if (!strcmp(roff->name, name))
120 			return roff->offset;
121 	return -EINVAL;
122 }
123 
124 /**
125  * regs_within_kernel_stack() - check the address in the stack
126  * @regs:      pt_regs which contains kernel stack pointer.
127  * @addr:      address which is checked.
128  *
129  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
130  * If @addr is within the kernel stack, it returns true. If not, returns false.
131  */
132 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
133 {
134 	return ((addr & ~(THREAD_SIZE - 1))  ==
135 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
136 		on_irq_stack(addr, NULL);
137 }
138 
139 /**
140  * regs_get_kernel_stack_nth() - get Nth entry of the stack
141  * @regs:	pt_regs which contains kernel stack pointer.
142  * @n:		stack entry number.
143  *
144  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
145  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
146  * this returns 0.
147  */
148 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
149 {
150 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
151 
152 	addr += n;
153 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
154 		return *addr;
155 	else
156 		return 0;
157 }
158 
159 /*
160  * TODO: does not yet catch signals sent when the child dies.
161  * in exit.c or in signal.c.
162  */
163 
164 /*
165  * Called by kernel/ptrace.c when detaching..
166  */
167 void ptrace_disable(struct task_struct *child)
168 {
169 	/*
170 	 * This would be better off in core code, but PTRACE_DETACH has
171 	 * grown its fair share of arch-specific worts and changing it
172 	 * is likely to cause regressions on obscure architectures.
173 	 */
174 	user_disable_single_step(child);
175 }
176 
177 #ifdef CONFIG_HAVE_HW_BREAKPOINT
178 /*
179  * Handle hitting a HW-breakpoint.
180  */
181 static void ptrace_hbptriggered(struct perf_event *bp,
182 				struct perf_sample_data *data,
183 				struct pt_regs *regs)
184 {
185 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
186 	const char *desc = "Hardware breakpoint trap (ptrace)";
187 
188 #ifdef CONFIG_COMPAT
189 	if (is_compat_task()) {
190 		int si_errno = 0;
191 		int i;
192 
193 		for (i = 0; i < ARM_MAX_BRP; ++i) {
194 			if (current->thread.debug.hbp_break[i] == bp) {
195 				si_errno = (i << 1) + 1;
196 				break;
197 			}
198 		}
199 
200 		for (i = 0; i < ARM_MAX_WRP; ++i) {
201 			if (current->thread.debug.hbp_watch[i] == bp) {
202 				si_errno = -((i << 1) + 1);
203 				break;
204 			}
205 		}
206 		arm64_force_sig_ptrace_errno_trap(si_errno,
207 						  (void __user *)bkpt->trigger,
208 						  desc);
209 	}
210 #endif
211 	arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT,
212 			      (void __user *)(bkpt->trigger),
213 			      desc);
214 }
215 
216 /*
217  * Unregister breakpoints from this task and reset the pointers in
218  * the thread_struct.
219  */
220 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
221 {
222 	int i;
223 	struct thread_struct *t = &tsk->thread;
224 
225 	for (i = 0; i < ARM_MAX_BRP; i++) {
226 		if (t->debug.hbp_break[i]) {
227 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
228 			t->debug.hbp_break[i] = NULL;
229 		}
230 	}
231 
232 	for (i = 0; i < ARM_MAX_WRP; i++) {
233 		if (t->debug.hbp_watch[i]) {
234 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
235 			t->debug.hbp_watch[i] = NULL;
236 		}
237 	}
238 }
239 
240 void ptrace_hw_copy_thread(struct task_struct *tsk)
241 {
242 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
243 }
244 
245 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
246 					       struct task_struct *tsk,
247 					       unsigned long idx)
248 {
249 	struct perf_event *bp = ERR_PTR(-EINVAL);
250 
251 	switch (note_type) {
252 	case NT_ARM_HW_BREAK:
253 		if (idx >= ARM_MAX_BRP)
254 			goto out;
255 		idx = array_index_nospec(idx, ARM_MAX_BRP);
256 		bp = tsk->thread.debug.hbp_break[idx];
257 		break;
258 	case NT_ARM_HW_WATCH:
259 		if (idx >= ARM_MAX_WRP)
260 			goto out;
261 		idx = array_index_nospec(idx, ARM_MAX_WRP);
262 		bp = tsk->thread.debug.hbp_watch[idx];
263 		break;
264 	}
265 
266 out:
267 	return bp;
268 }
269 
270 static int ptrace_hbp_set_event(unsigned int note_type,
271 				struct task_struct *tsk,
272 				unsigned long idx,
273 				struct perf_event *bp)
274 {
275 	int err = -EINVAL;
276 
277 	switch (note_type) {
278 	case NT_ARM_HW_BREAK:
279 		if (idx >= ARM_MAX_BRP)
280 			goto out;
281 		idx = array_index_nospec(idx, ARM_MAX_BRP);
282 		tsk->thread.debug.hbp_break[idx] = bp;
283 		err = 0;
284 		break;
285 	case NT_ARM_HW_WATCH:
286 		if (idx >= ARM_MAX_WRP)
287 			goto out;
288 		idx = array_index_nospec(idx, ARM_MAX_WRP);
289 		tsk->thread.debug.hbp_watch[idx] = bp;
290 		err = 0;
291 		break;
292 	}
293 
294 out:
295 	return err;
296 }
297 
298 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
299 					    struct task_struct *tsk,
300 					    unsigned long idx)
301 {
302 	struct perf_event *bp;
303 	struct perf_event_attr attr;
304 	int err, type;
305 
306 	switch (note_type) {
307 	case NT_ARM_HW_BREAK:
308 		type = HW_BREAKPOINT_X;
309 		break;
310 	case NT_ARM_HW_WATCH:
311 		type = HW_BREAKPOINT_RW;
312 		break;
313 	default:
314 		return ERR_PTR(-EINVAL);
315 	}
316 
317 	ptrace_breakpoint_init(&attr);
318 
319 	/*
320 	 * Initialise fields to sane defaults
321 	 * (i.e. values that will pass validation).
322 	 */
323 	attr.bp_addr	= 0;
324 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
325 	attr.bp_type	= type;
326 	attr.disabled	= 1;
327 
328 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
329 	if (IS_ERR(bp))
330 		return bp;
331 
332 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
333 	if (err)
334 		return ERR_PTR(err);
335 
336 	return bp;
337 }
338 
339 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
340 				     struct arch_hw_breakpoint_ctrl ctrl,
341 				     struct perf_event_attr *attr)
342 {
343 	int err, len, type, offset, disabled = !ctrl.enabled;
344 
345 	attr->disabled = disabled;
346 	if (disabled)
347 		return 0;
348 
349 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
350 	if (err)
351 		return err;
352 
353 	switch (note_type) {
354 	case NT_ARM_HW_BREAK:
355 		if ((type & HW_BREAKPOINT_X) != type)
356 			return -EINVAL;
357 		break;
358 	case NT_ARM_HW_WATCH:
359 		if ((type & HW_BREAKPOINT_RW) != type)
360 			return -EINVAL;
361 		break;
362 	default:
363 		return -EINVAL;
364 	}
365 
366 	attr->bp_len	= len;
367 	attr->bp_type	= type;
368 	attr->bp_addr	+= offset;
369 
370 	return 0;
371 }
372 
373 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
374 {
375 	u8 num;
376 	u32 reg = 0;
377 
378 	switch (note_type) {
379 	case NT_ARM_HW_BREAK:
380 		num = hw_breakpoint_slots(TYPE_INST);
381 		break;
382 	case NT_ARM_HW_WATCH:
383 		num = hw_breakpoint_slots(TYPE_DATA);
384 		break;
385 	default:
386 		return -EINVAL;
387 	}
388 
389 	reg |= debug_monitors_arch();
390 	reg <<= 8;
391 	reg |= num;
392 
393 	*info = reg;
394 	return 0;
395 }
396 
397 static int ptrace_hbp_get_ctrl(unsigned int note_type,
398 			       struct task_struct *tsk,
399 			       unsigned long idx,
400 			       u32 *ctrl)
401 {
402 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
403 
404 	if (IS_ERR(bp))
405 		return PTR_ERR(bp);
406 
407 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
408 	return 0;
409 }
410 
411 static int ptrace_hbp_get_addr(unsigned int note_type,
412 			       struct task_struct *tsk,
413 			       unsigned long idx,
414 			       u64 *addr)
415 {
416 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
417 
418 	if (IS_ERR(bp))
419 		return PTR_ERR(bp);
420 
421 	*addr = bp ? counter_arch_bp(bp)->address : 0;
422 	return 0;
423 }
424 
425 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
426 							struct task_struct *tsk,
427 							unsigned long idx)
428 {
429 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
430 
431 	if (!bp)
432 		bp = ptrace_hbp_create(note_type, tsk, idx);
433 
434 	return bp;
435 }
436 
437 static int ptrace_hbp_set_ctrl(unsigned int note_type,
438 			       struct task_struct *tsk,
439 			       unsigned long idx,
440 			       u32 uctrl)
441 {
442 	int err;
443 	struct perf_event *bp;
444 	struct perf_event_attr attr;
445 	struct arch_hw_breakpoint_ctrl ctrl;
446 
447 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
448 	if (IS_ERR(bp)) {
449 		err = PTR_ERR(bp);
450 		return err;
451 	}
452 
453 	attr = bp->attr;
454 	decode_ctrl_reg(uctrl, &ctrl);
455 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
456 	if (err)
457 		return err;
458 
459 	return modify_user_hw_breakpoint(bp, &attr);
460 }
461 
462 static int ptrace_hbp_set_addr(unsigned int note_type,
463 			       struct task_struct *tsk,
464 			       unsigned long idx,
465 			       u64 addr)
466 {
467 	int err;
468 	struct perf_event *bp;
469 	struct perf_event_attr attr;
470 
471 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
472 	if (IS_ERR(bp)) {
473 		err = PTR_ERR(bp);
474 		return err;
475 	}
476 
477 	attr = bp->attr;
478 	attr.bp_addr = addr;
479 	err = modify_user_hw_breakpoint(bp, &attr);
480 	return err;
481 }
482 
483 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
484 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
485 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
486 
487 static int hw_break_get(struct task_struct *target,
488 			const struct user_regset *regset,
489 			unsigned int pos, unsigned int count,
490 			void *kbuf, void __user *ubuf)
491 {
492 	unsigned int note_type = regset->core_note_type;
493 	int ret, idx = 0, offset, limit;
494 	u32 info, ctrl;
495 	u64 addr;
496 
497 	/* Resource info */
498 	ret = ptrace_hbp_get_resource_info(note_type, &info);
499 	if (ret)
500 		return ret;
501 
502 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &info, 0,
503 				  sizeof(info));
504 	if (ret)
505 		return ret;
506 
507 	/* Pad */
508 	offset = offsetof(struct user_hwdebug_state, pad);
509 	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf, offset,
510 				       offset + PTRACE_HBP_PAD_SZ);
511 	if (ret)
512 		return ret;
513 
514 	/* (address, ctrl) registers */
515 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
516 	limit = regset->n * regset->size;
517 	while (count && offset < limit) {
518 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
519 		if (ret)
520 			return ret;
521 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &addr,
522 					  offset, offset + PTRACE_HBP_ADDR_SZ);
523 		if (ret)
524 			return ret;
525 		offset += PTRACE_HBP_ADDR_SZ;
526 
527 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
528 		if (ret)
529 			return ret;
530 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &ctrl,
531 					  offset, offset + PTRACE_HBP_CTRL_SZ);
532 		if (ret)
533 			return ret;
534 		offset += PTRACE_HBP_CTRL_SZ;
535 
536 		ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
537 					       offset,
538 					       offset + PTRACE_HBP_PAD_SZ);
539 		if (ret)
540 			return ret;
541 		offset += PTRACE_HBP_PAD_SZ;
542 		idx++;
543 	}
544 
545 	return 0;
546 }
547 
548 static int hw_break_set(struct task_struct *target,
549 			const struct user_regset *regset,
550 			unsigned int pos, unsigned int count,
551 			const void *kbuf, const void __user *ubuf)
552 {
553 	unsigned int note_type = regset->core_note_type;
554 	int ret, idx = 0, offset, limit;
555 	u32 ctrl;
556 	u64 addr;
557 
558 	/* Resource info and pad */
559 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
560 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
561 	if (ret)
562 		return ret;
563 
564 	/* (address, ctrl) registers */
565 	limit = regset->n * regset->size;
566 	while (count && offset < limit) {
567 		if (count < PTRACE_HBP_ADDR_SZ)
568 			return -EINVAL;
569 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
570 					 offset, offset + PTRACE_HBP_ADDR_SZ);
571 		if (ret)
572 			return ret;
573 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
574 		if (ret)
575 			return ret;
576 		offset += PTRACE_HBP_ADDR_SZ;
577 
578 		if (!count)
579 			break;
580 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
581 					 offset, offset + PTRACE_HBP_CTRL_SZ);
582 		if (ret)
583 			return ret;
584 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
585 		if (ret)
586 			return ret;
587 		offset += PTRACE_HBP_CTRL_SZ;
588 
589 		ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
590 						offset,
591 						offset + PTRACE_HBP_PAD_SZ);
592 		if (ret)
593 			return ret;
594 		offset += PTRACE_HBP_PAD_SZ;
595 		idx++;
596 	}
597 
598 	return 0;
599 }
600 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
601 
602 static int gpr_get(struct task_struct *target,
603 		   const struct user_regset *regset,
604 		   unsigned int pos, unsigned int count,
605 		   void *kbuf, void __user *ubuf)
606 {
607 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
608 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0, -1);
609 }
610 
611 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
612 		   unsigned int pos, unsigned int count,
613 		   const void *kbuf, const void __user *ubuf)
614 {
615 	int ret;
616 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
617 
618 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
619 	if (ret)
620 		return ret;
621 
622 	if (!valid_user_regs(&newregs, target))
623 		return -EINVAL;
624 
625 	task_pt_regs(target)->user_regs = newregs;
626 	return 0;
627 }
628 
629 /*
630  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
631  */
632 static int __fpr_get(struct task_struct *target,
633 		     const struct user_regset *regset,
634 		     unsigned int pos, unsigned int count,
635 		     void *kbuf, void __user *ubuf, unsigned int start_pos)
636 {
637 	struct user_fpsimd_state *uregs;
638 
639 	sve_sync_to_fpsimd(target);
640 
641 	uregs = &target->thread.uw.fpsimd_state;
642 
643 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs,
644 				   start_pos, start_pos + sizeof(*uregs));
645 }
646 
647 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
648 		   unsigned int pos, unsigned int count,
649 		   void *kbuf, void __user *ubuf)
650 {
651 	if (target == current)
652 		fpsimd_preserve_current_state();
653 
654 	return __fpr_get(target, regset, pos, count, kbuf, ubuf, 0);
655 }
656 
657 static int __fpr_set(struct task_struct *target,
658 		     const struct user_regset *regset,
659 		     unsigned int pos, unsigned int count,
660 		     const void *kbuf, const void __user *ubuf,
661 		     unsigned int start_pos)
662 {
663 	int ret;
664 	struct user_fpsimd_state newstate;
665 
666 	/*
667 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
668 	 * short copyin can't resurrect stale data.
669 	 */
670 	sve_sync_to_fpsimd(target);
671 
672 	newstate = target->thread.uw.fpsimd_state;
673 
674 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
675 				 start_pos, start_pos + sizeof(newstate));
676 	if (ret)
677 		return ret;
678 
679 	target->thread.uw.fpsimd_state = newstate;
680 
681 	return ret;
682 }
683 
684 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
685 		   unsigned int pos, unsigned int count,
686 		   const void *kbuf, const void __user *ubuf)
687 {
688 	int ret;
689 
690 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
691 	if (ret)
692 		return ret;
693 
694 	sve_sync_from_fpsimd_zeropad(target);
695 	fpsimd_flush_task_state(target);
696 
697 	return ret;
698 }
699 
700 static int tls_get(struct task_struct *target, const struct user_regset *regset,
701 		   unsigned int pos, unsigned int count,
702 		   void *kbuf, void __user *ubuf)
703 {
704 	unsigned long *tls = &target->thread.uw.tp_value;
705 
706 	if (target == current)
707 		tls_preserve_current_state();
708 
709 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, tls, 0, -1);
710 }
711 
712 static int tls_set(struct task_struct *target, const struct user_regset *regset,
713 		   unsigned int pos, unsigned int count,
714 		   const void *kbuf, const void __user *ubuf)
715 {
716 	int ret;
717 	unsigned long tls = target->thread.uw.tp_value;
718 
719 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
720 	if (ret)
721 		return ret;
722 
723 	target->thread.uw.tp_value = tls;
724 	return ret;
725 }
726 
727 static int system_call_get(struct task_struct *target,
728 			   const struct user_regset *regset,
729 			   unsigned int pos, unsigned int count,
730 			   void *kbuf, void __user *ubuf)
731 {
732 	int syscallno = task_pt_regs(target)->syscallno;
733 
734 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
735 				   &syscallno, 0, -1);
736 }
737 
738 static int system_call_set(struct task_struct *target,
739 			   const struct user_regset *regset,
740 			   unsigned int pos, unsigned int count,
741 			   const void *kbuf, const void __user *ubuf)
742 {
743 	int syscallno = task_pt_regs(target)->syscallno;
744 	int ret;
745 
746 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
747 	if (ret)
748 		return ret;
749 
750 	task_pt_regs(target)->syscallno = syscallno;
751 	return ret;
752 }
753 
754 #ifdef CONFIG_ARM64_SVE
755 
756 static void sve_init_header_from_task(struct user_sve_header *header,
757 				      struct task_struct *target)
758 {
759 	unsigned int vq;
760 
761 	memset(header, 0, sizeof(*header));
762 
763 	header->flags = test_tsk_thread_flag(target, TIF_SVE) ?
764 		SVE_PT_REGS_SVE : SVE_PT_REGS_FPSIMD;
765 	if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
766 		header->flags |= SVE_PT_VL_INHERIT;
767 
768 	header->vl = target->thread.sve_vl;
769 	vq = sve_vq_from_vl(header->vl);
770 
771 	header->max_vl = sve_max_vl;
772 	header->size = SVE_PT_SIZE(vq, header->flags);
773 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
774 				      SVE_PT_REGS_SVE);
775 }
776 
777 static unsigned int sve_size_from_header(struct user_sve_header const *header)
778 {
779 	return ALIGN(header->size, SVE_VQ_BYTES);
780 }
781 
782 static unsigned int sve_get_size(struct task_struct *target,
783 				 const struct user_regset *regset)
784 {
785 	struct user_sve_header header;
786 
787 	if (!system_supports_sve())
788 		return 0;
789 
790 	sve_init_header_from_task(&header, target);
791 	return sve_size_from_header(&header);
792 }
793 
794 static int sve_get(struct task_struct *target,
795 		   const struct user_regset *regset,
796 		   unsigned int pos, unsigned int count,
797 		   void *kbuf, void __user *ubuf)
798 {
799 	int ret;
800 	struct user_sve_header header;
801 	unsigned int vq;
802 	unsigned long start, end;
803 
804 	if (!system_supports_sve())
805 		return -EINVAL;
806 
807 	/* Header */
808 	sve_init_header_from_task(&header, target);
809 	vq = sve_vq_from_vl(header.vl);
810 
811 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &header,
812 				  0, sizeof(header));
813 	if (ret)
814 		return ret;
815 
816 	if (target == current)
817 		fpsimd_preserve_current_state();
818 
819 	/* Registers: FPSIMD-only case */
820 
821 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
822 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD)
823 		return __fpr_get(target, regset, pos, count, kbuf, ubuf,
824 				 SVE_PT_FPSIMD_OFFSET);
825 
826 	/* Otherwise: full SVE case */
827 
828 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
829 	start = SVE_PT_SVE_OFFSET;
830 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
831 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
832 				  target->thread.sve_state,
833 				  start, end);
834 	if (ret)
835 		return ret;
836 
837 	start = end;
838 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
839 	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
840 				       start, end);
841 	if (ret)
842 		return ret;
843 
844 	/*
845 	 * Copy fpsr, and fpcr which must follow contiguously in
846 	 * struct fpsimd_state:
847 	 */
848 	start = end;
849 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
850 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
851 				  &target->thread.uw.fpsimd_state.fpsr,
852 				  start, end);
853 	if (ret)
854 		return ret;
855 
856 	start = end;
857 	end = sve_size_from_header(&header);
858 	return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
859 					start, end);
860 }
861 
862 static int sve_set(struct task_struct *target,
863 		   const struct user_regset *regset,
864 		   unsigned int pos, unsigned int count,
865 		   const void *kbuf, const void __user *ubuf)
866 {
867 	int ret;
868 	struct user_sve_header header;
869 	unsigned int vq;
870 	unsigned long start, end;
871 
872 	if (!system_supports_sve())
873 		return -EINVAL;
874 
875 	/* Header */
876 	if (count < sizeof(header))
877 		return -EINVAL;
878 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
879 				 0, sizeof(header));
880 	if (ret)
881 		goto out;
882 
883 	/*
884 	 * Apart from PT_SVE_REGS_MASK, all PT_SVE_* flags are consumed by
885 	 * sve_set_vector_length(), which will also validate them for us:
886 	 */
887 	ret = sve_set_vector_length(target, header.vl,
888 		((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
889 	if (ret)
890 		goto out;
891 
892 	/* Actual VL set may be less than the user asked for: */
893 	vq = sve_vq_from_vl(target->thread.sve_vl);
894 
895 	/* Registers: FPSIMD-only case */
896 
897 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
898 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
899 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
900 				SVE_PT_FPSIMD_OFFSET);
901 		clear_tsk_thread_flag(target, TIF_SVE);
902 		goto out;
903 	}
904 
905 	/* Otherwise: full SVE case */
906 
907 	/*
908 	 * If setting a different VL from the requested VL and there is
909 	 * register data, the data layout will be wrong: don't even
910 	 * try to set the registers in this case.
911 	 */
912 	if (count && vq != sve_vq_from_vl(header.vl)) {
913 		ret = -EIO;
914 		goto out;
915 	}
916 
917 	sve_alloc(target);
918 
919 	/*
920 	 * Ensure target->thread.sve_state is up to date with target's
921 	 * FPSIMD regs, so that a short copyin leaves trailing registers
922 	 * unmodified.
923 	 */
924 	fpsimd_sync_to_sve(target);
925 	set_tsk_thread_flag(target, TIF_SVE);
926 
927 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
928 	start = SVE_PT_SVE_OFFSET;
929 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
930 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
931 				 target->thread.sve_state,
932 				 start, end);
933 	if (ret)
934 		goto out;
935 
936 	start = end;
937 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
938 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
939 					start, end);
940 	if (ret)
941 		goto out;
942 
943 	/*
944 	 * Copy fpsr, and fpcr which must follow contiguously in
945 	 * struct fpsimd_state:
946 	 */
947 	start = end;
948 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
949 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
950 				 &target->thread.uw.fpsimd_state.fpsr,
951 				 start, end);
952 
953 out:
954 	fpsimd_flush_task_state(target);
955 	return ret;
956 }
957 
958 #endif /* CONFIG_ARM64_SVE */
959 
960 #ifdef CONFIG_ARM64_PTR_AUTH
961 static int pac_mask_get(struct task_struct *target,
962 			const struct user_regset *regset,
963 			unsigned int pos, unsigned int count,
964 			void *kbuf, void __user *ubuf)
965 {
966 	/*
967 	 * The PAC bits can differ across data and instruction pointers
968 	 * depending on TCR_EL1.TBID*, which we may make use of in future, so
969 	 * we expose separate masks.
970 	 */
971 	unsigned long mask = ptrauth_user_pac_mask();
972 	struct user_pac_mask uregs = {
973 		.data_mask = mask,
974 		.insn_mask = mask,
975 	};
976 
977 	if (!system_supports_address_auth())
978 		return -EINVAL;
979 
980 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &uregs, 0, -1);
981 }
982 
983 #ifdef CONFIG_CHECKPOINT_RESTORE
984 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
985 {
986 	return (__uint128_t)key->hi << 64 | key->lo;
987 }
988 
989 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
990 {
991 	struct ptrauth_key key = {
992 		.lo = (unsigned long)ukey,
993 		.hi = (unsigned long)(ukey >> 64),
994 	};
995 
996 	return key;
997 }
998 
999 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1000 				     const struct ptrauth_keys *keys)
1001 {
1002 	ukeys->apiakey = pac_key_to_user(&keys->apia);
1003 	ukeys->apibkey = pac_key_to_user(&keys->apib);
1004 	ukeys->apdakey = pac_key_to_user(&keys->apda);
1005 	ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1006 }
1007 
1008 static void pac_address_keys_from_user(struct ptrauth_keys *keys,
1009 				       const struct user_pac_address_keys *ukeys)
1010 {
1011 	keys->apia = pac_key_from_user(ukeys->apiakey);
1012 	keys->apib = pac_key_from_user(ukeys->apibkey);
1013 	keys->apda = pac_key_from_user(ukeys->apdakey);
1014 	keys->apdb = pac_key_from_user(ukeys->apdbkey);
1015 }
1016 
1017 static int pac_address_keys_get(struct task_struct *target,
1018 				const struct user_regset *regset,
1019 				unsigned int pos, unsigned int count,
1020 				void *kbuf, void __user *ubuf)
1021 {
1022 	struct ptrauth_keys *keys = &target->thread.keys_user;
1023 	struct user_pac_address_keys user_keys;
1024 
1025 	if (!system_supports_address_auth())
1026 		return -EINVAL;
1027 
1028 	pac_address_keys_to_user(&user_keys, keys);
1029 
1030 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1031 				   &user_keys, 0, -1);
1032 }
1033 
1034 static int pac_address_keys_set(struct task_struct *target,
1035 				const struct user_regset *regset,
1036 				unsigned int pos, unsigned int count,
1037 				const void *kbuf, const void __user *ubuf)
1038 {
1039 	struct ptrauth_keys *keys = &target->thread.keys_user;
1040 	struct user_pac_address_keys user_keys;
1041 	int ret;
1042 
1043 	if (!system_supports_address_auth())
1044 		return -EINVAL;
1045 
1046 	pac_address_keys_to_user(&user_keys, keys);
1047 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1048 				 &user_keys, 0, -1);
1049 	if (ret)
1050 		return ret;
1051 	pac_address_keys_from_user(keys, &user_keys);
1052 
1053 	return 0;
1054 }
1055 
1056 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1057 				     const struct ptrauth_keys *keys)
1058 {
1059 	ukeys->apgakey = pac_key_to_user(&keys->apga);
1060 }
1061 
1062 static void pac_generic_keys_from_user(struct ptrauth_keys *keys,
1063 				       const struct user_pac_generic_keys *ukeys)
1064 {
1065 	keys->apga = pac_key_from_user(ukeys->apgakey);
1066 }
1067 
1068 static int pac_generic_keys_get(struct task_struct *target,
1069 				const struct user_regset *regset,
1070 				unsigned int pos, unsigned int count,
1071 				void *kbuf, void __user *ubuf)
1072 {
1073 	struct ptrauth_keys *keys = &target->thread.keys_user;
1074 	struct user_pac_generic_keys user_keys;
1075 
1076 	if (!system_supports_generic_auth())
1077 		return -EINVAL;
1078 
1079 	pac_generic_keys_to_user(&user_keys, keys);
1080 
1081 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1082 				   &user_keys, 0, -1);
1083 }
1084 
1085 static int pac_generic_keys_set(struct task_struct *target,
1086 				const struct user_regset *regset,
1087 				unsigned int pos, unsigned int count,
1088 				const void *kbuf, const void __user *ubuf)
1089 {
1090 	struct ptrauth_keys *keys = &target->thread.keys_user;
1091 	struct user_pac_generic_keys user_keys;
1092 	int ret;
1093 
1094 	if (!system_supports_generic_auth())
1095 		return -EINVAL;
1096 
1097 	pac_generic_keys_to_user(&user_keys, keys);
1098 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1099 				 &user_keys, 0, -1);
1100 	if (ret)
1101 		return ret;
1102 	pac_generic_keys_from_user(keys, &user_keys);
1103 
1104 	return 0;
1105 }
1106 #endif /* CONFIG_CHECKPOINT_RESTORE */
1107 #endif /* CONFIG_ARM64_PTR_AUTH */
1108 
1109 enum aarch64_regset {
1110 	REGSET_GPR,
1111 	REGSET_FPR,
1112 	REGSET_TLS,
1113 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1114 	REGSET_HW_BREAK,
1115 	REGSET_HW_WATCH,
1116 #endif
1117 	REGSET_SYSTEM_CALL,
1118 #ifdef CONFIG_ARM64_SVE
1119 	REGSET_SVE,
1120 #endif
1121 #ifdef CONFIG_ARM64_PTR_AUTH
1122 	REGSET_PAC_MASK,
1123 #ifdef CONFIG_CHECKPOINT_RESTORE
1124 	REGSET_PACA_KEYS,
1125 	REGSET_PACG_KEYS,
1126 #endif
1127 #endif
1128 };
1129 
1130 static const struct user_regset aarch64_regsets[] = {
1131 	[REGSET_GPR] = {
1132 		.core_note_type = NT_PRSTATUS,
1133 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
1134 		.size = sizeof(u64),
1135 		.align = sizeof(u64),
1136 		.get = gpr_get,
1137 		.set = gpr_set
1138 	},
1139 	[REGSET_FPR] = {
1140 		.core_note_type = NT_PRFPREG,
1141 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1142 		/*
1143 		 * We pretend we have 32-bit registers because the fpsr and
1144 		 * fpcr are 32-bits wide.
1145 		 */
1146 		.size = sizeof(u32),
1147 		.align = sizeof(u32),
1148 		.get = fpr_get,
1149 		.set = fpr_set
1150 	},
1151 	[REGSET_TLS] = {
1152 		.core_note_type = NT_ARM_TLS,
1153 		.n = 1,
1154 		.size = sizeof(void *),
1155 		.align = sizeof(void *),
1156 		.get = tls_get,
1157 		.set = tls_set,
1158 	},
1159 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1160 	[REGSET_HW_BREAK] = {
1161 		.core_note_type = NT_ARM_HW_BREAK,
1162 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1163 		.size = sizeof(u32),
1164 		.align = sizeof(u32),
1165 		.get = hw_break_get,
1166 		.set = hw_break_set,
1167 	},
1168 	[REGSET_HW_WATCH] = {
1169 		.core_note_type = NT_ARM_HW_WATCH,
1170 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1171 		.size = sizeof(u32),
1172 		.align = sizeof(u32),
1173 		.get = hw_break_get,
1174 		.set = hw_break_set,
1175 	},
1176 #endif
1177 	[REGSET_SYSTEM_CALL] = {
1178 		.core_note_type = NT_ARM_SYSTEM_CALL,
1179 		.n = 1,
1180 		.size = sizeof(int),
1181 		.align = sizeof(int),
1182 		.get = system_call_get,
1183 		.set = system_call_set,
1184 	},
1185 #ifdef CONFIG_ARM64_SVE
1186 	[REGSET_SVE] = { /* Scalable Vector Extension */
1187 		.core_note_type = NT_ARM_SVE,
1188 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1189 				  SVE_VQ_BYTES),
1190 		.size = SVE_VQ_BYTES,
1191 		.align = SVE_VQ_BYTES,
1192 		.get = sve_get,
1193 		.set = sve_set,
1194 		.get_size = sve_get_size,
1195 	},
1196 #endif
1197 #ifdef CONFIG_ARM64_PTR_AUTH
1198 	[REGSET_PAC_MASK] = {
1199 		.core_note_type = NT_ARM_PAC_MASK,
1200 		.n = sizeof(struct user_pac_mask) / sizeof(u64),
1201 		.size = sizeof(u64),
1202 		.align = sizeof(u64),
1203 		.get = pac_mask_get,
1204 		/* this cannot be set dynamically */
1205 	},
1206 #ifdef CONFIG_CHECKPOINT_RESTORE
1207 	[REGSET_PACA_KEYS] = {
1208 		.core_note_type = NT_ARM_PACA_KEYS,
1209 		.n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1210 		.size = sizeof(__uint128_t),
1211 		.align = sizeof(__uint128_t),
1212 		.get = pac_address_keys_get,
1213 		.set = pac_address_keys_set,
1214 	},
1215 	[REGSET_PACG_KEYS] = {
1216 		.core_note_type = NT_ARM_PACG_KEYS,
1217 		.n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1218 		.size = sizeof(__uint128_t),
1219 		.align = sizeof(__uint128_t),
1220 		.get = pac_generic_keys_get,
1221 		.set = pac_generic_keys_set,
1222 	},
1223 #endif
1224 #endif
1225 };
1226 
1227 static const struct user_regset_view user_aarch64_view = {
1228 	.name = "aarch64", .e_machine = EM_AARCH64,
1229 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1230 };
1231 
1232 #ifdef CONFIG_COMPAT
1233 enum compat_regset {
1234 	REGSET_COMPAT_GPR,
1235 	REGSET_COMPAT_VFP,
1236 };
1237 
1238 static int compat_gpr_get(struct task_struct *target,
1239 			  const struct user_regset *regset,
1240 			  unsigned int pos, unsigned int count,
1241 			  void *kbuf, void __user *ubuf)
1242 {
1243 	int ret = 0;
1244 	unsigned int i, start, num_regs;
1245 
1246 	/* Calculate the number of AArch32 registers contained in count */
1247 	num_regs = count / regset->size;
1248 
1249 	/* Convert pos into an register number */
1250 	start = pos / regset->size;
1251 
1252 	if (start + num_regs > regset->n)
1253 		return -EIO;
1254 
1255 	for (i = 0; i < num_regs; ++i) {
1256 		unsigned int idx = start + i;
1257 		compat_ulong_t reg;
1258 
1259 		switch (idx) {
1260 		case 15:
1261 			reg = task_pt_regs(target)->pc;
1262 			break;
1263 		case 16:
1264 			reg = task_pt_regs(target)->pstate;
1265 			reg = pstate_to_compat_psr(reg);
1266 			break;
1267 		case 17:
1268 			reg = task_pt_regs(target)->orig_x0;
1269 			break;
1270 		default:
1271 			reg = task_pt_regs(target)->regs[idx];
1272 		}
1273 
1274 		if (kbuf) {
1275 			memcpy(kbuf, &reg, sizeof(reg));
1276 			kbuf += sizeof(reg);
1277 		} else {
1278 			ret = copy_to_user(ubuf, &reg, sizeof(reg));
1279 			if (ret) {
1280 				ret = -EFAULT;
1281 				break;
1282 			}
1283 
1284 			ubuf += sizeof(reg);
1285 		}
1286 	}
1287 
1288 	return ret;
1289 }
1290 
1291 static int compat_gpr_set(struct task_struct *target,
1292 			  const struct user_regset *regset,
1293 			  unsigned int pos, unsigned int count,
1294 			  const void *kbuf, const void __user *ubuf)
1295 {
1296 	struct pt_regs newregs;
1297 	int ret = 0;
1298 	unsigned int i, start, num_regs;
1299 
1300 	/* Calculate the number of AArch32 registers contained in count */
1301 	num_regs = count / regset->size;
1302 
1303 	/* Convert pos into an register number */
1304 	start = pos / regset->size;
1305 
1306 	if (start + num_regs > regset->n)
1307 		return -EIO;
1308 
1309 	newregs = *task_pt_regs(target);
1310 
1311 	for (i = 0; i < num_regs; ++i) {
1312 		unsigned int idx = start + i;
1313 		compat_ulong_t reg;
1314 
1315 		if (kbuf) {
1316 			memcpy(&reg, kbuf, sizeof(reg));
1317 			kbuf += sizeof(reg);
1318 		} else {
1319 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1320 			if (ret) {
1321 				ret = -EFAULT;
1322 				break;
1323 			}
1324 
1325 			ubuf += sizeof(reg);
1326 		}
1327 
1328 		switch (idx) {
1329 		case 15:
1330 			newregs.pc = reg;
1331 			break;
1332 		case 16:
1333 			reg = compat_psr_to_pstate(reg);
1334 			newregs.pstate = reg;
1335 			break;
1336 		case 17:
1337 			newregs.orig_x0 = reg;
1338 			break;
1339 		default:
1340 			newregs.regs[idx] = reg;
1341 		}
1342 
1343 	}
1344 
1345 	if (valid_user_regs(&newregs.user_regs, target))
1346 		*task_pt_regs(target) = newregs;
1347 	else
1348 		ret = -EINVAL;
1349 
1350 	return ret;
1351 }
1352 
1353 static int compat_vfp_get(struct task_struct *target,
1354 			  const struct user_regset *regset,
1355 			  unsigned int pos, unsigned int count,
1356 			  void *kbuf, void __user *ubuf)
1357 {
1358 	struct user_fpsimd_state *uregs;
1359 	compat_ulong_t fpscr;
1360 	int ret, vregs_end_pos;
1361 
1362 	uregs = &target->thread.uw.fpsimd_state;
1363 
1364 	if (target == current)
1365 		fpsimd_preserve_current_state();
1366 
1367 	/*
1368 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1369 	 * nicely together for us. We just need to create the fpscr separately.
1370 	 */
1371 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1372 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs,
1373 				  0, vregs_end_pos);
1374 
1375 	if (count && !ret) {
1376 		fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1377 			(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1378 
1379 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &fpscr,
1380 					  vregs_end_pos, VFP_STATE_SIZE);
1381 	}
1382 
1383 	return ret;
1384 }
1385 
1386 static int compat_vfp_set(struct task_struct *target,
1387 			  const struct user_regset *regset,
1388 			  unsigned int pos, unsigned int count,
1389 			  const void *kbuf, const void __user *ubuf)
1390 {
1391 	struct user_fpsimd_state *uregs;
1392 	compat_ulong_t fpscr;
1393 	int ret, vregs_end_pos;
1394 
1395 	uregs = &target->thread.uw.fpsimd_state;
1396 
1397 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1398 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1399 				 vregs_end_pos);
1400 
1401 	if (count && !ret) {
1402 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1403 					 vregs_end_pos, VFP_STATE_SIZE);
1404 		if (!ret) {
1405 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1406 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1407 		}
1408 	}
1409 
1410 	fpsimd_flush_task_state(target);
1411 	return ret;
1412 }
1413 
1414 static int compat_tls_get(struct task_struct *target,
1415 			  const struct user_regset *regset, unsigned int pos,
1416 			  unsigned int count, void *kbuf, void __user *ubuf)
1417 {
1418 	compat_ulong_t tls = (compat_ulong_t)target->thread.uw.tp_value;
1419 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1420 }
1421 
1422 static int compat_tls_set(struct task_struct *target,
1423 			  const struct user_regset *regset, unsigned int pos,
1424 			  unsigned int count, const void *kbuf,
1425 			  const void __user *ubuf)
1426 {
1427 	int ret;
1428 	compat_ulong_t tls = target->thread.uw.tp_value;
1429 
1430 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1431 	if (ret)
1432 		return ret;
1433 
1434 	target->thread.uw.tp_value = tls;
1435 	return ret;
1436 }
1437 
1438 static const struct user_regset aarch32_regsets[] = {
1439 	[REGSET_COMPAT_GPR] = {
1440 		.core_note_type = NT_PRSTATUS,
1441 		.n = COMPAT_ELF_NGREG,
1442 		.size = sizeof(compat_elf_greg_t),
1443 		.align = sizeof(compat_elf_greg_t),
1444 		.get = compat_gpr_get,
1445 		.set = compat_gpr_set
1446 	},
1447 	[REGSET_COMPAT_VFP] = {
1448 		.core_note_type = NT_ARM_VFP,
1449 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1450 		.size = sizeof(compat_ulong_t),
1451 		.align = sizeof(compat_ulong_t),
1452 		.get = compat_vfp_get,
1453 		.set = compat_vfp_set
1454 	},
1455 };
1456 
1457 static const struct user_regset_view user_aarch32_view = {
1458 	.name = "aarch32", .e_machine = EM_ARM,
1459 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1460 };
1461 
1462 static const struct user_regset aarch32_ptrace_regsets[] = {
1463 	[REGSET_GPR] = {
1464 		.core_note_type = NT_PRSTATUS,
1465 		.n = COMPAT_ELF_NGREG,
1466 		.size = sizeof(compat_elf_greg_t),
1467 		.align = sizeof(compat_elf_greg_t),
1468 		.get = compat_gpr_get,
1469 		.set = compat_gpr_set
1470 	},
1471 	[REGSET_FPR] = {
1472 		.core_note_type = NT_ARM_VFP,
1473 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1474 		.size = sizeof(compat_ulong_t),
1475 		.align = sizeof(compat_ulong_t),
1476 		.get = compat_vfp_get,
1477 		.set = compat_vfp_set
1478 	},
1479 	[REGSET_TLS] = {
1480 		.core_note_type = NT_ARM_TLS,
1481 		.n = 1,
1482 		.size = sizeof(compat_ulong_t),
1483 		.align = sizeof(compat_ulong_t),
1484 		.get = compat_tls_get,
1485 		.set = compat_tls_set,
1486 	},
1487 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1488 	[REGSET_HW_BREAK] = {
1489 		.core_note_type = NT_ARM_HW_BREAK,
1490 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1491 		.size = sizeof(u32),
1492 		.align = sizeof(u32),
1493 		.get = hw_break_get,
1494 		.set = hw_break_set,
1495 	},
1496 	[REGSET_HW_WATCH] = {
1497 		.core_note_type = NT_ARM_HW_WATCH,
1498 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1499 		.size = sizeof(u32),
1500 		.align = sizeof(u32),
1501 		.get = hw_break_get,
1502 		.set = hw_break_set,
1503 	},
1504 #endif
1505 	[REGSET_SYSTEM_CALL] = {
1506 		.core_note_type = NT_ARM_SYSTEM_CALL,
1507 		.n = 1,
1508 		.size = sizeof(int),
1509 		.align = sizeof(int),
1510 		.get = system_call_get,
1511 		.set = system_call_set,
1512 	},
1513 };
1514 
1515 static const struct user_regset_view user_aarch32_ptrace_view = {
1516 	.name = "aarch32", .e_machine = EM_ARM,
1517 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1518 };
1519 
1520 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1521 				   compat_ulong_t __user *ret)
1522 {
1523 	compat_ulong_t tmp;
1524 
1525 	if (off & 3)
1526 		return -EIO;
1527 
1528 	if (off == COMPAT_PT_TEXT_ADDR)
1529 		tmp = tsk->mm->start_code;
1530 	else if (off == COMPAT_PT_DATA_ADDR)
1531 		tmp = tsk->mm->start_data;
1532 	else if (off == COMPAT_PT_TEXT_END_ADDR)
1533 		tmp = tsk->mm->end_code;
1534 	else if (off < sizeof(compat_elf_gregset_t))
1535 		return copy_regset_to_user(tsk, &user_aarch32_view,
1536 					   REGSET_COMPAT_GPR, off,
1537 					   sizeof(compat_ulong_t), ret);
1538 	else if (off >= COMPAT_USER_SZ)
1539 		return -EIO;
1540 	else
1541 		tmp = 0;
1542 
1543 	return put_user(tmp, ret);
1544 }
1545 
1546 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1547 				    compat_ulong_t val)
1548 {
1549 	int ret;
1550 	mm_segment_t old_fs = get_fs();
1551 
1552 	if (off & 3 || off >= COMPAT_USER_SZ)
1553 		return -EIO;
1554 
1555 	if (off >= sizeof(compat_elf_gregset_t))
1556 		return 0;
1557 
1558 	set_fs(KERNEL_DS);
1559 	ret = copy_regset_from_user(tsk, &user_aarch32_view,
1560 				    REGSET_COMPAT_GPR, off,
1561 				    sizeof(compat_ulong_t),
1562 				    &val);
1563 	set_fs(old_fs);
1564 
1565 	return ret;
1566 }
1567 
1568 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1569 
1570 /*
1571  * Convert a virtual register number into an index for a thread_info
1572  * breakpoint array. Breakpoints are identified using positive numbers
1573  * whilst watchpoints are negative. The registers are laid out as pairs
1574  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1575  * Register 0 is reserved for describing resource information.
1576  */
1577 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1578 {
1579 	return (abs(num) - 1) >> 1;
1580 }
1581 
1582 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1583 {
1584 	u8 num_brps, num_wrps, debug_arch, wp_len;
1585 	u32 reg = 0;
1586 
1587 	num_brps	= hw_breakpoint_slots(TYPE_INST);
1588 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
1589 
1590 	debug_arch	= debug_monitors_arch();
1591 	wp_len		= 8;
1592 	reg		|= debug_arch;
1593 	reg		<<= 8;
1594 	reg		|= wp_len;
1595 	reg		<<= 8;
1596 	reg		|= num_wrps;
1597 	reg		<<= 8;
1598 	reg		|= num_brps;
1599 
1600 	*kdata = reg;
1601 	return 0;
1602 }
1603 
1604 static int compat_ptrace_hbp_get(unsigned int note_type,
1605 				 struct task_struct *tsk,
1606 				 compat_long_t num,
1607 				 u32 *kdata)
1608 {
1609 	u64 addr = 0;
1610 	u32 ctrl = 0;
1611 
1612 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1613 
1614 	if (num & 1) {
1615 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1616 		*kdata = (u32)addr;
1617 	} else {
1618 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1619 		*kdata = ctrl;
1620 	}
1621 
1622 	return err;
1623 }
1624 
1625 static int compat_ptrace_hbp_set(unsigned int note_type,
1626 				 struct task_struct *tsk,
1627 				 compat_long_t num,
1628 				 u32 *kdata)
1629 {
1630 	u64 addr;
1631 	u32 ctrl;
1632 
1633 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1634 
1635 	if (num & 1) {
1636 		addr = *kdata;
1637 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1638 	} else {
1639 		ctrl = *kdata;
1640 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1641 	}
1642 
1643 	return err;
1644 }
1645 
1646 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1647 				    compat_ulong_t __user *data)
1648 {
1649 	int ret;
1650 	u32 kdata;
1651 
1652 	/* Watchpoint */
1653 	if (num < 0) {
1654 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1655 	/* Resource info */
1656 	} else if (num == 0) {
1657 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
1658 	/* Breakpoint */
1659 	} else {
1660 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1661 	}
1662 
1663 	if (!ret)
1664 		ret = put_user(kdata, data);
1665 
1666 	return ret;
1667 }
1668 
1669 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1670 				    compat_ulong_t __user *data)
1671 {
1672 	int ret;
1673 	u32 kdata = 0;
1674 
1675 	if (num == 0)
1676 		return 0;
1677 
1678 	ret = get_user(kdata, data);
1679 	if (ret)
1680 		return ret;
1681 
1682 	if (num < 0)
1683 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1684 	else
1685 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1686 
1687 	return ret;
1688 }
1689 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
1690 
1691 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1692 			compat_ulong_t caddr, compat_ulong_t cdata)
1693 {
1694 	unsigned long addr = caddr;
1695 	unsigned long data = cdata;
1696 	void __user *datap = compat_ptr(data);
1697 	int ret;
1698 
1699 	switch (request) {
1700 		case PTRACE_PEEKUSR:
1701 			ret = compat_ptrace_read_user(child, addr, datap);
1702 			break;
1703 
1704 		case PTRACE_POKEUSR:
1705 			ret = compat_ptrace_write_user(child, addr, data);
1706 			break;
1707 
1708 		case COMPAT_PTRACE_GETREGS:
1709 			ret = copy_regset_to_user(child,
1710 						  &user_aarch32_view,
1711 						  REGSET_COMPAT_GPR,
1712 						  0, sizeof(compat_elf_gregset_t),
1713 						  datap);
1714 			break;
1715 
1716 		case COMPAT_PTRACE_SETREGS:
1717 			ret = copy_regset_from_user(child,
1718 						    &user_aarch32_view,
1719 						    REGSET_COMPAT_GPR,
1720 						    0, sizeof(compat_elf_gregset_t),
1721 						    datap);
1722 			break;
1723 
1724 		case COMPAT_PTRACE_GET_THREAD_AREA:
1725 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
1726 				       (compat_ulong_t __user *)datap);
1727 			break;
1728 
1729 		case COMPAT_PTRACE_SET_SYSCALL:
1730 			task_pt_regs(child)->syscallno = data;
1731 			ret = 0;
1732 			break;
1733 
1734 		case COMPAT_PTRACE_GETVFPREGS:
1735 			ret = copy_regset_to_user(child,
1736 						  &user_aarch32_view,
1737 						  REGSET_COMPAT_VFP,
1738 						  0, VFP_STATE_SIZE,
1739 						  datap);
1740 			break;
1741 
1742 		case COMPAT_PTRACE_SETVFPREGS:
1743 			ret = copy_regset_from_user(child,
1744 						    &user_aarch32_view,
1745 						    REGSET_COMPAT_VFP,
1746 						    0, VFP_STATE_SIZE,
1747 						    datap);
1748 			break;
1749 
1750 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1751 		case COMPAT_PTRACE_GETHBPREGS:
1752 			ret = compat_ptrace_gethbpregs(child, addr, datap);
1753 			break;
1754 
1755 		case COMPAT_PTRACE_SETHBPREGS:
1756 			ret = compat_ptrace_sethbpregs(child, addr, datap);
1757 			break;
1758 #endif
1759 
1760 		default:
1761 			ret = compat_ptrace_request(child, request, addr,
1762 						    data);
1763 			break;
1764 	}
1765 
1766 	return ret;
1767 }
1768 #endif /* CONFIG_COMPAT */
1769 
1770 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1771 {
1772 #ifdef CONFIG_COMPAT
1773 	/*
1774 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
1775 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
1776 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
1777 	 * access to the TLS register.
1778 	 */
1779 	if (is_compat_task())
1780 		return &user_aarch32_view;
1781 	else if (is_compat_thread(task_thread_info(task)))
1782 		return &user_aarch32_ptrace_view;
1783 #endif
1784 	return &user_aarch64_view;
1785 }
1786 
1787 long arch_ptrace(struct task_struct *child, long request,
1788 		 unsigned long addr, unsigned long data)
1789 {
1790 	return ptrace_request(child, request, addr, data);
1791 }
1792 
1793 enum ptrace_syscall_dir {
1794 	PTRACE_SYSCALL_ENTER = 0,
1795 	PTRACE_SYSCALL_EXIT,
1796 };
1797 
1798 static void tracehook_report_syscall(struct pt_regs *regs,
1799 				     enum ptrace_syscall_dir dir)
1800 {
1801 	int regno;
1802 	unsigned long saved_reg;
1803 
1804 	/*
1805 	 * A scratch register (ip(r12) on AArch32, x7 on AArch64) is
1806 	 * used to denote syscall entry/exit:
1807 	 */
1808 	regno = (is_compat_task() ? 12 : 7);
1809 	saved_reg = regs->regs[regno];
1810 	regs->regs[regno] = dir;
1811 
1812 	if (dir == PTRACE_SYSCALL_EXIT)
1813 		tracehook_report_syscall_exit(regs, 0);
1814 	else if (tracehook_report_syscall_entry(regs))
1815 		forget_syscall(regs);
1816 
1817 	regs->regs[regno] = saved_reg;
1818 }
1819 
1820 int syscall_trace_enter(struct pt_regs *regs)
1821 {
1822 	if (test_thread_flag(TIF_SYSCALL_TRACE))
1823 		tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
1824 
1825 	/* Do the secure computing after ptrace; failures should be fast. */
1826 	if (secure_computing(NULL) == -1)
1827 		return -1;
1828 
1829 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
1830 		trace_sys_enter(regs, regs->syscallno);
1831 
1832 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
1833 			    regs->regs[2], regs->regs[3]);
1834 
1835 	return regs->syscallno;
1836 }
1837 
1838 void syscall_trace_exit(struct pt_regs *regs)
1839 {
1840 	audit_syscall_exit(regs);
1841 
1842 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
1843 		trace_sys_exit(regs, regs_return_value(regs));
1844 
1845 	if (test_thread_flag(TIF_SYSCALL_TRACE))
1846 		tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
1847 
1848 	rseq_syscall(regs);
1849 }
1850 
1851 /*
1852  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
1853  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
1854  * not described in ARM DDI 0487D.a.
1855  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
1856  * be allocated an EL0 meaning in future.
1857  * Userspace cannot use these until they have an architectural meaning.
1858  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
1859  * We also reserve IL for the kernel; SS is handled dynamically.
1860  */
1861 #define SPSR_EL1_AARCH64_RES0_BITS \
1862 	(GENMASK_ULL(63, 32) | GENMASK_ULL(27, 25) | GENMASK_ULL(23, 22) | \
1863 	 GENMASK_ULL(20, 13) | GENMASK_ULL(11, 10) | GENMASK_ULL(5, 5))
1864 #define SPSR_EL1_AARCH32_RES0_BITS \
1865 	(GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
1866 
1867 static int valid_compat_regs(struct user_pt_regs *regs)
1868 {
1869 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
1870 
1871 	if (!system_supports_mixed_endian_el0()) {
1872 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
1873 			regs->pstate |= PSR_AA32_E_BIT;
1874 		else
1875 			regs->pstate &= ~PSR_AA32_E_BIT;
1876 	}
1877 
1878 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
1879 	    (regs->pstate & PSR_AA32_A_BIT) == 0 &&
1880 	    (regs->pstate & PSR_AA32_I_BIT) == 0 &&
1881 	    (regs->pstate & PSR_AA32_F_BIT) == 0) {
1882 		return 1;
1883 	}
1884 
1885 	/*
1886 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
1887 	 * arch/arm.
1888 	 */
1889 	regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
1890 			PSR_AA32_C_BIT | PSR_AA32_V_BIT |
1891 			PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
1892 			PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
1893 			PSR_AA32_T_BIT;
1894 	regs->pstate |= PSR_MODE32_BIT;
1895 
1896 	return 0;
1897 }
1898 
1899 static int valid_native_regs(struct user_pt_regs *regs)
1900 {
1901 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
1902 
1903 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
1904 	    (regs->pstate & PSR_D_BIT) == 0 &&
1905 	    (regs->pstate & PSR_A_BIT) == 0 &&
1906 	    (regs->pstate & PSR_I_BIT) == 0 &&
1907 	    (regs->pstate & PSR_F_BIT) == 0) {
1908 		return 1;
1909 	}
1910 
1911 	/* Force PSR to a valid 64-bit EL0t */
1912 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
1913 
1914 	return 0;
1915 }
1916 
1917 /*
1918  * Are the current registers suitable for user mode? (used to maintain
1919  * security in signal handlers)
1920  */
1921 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
1922 {
1923 	if (!test_tsk_thread_flag(task, TIF_SINGLESTEP))
1924 		regs->pstate &= ~DBG_SPSR_SS;
1925 
1926 	if (is_compat_thread(task_thread_info(task)))
1927 		return valid_compat_regs(regs);
1928 	else
1929 		return valid_native_regs(regs);
1930 }
1931