xref: /linux/arch/arm64/kernel/ptrace.c (revision bb9ae1a66c85eeb626864efd812c62026e126ec0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/ptrace.c
4  *
5  * By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  * Copyright (C) 2012 ARM Ltd.
9  */
10 
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/elf.h>
31 #include <linux/rseq.h>
32 
33 #include <asm/compat.h>
34 #include <asm/cpufeature.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/fpsimd.h>
37 #include <asm/gcs.h>
38 #include <asm/mte.h>
39 #include <asm/pointer_auth.h>
40 #include <asm/stacktrace.h>
41 #include <asm/syscall.h>
42 #include <asm/traps.h>
43 #include <asm/system_misc.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/syscalls.h>
47 
48 struct pt_regs_offset {
49 	const char *name;
50 	int offset;
51 };
52 
53 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
54 #define REG_OFFSET_END {.name = NULL, .offset = 0}
55 #define GPR_OFFSET_NAME(r) \
56 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
57 
58 static const struct pt_regs_offset regoffset_table[] = {
59 	GPR_OFFSET_NAME(0),
60 	GPR_OFFSET_NAME(1),
61 	GPR_OFFSET_NAME(2),
62 	GPR_OFFSET_NAME(3),
63 	GPR_OFFSET_NAME(4),
64 	GPR_OFFSET_NAME(5),
65 	GPR_OFFSET_NAME(6),
66 	GPR_OFFSET_NAME(7),
67 	GPR_OFFSET_NAME(8),
68 	GPR_OFFSET_NAME(9),
69 	GPR_OFFSET_NAME(10),
70 	GPR_OFFSET_NAME(11),
71 	GPR_OFFSET_NAME(12),
72 	GPR_OFFSET_NAME(13),
73 	GPR_OFFSET_NAME(14),
74 	GPR_OFFSET_NAME(15),
75 	GPR_OFFSET_NAME(16),
76 	GPR_OFFSET_NAME(17),
77 	GPR_OFFSET_NAME(18),
78 	GPR_OFFSET_NAME(19),
79 	GPR_OFFSET_NAME(20),
80 	GPR_OFFSET_NAME(21),
81 	GPR_OFFSET_NAME(22),
82 	GPR_OFFSET_NAME(23),
83 	GPR_OFFSET_NAME(24),
84 	GPR_OFFSET_NAME(25),
85 	GPR_OFFSET_NAME(26),
86 	GPR_OFFSET_NAME(27),
87 	GPR_OFFSET_NAME(28),
88 	GPR_OFFSET_NAME(29),
89 	GPR_OFFSET_NAME(30),
90 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
91 	REG_OFFSET_NAME(sp),
92 	REG_OFFSET_NAME(pc),
93 	REG_OFFSET_NAME(pstate),
94 	REG_OFFSET_END,
95 };
96 
97 /**
98  * regs_query_register_offset() - query register offset from its name
99  * @name:	the name of a register
100  *
101  * regs_query_register_offset() returns the offset of a register in struct
102  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
103  */
104 int regs_query_register_offset(const char *name)
105 {
106 	const struct pt_regs_offset *roff;
107 
108 	for (roff = regoffset_table; roff->name != NULL; roff++)
109 		if (!strcmp(roff->name, name))
110 			return roff->offset;
111 	return -EINVAL;
112 }
113 
114 /**
115  * regs_within_kernel_stack() - check the address in the stack
116  * @regs:      pt_regs which contains kernel stack pointer.
117  * @addr:      address which is checked.
118  *
119  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
120  * If @addr is within the kernel stack, it returns true. If not, returns false.
121  */
122 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
123 {
124 	return ((addr & ~(THREAD_SIZE - 1))  ==
125 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
126 		on_irq_stack(addr, sizeof(unsigned long));
127 }
128 
129 /**
130  * regs_get_kernel_stack_nth() - get Nth entry of the stack
131  * @regs:	pt_regs which contains kernel stack pointer.
132  * @n:		stack entry number.
133  *
134  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
135  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
136  * this returns 0.
137  */
138 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
139 {
140 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
141 
142 	addr += n;
143 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
144 		return *addr;
145 	else
146 		return 0;
147 }
148 
149 /*
150  * TODO: does not yet catch signals sent when the child dies.
151  * in exit.c or in signal.c.
152  */
153 
154 /*
155  * Called by kernel/ptrace.c when detaching..
156  */
157 void ptrace_disable(struct task_struct *child)
158 {
159 	/*
160 	 * This would be better off in core code, but PTRACE_DETACH has
161 	 * grown its fair share of arch-specific worts and changing it
162 	 * is likely to cause regressions on obscure architectures.
163 	 */
164 	user_disable_single_step(child);
165 }
166 
167 #ifdef CONFIG_HAVE_HW_BREAKPOINT
168 /*
169  * Handle hitting a HW-breakpoint.
170  */
171 static void ptrace_hbptriggered(struct perf_event *bp,
172 				struct perf_sample_data *data,
173 				struct pt_regs *regs)
174 {
175 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
176 	const char *desc = "Hardware breakpoint trap (ptrace)";
177 
178 	if (is_compat_task()) {
179 		int si_errno = 0;
180 		int i;
181 
182 		for (i = 0; i < ARM_MAX_BRP; ++i) {
183 			if (current->thread.debug.hbp_break[i] == bp) {
184 				si_errno = (i << 1) + 1;
185 				break;
186 			}
187 		}
188 
189 		for (i = 0; i < ARM_MAX_WRP; ++i) {
190 			if (current->thread.debug.hbp_watch[i] == bp) {
191 				si_errno = -((i << 1) + 1);
192 				break;
193 			}
194 		}
195 		arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
196 						  desc);
197 		return;
198 	}
199 
200 	arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
201 }
202 
203 /*
204  * Unregister breakpoints from this task and reset the pointers in
205  * the thread_struct.
206  */
207 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
208 {
209 	int i;
210 	struct thread_struct *t = &tsk->thread;
211 
212 	for (i = 0; i < ARM_MAX_BRP; i++) {
213 		if (t->debug.hbp_break[i]) {
214 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
215 			t->debug.hbp_break[i] = NULL;
216 		}
217 	}
218 
219 	for (i = 0; i < ARM_MAX_WRP; i++) {
220 		if (t->debug.hbp_watch[i]) {
221 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
222 			t->debug.hbp_watch[i] = NULL;
223 		}
224 	}
225 }
226 
227 void ptrace_hw_copy_thread(struct task_struct *tsk)
228 {
229 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
230 }
231 
232 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
233 					       struct task_struct *tsk,
234 					       unsigned long idx)
235 {
236 	struct perf_event *bp = ERR_PTR(-EINVAL);
237 
238 	switch (note_type) {
239 	case NT_ARM_HW_BREAK:
240 		if (idx >= ARM_MAX_BRP)
241 			goto out;
242 		idx = array_index_nospec(idx, ARM_MAX_BRP);
243 		bp = tsk->thread.debug.hbp_break[idx];
244 		break;
245 	case NT_ARM_HW_WATCH:
246 		if (idx >= ARM_MAX_WRP)
247 			goto out;
248 		idx = array_index_nospec(idx, ARM_MAX_WRP);
249 		bp = tsk->thread.debug.hbp_watch[idx];
250 		break;
251 	}
252 
253 out:
254 	return bp;
255 }
256 
257 static int ptrace_hbp_set_event(unsigned int note_type,
258 				struct task_struct *tsk,
259 				unsigned long idx,
260 				struct perf_event *bp)
261 {
262 	int err = -EINVAL;
263 
264 	switch (note_type) {
265 	case NT_ARM_HW_BREAK:
266 		if (idx >= ARM_MAX_BRP)
267 			goto out;
268 		idx = array_index_nospec(idx, ARM_MAX_BRP);
269 		tsk->thread.debug.hbp_break[idx] = bp;
270 		err = 0;
271 		break;
272 	case NT_ARM_HW_WATCH:
273 		if (idx >= ARM_MAX_WRP)
274 			goto out;
275 		idx = array_index_nospec(idx, ARM_MAX_WRP);
276 		tsk->thread.debug.hbp_watch[idx] = bp;
277 		err = 0;
278 		break;
279 	}
280 
281 out:
282 	return err;
283 }
284 
285 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
286 					    struct task_struct *tsk,
287 					    unsigned long idx)
288 {
289 	struct perf_event *bp;
290 	struct perf_event_attr attr;
291 	int err, type;
292 
293 	switch (note_type) {
294 	case NT_ARM_HW_BREAK:
295 		type = HW_BREAKPOINT_X;
296 		break;
297 	case NT_ARM_HW_WATCH:
298 		type = HW_BREAKPOINT_RW;
299 		break;
300 	default:
301 		return ERR_PTR(-EINVAL);
302 	}
303 
304 	ptrace_breakpoint_init(&attr);
305 
306 	/*
307 	 * Initialise fields to sane defaults
308 	 * (i.e. values that will pass validation).
309 	 */
310 	attr.bp_addr	= 0;
311 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
312 	attr.bp_type	= type;
313 	attr.disabled	= 1;
314 
315 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
316 	if (IS_ERR(bp))
317 		return bp;
318 
319 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
320 	if (err)
321 		return ERR_PTR(err);
322 
323 	return bp;
324 }
325 
326 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
327 				     struct arch_hw_breakpoint_ctrl ctrl,
328 				     struct perf_event_attr *attr)
329 {
330 	int err, len, type, offset, disabled = !ctrl.enabled;
331 
332 	attr->disabled = disabled;
333 	if (disabled)
334 		return 0;
335 
336 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
337 	if (err)
338 		return err;
339 
340 	switch (note_type) {
341 	case NT_ARM_HW_BREAK:
342 		if ((type & HW_BREAKPOINT_X) != type)
343 			return -EINVAL;
344 		break;
345 	case NT_ARM_HW_WATCH:
346 		if ((type & HW_BREAKPOINT_RW) != type)
347 			return -EINVAL;
348 		break;
349 	default:
350 		return -EINVAL;
351 	}
352 
353 	attr->bp_len	= len;
354 	attr->bp_type	= type;
355 	attr->bp_addr	+= offset;
356 
357 	return 0;
358 }
359 
360 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
361 {
362 	u8 num;
363 	u32 reg = 0;
364 
365 	switch (note_type) {
366 	case NT_ARM_HW_BREAK:
367 		num = hw_breakpoint_slots(TYPE_INST);
368 		break;
369 	case NT_ARM_HW_WATCH:
370 		num = hw_breakpoint_slots(TYPE_DATA);
371 		break;
372 	default:
373 		return -EINVAL;
374 	}
375 
376 	reg |= debug_monitors_arch();
377 	reg <<= 8;
378 	reg |= num;
379 
380 	*info = reg;
381 	return 0;
382 }
383 
384 static int ptrace_hbp_get_ctrl(unsigned int note_type,
385 			       struct task_struct *tsk,
386 			       unsigned long idx,
387 			       u32 *ctrl)
388 {
389 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
390 
391 	if (IS_ERR(bp))
392 		return PTR_ERR(bp);
393 
394 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
395 	return 0;
396 }
397 
398 static int ptrace_hbp_get_addr(unsigned int note_type,
399 			       struct task_struct *tsk,
400 			       unsigned long idx,
401 			       u64 *addr)
402 {
403 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
404 
405 	if (IS_ERR(bp))
406 		return PTR_ERR(bp);
407 
408 	*addr = bp ? counter_arch_bp(bp)->address : 0;
409 	return 0;
410 }
411 
412 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
413 							struct task_struct *tsk,
414 							unsigned long idx)
415 {
416 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
417 
418 	if (!bp)
419 		bp = ptrace_hbp_create(note_type, tsk, idx);
420 
421 	return bp;
422 }
423 
424 static int ptrace_hbp_set_ctrl(unsigned int note_type,
425 			       struct task_struct *tsk,
426 			       unsigned long idx,
427 			       u32 uctrl)
428 {
429 	int err;
430 	struct perf_event *bp;
431 	struct perf_event_attr attr;
432 	struct arch_hw_breakpoint_ctrl ctrl;
433 
434 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
435 	if (IS_ERR(bp)) {
436 		err = PTR_ERR(bp);
437 		return err;
438 	}
439 
440 	attr = bp->attr;
441 	decode_ctrl_reg(uctrl, &ctrl);
442 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
443 	if (err)
444 		return err;
445 
446 	return modify_user_hw_breakpoint(bp, &attr);
447 }
448 
449 static int ptrace_hbp_set_addr(unsigned int note_type,
450 			       struct task_struct *tsk,
451 			       unsigned long idx,
452 			       u64 addr)
453 {
454 	int err;
455 	struct perf_event *bp;
456 	struct perf_event_attr attr;
457 
458 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
459 	if (IS_ERR(bp)) {
460 		err = PTR_ERR(bp);
461 		return err;
462 	}
463 
464 	attr = bp->attr;
465 	attr.bp_addr = addr;
466 	err = modify_user_hw_breakpoint(bp, &attr);
467 	return err;
468 }
469 
470 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
471 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
472 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
473 
474 static int hw_break_get(struct task_struct *target,
475 			const struct user_regset *regset,
476 			struct membuf to)
477 {
478 	unsigned int note_type = regset->core_note_type;
479 	int ret, idx = 0;
480 	u32 info, ctrl;
481 	u64 addr;
482 
483 	/* Resource info */
484 	ret = ptrace_hbp_get_resource_info(note_type, &info);
485 	if (ret)
486 		return ret;
487 
488 	membuf_write(&to, &info, sizeof(info));
489 	membuf_zero(&to, sizeof(u32));
490 	/* (address, ctrl) registers */
491 	while (to.left) {
492 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
493 		if (ret)
494 			return ret;
495 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
496 		if (ret)
497 			return ret;
498 		membuf_store(&to, addr);
499 		membuf_store(&to, ctrl);
500 		membuf_zero(&to, sizeof(u32));
501 		idx++;
502 	}
503 	return 0;
504 }
505 
506 static int hw_break_set(struct task_struct *target,
507 			const struct user_regset *regset,
508 			unsigned int pos, unsigned int count,
509 			const void *kbuf, const void __user *ubuf)
510 {
511 	unsigned int note_type = regset->core_note_type;
512 	int ret, idx = 0, offset, limit;
513 	u32 ctrl;
514 	u64 addr;
515 
516 	/* Resource info and pad */
517 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
518 	user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
519 
520 	/* (address, ctrl) registers */
521 	limit = regset->n * regset->size;
522 	while (count && offset < limit) {
523 		if (count < PTRACE_HBP_ADDR_SZ)
524 			return -EINVAL;
525 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
526 					 offset, offset + PTRACE_HBP_ADDR_SZ);
527 		if (ret)
528 			return ret;
529 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
530 		if (ret)
531 			return ret;
532 		offset += PTRACE_HBP_ADDR_SZ;
533 
534 		if (!count)
535 			break;
536 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
537 					 offset, offset + PTRACE_HBP_CTRL_SZ);
538 		if (ret)
539 			return ret;
540 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
541 		if (ret)
542 			return ret;
543 		offset += PTRACE_HBP_CTRL_SZ;
544 
545 		user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
546 					  offset, offset + PTRACE_HBP_PAD_SZ);
547 		offset += PTRACE_HBP_PAD_SZ;
548 		idx++;
549 	}
550 
551 	return 0;
552 }
553 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
554 
555 static int gpr_get(struct task_struct *target,
556 		   const struct user_regset *regset,
557 		   struct membuf to)
558 {
559 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
560 	return membuf_write(&to, uregs, sizeof(*uregs));
561 }
562 
563 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
564 		   unsigned int pos, unsigned int count,
565 		   const void *kbuf, const void __user *ubuf)
566 {
567 	int ret;
568 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
569 
570 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
571 	if (ret)
572 		return ret;
573 
574 	if (!valid_user_regs(&newregs, target))
575 		return -EINVAL;
576 
577 	task_pt_regs(target)->user_regs = newregs;
578 	return 0;
579 }
580 
581 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
582 {
583 	if (!system_supports_fpsimd())
584 		return -ENODEV;
585 	return regset->n;
586 }
587 
588 /*
589  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
590  */
591 static int __fpr_get(struct task_struct *target,
592 		     const struct user_regset *regset,
593 		     struct membuf to)
594 {
595 	struct user_fpsimd_state *uregs;
596 
597 	sve_sync_to_fpsimd(target);
598 
599 	uregs = &target->thread.uw.fpsimd_state;
600 
601 	return membuf_write(&to, uregs, sizeof(*uregs));
602 }
603 
604 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
605 		   struct membuf to)
606 {
607 	if (!system_supports_fpsimd())
608 		return -EINVAL;
609 
610 	if (target == current)
611 		fpsimd_preserve_current_state();
612 
613 	return __fpr_get(target, regset, to);
614 }
615 
616 static int __fpr_set(struct task_struct *target,
617 		     const struct user_regset *regset,
618 		     unsigned int pos, unsigned int count,
619 		     const void *kbuf, const void __user *ubuf,
620 		     unsigned int start_pos)
621 {
622 	int ret;
623 	struct user_fpsimd_state newstate;
624 
625 	/*
626 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
627 	 * short copyin can't resurrect stale data.
628 	 */
629 	sve_sync_to_fpsimd(target);
630 
631 	newstate = target->thread.uw.fpsimd_state;
632 
633 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
634 				 start_pos, start_pos + sizeof(newstate));
635 	if (ret)
636 		return ret;
637 
638 	target->thread.uw.fpsimd_state = newstate;
639 
640 	return ret;
641 }
642 
643 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
644 		   unsigned int pos, unsigned int count,
645 		   const void *kbuf, const void __user *ubuf)
646 {
647 	int ret;
648 
649 	if (!system_supports_fpsimd())
650 		return -EINVAL;
651 
652 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
653 	if (ret)
654 		return ret;
655 
656 	sve_sync_from_fpsimd_zeropad(target);
657 	fpsimd_flush_task_state(target);
658 
659 	return ret;
660 }
661 
662 static int tls_get(struct task_struct *target, const struct user_regset *regset,
663 		   struct membuf to)
664 {
665 	int ret;
666 
667 	if (target == current)
668 		tls_preserve_current_state();
669 
670 	ret = membuf_store(&to, target->thread.uw.tp_value);
671 	if (system_supports_tpidr2())
672 		ret = membuf_store(&to, target->thread.tpidr2_el0);
673 	else
674 		ret = membuf_zero(&to, sizeof(u64));
675 
676 	return ret;
677 }
678 
679 static int tls_set(struct task_struct *target, const struct user_regset *regset,
680 		   unsigned int pos, unsigned int count,
681 		   const void *kbuf, const void __user *ubuf)
682 {
683 	int ret;
684 	unsigned long tls[2];
685 
686 	tls[0] = target->thread.uw.tp_value;
687 	if (system_supports_tpidr2())
688 		tls[1] = target->thread.tpidr2_el0;
689 
690 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, tls, 0, count);
691 	if (ret)
692 		return ret;
693 
694 	target->thread.uw.tp_value = tls[0];
695 	if (system_supports_tpidr2())
696 		target->thread.tpidr2_el0 = tls[1];
697 
698 	return ret;
699 }
700 
701 static int fpmr_get(struct task_struct *target, const struct user_regset *regset,
702 		   struct membuf to)
703 {
704 	if (!system_supports_fpmr())
705 		return -EINVAL;
706 
707 	if (target == current)
708 		fpsimd_preserve_current_state();
709 
710 	return membuf_store(&to, target->thread.uw.fpmr);
711 }
712 
713 static int fpmr_set(struct task_struct *target, const struct user_regset *regset,
714 		   unsigned int pos, unsigned int count,
715 		   const void *kbuf, const void __user *ubuf)
716 {
717 	int ret;
718 	unsigned long fpmr;
719 
720 	if (!system_supports_fpmr())
721 		return -EINVAL;
722 
723 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpmr, 0, count);
724 	if (ret)
725 		return ret;
726 
727 	target->thread.uw.fpmr = fpmr;
728 
729 	fpsimd_flush_task_state(target);
730 
731 	return 0;
732 }
733 
734 static int system_call_get(struct task_struct *target,
735 			   const struct user_regset *regset,
736 			   struct membuf to)
737 {
738 	return membuf_store(&to, task_pt_regs(target)->syscallno);
739 }
740 
741 static int system_call_set(struct task_struct *target,
742 			   const struct user_regset *regset,
743 			   unsigned int pos, unsigned int count,
744 			   const void *kbuf, const void __user *ubuf)
745 {
746 	int syscallno = task_pt_regs(target)->syscallno;
747 	int ret;
748 
749 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
750 	if (ret)
751 		return ret;
752 
753 	task_pt_regs(target)->syscallno = syscallno;
754 	return ret;
755 }
756 
757 #ifdef CONFIG_ARM64_SVE
758 
759 static void sve_init_header_from_task(struct user_sve_header *header,
760 				      struct task_struct *target,
761 				      enum vec_type type)
762 {
763 	unsigned int vq;
764 	bool active;
765 	enum vec_type task_type;
766 
767 	memset(header, 0, sizeof(*header));
768 
769 	/* Check if the requested registers are active for the task */
770 	if (thread_sm_enabled(&target->thread))
771 		task_type = ARM64_VEC_SME;
772 	else
773 		task_type = ARM64_VEC_SVE;
774 	active = (task_type == type);
775 
776 	switch (type) {
777 	case ARM64_VEC_SVE:
778 		if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
779 			header->flags |= SVE_PT_VL_INHERIT;
780 		break;
781 	case ARM64_VEC_SME:
782 		if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
783 			header->flags |= SVE_PT_VL_INHERIT;
784 		break;
785 	default:
786 		WARN_ON_ONCE(1);
787 		return;
788 	}
789 
790 	if (active) {
791 		if (target->thread.fp_type == FP_STATE_FPSIMD) {
792 			header->flags |= SVE_PT_REGS_FPSIMD;
793 		} else {
794 			header->flags |= SVE_PT_REGS_SVE;
795 		}
796 	}
797 
798 	header->vl = task_get_vl(target, type);
799 	vq = sve_vq_from_vl(header->vl);
800 
801 	header->max_vl = vec_max_vl(type);
802 	header->size = SVE_PT_SIZE(vq, header->flags);
803 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
804 				      SVE_PT_REGS_SVE);
805 }
806 
807 static unsigned int sve_size_from_header(struct user_sve_header const *header)
808 {
809 	return ALIGN(header->size, SVE_VQ_BYTES);
810 }
811 
812 static int sve_get_common(struct task_struct *target,
813 			  const struct user_regset *regset,
814 			  struct membuf to,
815 			  enum vec_type type)
816 {
817 	struct user_sve_header header;
818 	unsigned int vq;
819 	unsigned long start, end;
820 
821 	/* Header */
822 	sve_init_header_from_task(&header, target, type);
823 	vq = sve_vq_from_vl(header.vl);
824 
825 	membuf_write(&to, &header, sizeof(header));
826 
827 	if (target == current)
828 		fpsimd_preserve_current_state();
829 
830 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
831 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
832 
833 	switch ((header.flags & SVE_PT_REGS_MASK)) {
834 	case SVE_PT_REGS_FPSIMD:
835 		return __fpr_get(target, regset, to);
836 
837 	case SVE_PT_REGS_SVE:
838 		start = SVE_PT_SVE_OFFSET;
839 		end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
840 		membuf_write(&to, target->thread.sve_state, end - start);
841 
842 		start = end;
843 		end = SVE_PT_SVE_FPSR_OFFSET(vq);
844 		membuf_zero(&to, end - start);
845 
846 		/*
847 		 * Copy fpsr, and fpcr which must follow contiguously in
848 		 * struct fpsimd_state:
849 		 */
850 		start = end;
851 		end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
852 		membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr,
853 			     end - start);
854 
855 		start = end;
856 		end = sve_size_from_header(&header);
857 		return membuf_zero(&to, end - start);
858 
859 	default:
860 		return 0;
861 	}
862 }
863 
864 static int sve_get(struct task_struct *target,
865 		   const struct user_regset *regset,
866 		   struct membuf to)
867 {
868 	if (!system_supports_sve())
869 		return -EINVAL;
870 
871 	return sve_get_common(target, regset, to, ARM64_VEC_SVE);
872 }
873 
874 static int sve_set_common(struct task_struct *target,
875 			  const struct user_regset *regset,
876 			  unsigned int pos, unsigned int count,
877 			  const void *kbuf, const void __user *ubuf,
878 			  enum vec_type type)
879 {
880 	int ret;
881 	struct user_sve_header header;
882 	unsigned int vq;
883 	unsigned long start, end;
884 
885 	/* Header */
886 	if (count < sizeof(header))
887 		return -EINVAL;
888 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
889 				 0, sizeof(header));
890 	if (ret)
891 		goto out;
892 
893 	/*
894 	 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
895 	 * vec_set_vector_length(), which will also validate them for us:
896 	 */
897 	ret = vec_set_vector_length(target, type, header.vl,
898 		((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
899 	if (ret)
900 		goto out;
901 
902 	/* Actual VL set may be less than the user asked for: */
903 	vq = sve_vq_from_vl(task_get_vl(target, type));
904 
905 	/* Enter/exit streaming mode */
906 	if (system_supports_sme()) {
907 		u64 old_svcr = target->thread.svcr;
908 
909 		switch (type) {
910 		case ARM64_VEC_SVE:
911 			target->thread.svcr &= ~SVCR_SM_MASK;
912 			break;
913 		case ARM64_VEC_SME:
914 			target->thread.svcr |= SVCR_SM_MASK;
915 
916 			/*
917 			 * Disable traps and ensure there is SME storage but
918 			 * preserve any currently set values in ZA/ZT.
919 			 */
920 			sme_alloc(target, false);
921 			set_tsk_thread_flag(target, TIF_SME);
922 			break;
923 		default:
924 			WARN_ON_ONCE(1);
925 			ret = -EINVAL;
926 			goto out;
927 		}
928 
929 		/*
930 		 * If we switched then invalidate any existing SVE
931 		 * state and ensure there's storage.
932 		 */
933 		if (target->thread.svcr != old_svcr)
934 			sve_alloc(target, true);
935 	}
936 
937 	/* Registers: FPSIMD-only case */
938 
939 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
940 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
941 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
942 				SVE_PT_FPSIMD_OFFSET);
943 		clear_tsk_thread_flag(target, TIF_SVE);
944 		target->thread.fp_type = FP_STATE_FPSIMD;
945 		goto out;
946 	}
947 
948 	/*
949 	 * Otherwise: no registers or full SVE case.  For backwards
950 	 * compatibility reasons we treat empty flags as SVE registers.
951 	 */
952 
953 	/*
954 	 * If setting a different VL from the requested VL and there is
955 	 * register data, the data layout will be wrong: don't even
956 	 * try to set the registers in this case.
957 	 */
958 	if (count && vq != sve_vq_from_vl(header.vl)) {
959 		ret = -EIO;
960 		goto out;
961 	}
962 
963 	sve_alloc(target, true);
964 	if (!target->thread.sve_state) {
965 		ret = -ENOMEM;
966 		clear_tsk_thread_flag(target, TIF_SVE);
967 		target->thread.fp_type = FP_STATE_FPSIMD;
968 		goto out;
969 	}
970 
971 	/*
972 	 * Ensure target->thread.sve_state is up to date with target's
973 	 * FPSIMD regs, so that a short copyin leaves trailing
974 	 * registers unmodified.  Only enable SVE if we are
975 	 * configuring normal SVE, a system with streaming SVE may not
976 	 * have normal SVE.
977 	 */
978 	fpsimd_sync_to_sve(target);
979 	if (type == ARM64_VEC_SVE)
980 		set_tsk_thread_flag(target, TIF_SVE);
981 	target->thread.fp_type = FP_STATE_SVE;
982 
983 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
984 	start = SVE_PT_SVE_OFFSET;
985 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
986 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
987 				 target->thread.sve_state,
988 				 start, end);
989 	if (ret)
990 		goto out;
991 
992 	start = end;
993 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
994 	user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, start, end);
995 
996 	/*
997 	 * Copy fpsr, and fpcr which must follow contiguously in
998 	 * struct fpsimd_state:
999 	 */
1000 	start = end;
1001 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
1002 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1003 				 &target->thread.uw.fpsimd_state.fpsr,
1004 				 start, end);
1005 
1006 out:
1007 	fpsimd_flush_task_state(target);
1008 	return ret;
1009 }
1010 
1011 static int sve_set(struct task_struct *target,
1012 		   const struct user_regset *regset,
1013 		   unsigned int pos, unsigned int count,
1014 		   const void *kbuf, const void __user *ubuf)
1015 {
1016 	if (!system_supports_sve())
1017 		return -EINVAL;
1018 
1019 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1020 			      ARM64_VEC_SVE);
1021 }
1022 
1023 #endif /* CONFIG_ARM64_SVE */
1024 
1025 #ifdef CONFIG_ARM64_SME
1026 
1027 static int ssve_get(struct task_struct *target,
1028 		   const struct user_regset *regset,
1029 		   struct membuf to)
1030 {
1031 	if (!system_supports_sme())
1032 		return -EINVAL;
1033 
1034 	return sve_get_common(target, regset, to, ARM64_VEC_SME);
1035 }
1036 
1037 static int ssve_set(struct task_struct *target,
1038 		    const struct user_regset *regset,
1039 		    unsigned int pos, unsigned int count,
1040 		    const void *kbuf, const void __user *ubuf)
1041 {
1042 	if (!system_supports_sme())
1043 		return -EINVAL;
1044 
1045 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1046 			      ARM64_VEC_SME);
1047 }
1048 
1049 static int za_get(struct task_struct *target,
1050 		  const struct user_regset *regset,
1051 		  struct membuf to)
1052 {
1053 	struct user_za_header header;
1054 	unsigned int vq;
1055 	unsigned long start, end;
1056 
1057 	if (!system_supports_sme())
1058 		return -EINVAL;
1059 
1060 	/* Header */
1061 	memset(&header, 0, sizeof(header));
1062 
1063 	if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
1064 		header.flags |= ZA_PT_VL_INHERIT;
1065 
1066 	header.vl = task_get_sme_vl(target);
1067 	vq = sve_vq_from_vl(header.vl);
1068 	header.max_vl = sme_max_vl();
1069 	header.max_size = ZA_PT_SIZE(vq);
1070 
1071 	/* If ZA is not active there is only the header */
1072 	if (thread_za_enabled(&target->thread))
1073 		header.size = ZA_PT_SIZE(vq);
1074 	else
1075 		header.size = ZA_PT_ZA_OFFSET;
1076 
1077 	membuf_write(&to, &header, sizeof(header));
1078 
1079 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1080 	end = ZA_PT_ZA_OFFSET;
1081 
1082 	if (target == current)
1083 		fpsimd_preserve_current_state();
1084 
1085 	/* Any register data to include? */
1086 	if (thread_za_enabled(&target->thread)) {
1087 		start = end;
1088 		end = ZA_PT_SIZE(vq);
1089 		membuf_write(&to, target->thread.sme_state, end - start);
1090 	}
1091 
1092 	/* Zero any trailing padding */
1093 	start = end;
1094 	end = ALIGN(header.size, SVE_VQ_BYTES);
1095 	return membuf_zero(&to, end - start);
1096 }
1097 
1098 static int za_set(struct task_struct *target,
1099 		  const struct user_regset *regset,
1100 		  unsigned int pos, unsigned int count,
1101 		  const void *kbuf, const void __user *ubuf)
1102 {
1103 	int ret;
1104 	struct user_za_header header;
1105 	unsigned int vq;
1106 	unsigned long start, end;
1107 
1108 	if (!system_supports_sme())
1109 		return -EINVAL;
1110 
1111 	/* Header */
1112 	if (count < sizeof(header))
1113 		return -EINVAL;
1114 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
1115 				 0, sizeof(header));
1116 	if (ret)
1117 		goto out;
1118 
1119 	/*
1120 	 * All current ZA_PT_* flags are consumed by
1121 	 * vec_set_vector_length(), which will also validate them for
1122 	 * us:
1123 	 */
1124 	ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl,
1125 		((unsigned long)header.flags) << 16);
1126 	if (ret)
1127 		goto out;
1128 
1129 	/* Actual VL set may be less than the user asked for: */
1130 	vq = sve_vq_from_vl(task_get_sme_vl(target));
1131 
1132 	/* Ensure there is some SVE storage for streaming mode */
1133 	if (!target->thread.sve_state) {
1134 		sve_alloc(target, false);
1135 		if (!target->thread.sve_state) {
1136 			ret = -ENOMEM;
1137 			goto out;
1138 		}
1139 	}
1140 
1141 	/*
1142 	 * Only flush the storage if PSTATE.ZA was not already set,
1143 	 * otherwise preserve any existing data.
1144 	 */
1145 	sme_alloc(target, !thread_za_enabled(&target->thread));
1146 	if (!target->thread.sme_state)
1147 		return -ENOMEM;
1148 
1149 	/* If there is no data then disable ZA */
1150 	if (!count) {
1151 		target->thread.svcr &= ~SVCR_ZA_MASK;
1152 		goto out;
1153 	}
1154 
1155 	/*
1156 	 * If setting a different VL from the requested VL and there is
1157 	 * register data, the data layout will be wrong: don't even
1158 	 * try to set the registers in this case.
1159 	 */
1160 	if (vq != sve_vq_from_vl(header.vl)) {
1161 		ret = -EIO;
1162 		goto out;
1163 	}
1164 
1165 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1166 	start = ZA_PT_ZA_OFFSET;
1167 	end = ZA_PT_SIZE(vq);
1168 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1169 				 target->thread.sme_state,
1170 				 start, end);
1171 	if (ret)
1172 		goto out;
1173 
1174 	/* Mark ZA as active and let userspace use it */
1175 	set_tsk_thread_flag(target, TIF_SME);
1176 	target->thread.svcr |= SVCR_ZA_MASK;
1177 
1178 out:
1179 	fpsimd_flush_task_state(target);
1180 	return ret;
1181 }
1182 
1183 static int zt_get(struct task_struct *target,
1184 		  const struct user_regset *regset,
1185 		  struct membuf to)
1186 {
1187 	if (!system_supports_sme2())
1188 		return -EINVAL;
1189 
1190 	/*
1191 	 * If PSTATE.ZA is not set then ZT will be zeroed when it is
1192 	 * enabled so report the current register value as zero.
1193 	 */
1194 	if (thread_za_enabled(&target->thread))
1195 		membuf_write(&to, thread_zt_state(&target->thread),
1196 			     ZT_SIG_REG_BYTES);
1197 	else
1198 		membuf_zero(&to, ZT_SIG_REG_BYTES);
1199 
1200 	return 0;
1201 }
1202 
1203 static int zt_set(struct task_struct *target,
1204 		  const struct user_regset *regset,
1205 		  unsigned int pos, unsigned int count,
1206 		  const void *kbuf, const void __user *ubuf)
1207 {
1208 	int ret;
1209 
1210 	if (!system_supports_sme2())
1211 		return -EINVAL;
1212 
1213 	/* Ensure SVE storage in case this is first use of SME */
1214 	sve_alloc(target, false);
1215 	if (!target->thread.sve_state)
1216 		return -ENOMEM;
1217 
1218 	if (!thread_za_enabled(&target->thread)) {
1219 		sme_alloc(target, true);
1220 		if (!target->thread.sme_state)
1221 			return -ENOMEM;
1222 	}
1223 
1224 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1225 				 thread_zt_state(&target->thread),
1226 				 0, ZT_SIG_REG_BYTES);
1227 	if (ret == 0) {
1228 		target->thread.svcr |= SVCR_ZA_MASK;
1229 		set_tsk_thread_flag(target, TIF_SME);
1230 	}
1231 
1232 	fpsimd_flush_task_state(target);
1233 
1234 	return ret;
1235 }
1236 
1237 #endif /* CONFIG_ARM64_SME */
1238 
1239 #ifdef CONFIG_ARM64_PTR_AUTH
1240 static int pac_mask_get(struct task_struct *target,
1241 			const struct user_regset *regset,
1242 			struct membuf to)
1243 {
1244 	/*
1245 	 * The PAC bits can differ across data and instruction pointers
1246 	 * depending on TCR_EL1.TBID*, which we may make use of in future, so
1247 	 * we expose separate masks.
1248 	 */
1249 	unsigned long mask = ptrauth_user_pac_mask();
1250 	struct user_pac_mask uregs = {
1251 		.data_mask = mask,
1252 		.insn_mask = mask,
1253 	};
1254 
1255 	if (!system_supports_address_auth())
1256 		return -EINVAL;
1257 
1258 	return membuf_write(&to, &uregs, sizeof(uregs));
1259 }
1260 
1261 static int pac_enabled_keys_get(struct task_struct *target,
1262 				const struct user_regset *regset,
1263 				struct membuf to)
1264 {
1265 	long enabled_keys = ptrauth_get_enabled_keys(target);
1266 
1267 	if (IS_ERR_VALUE(enabled_keys))
1268 		return enabled_keys;
1269 
1270 	return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
1271 }
1272 
1273 static int pac_enabled_keys_set(struct task_struct *target,
1274 				const struct user_regset *regset,
1275 				unsigned int pos, unsigned int count,
1276 				const void *kbuf, const void __user *ubuf)
1277 {
1278 	int ret;
1279 	long enabled_keys = ptrauth_get_enabled_keys(target);
1280 
1281 	if (IS_ERR_VALUE(enabled_keys))
1282 		return enabled_keys;
1283 
1284 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
1285 				 sizeof(long));
1286 	if (ret)
1287 		return ret;
1288 
1289 	return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
1290 					enabled_keys);
1291 }
1292 
1293 #ifdef CONFIG_CHECKPOINT_RESTORE
1294 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
1295 {
1296 	return (__uint128_t)key->hi << 64 | key->lo;
1297 }
1298 
1299 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
1300 {
1301 	struct ptrauth_key key = {
1302 		.lo = (unsigned long)ukey,
1303 		.hi = (unsigned long)(ukey >> 64),
1304 	};
1305 
1306 	return key;
1307 }
1308 
1309 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1310 				     const struct ptrauth_keys_user *keys)
1311 {
1312 	ukeys->apiakey = pac_key_to_user(&keys->apia);
1313 	ukeys->apibkey = pac_key_to_user(&keys->apib);
1314 	ukeys->apdakey = pac_key_to_user(&keys->apda);
1315 	ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1316 }
1317 
1318 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
1319 				       const struct user_pac_address_keys *ukeys)
1320 {
1321 	keys->apia = pac_key_from_user(ukeys->apiakey);
1322 	keys->apib = pac_key_from_user(ukeys->apibkey);
1323 	keys->apda = pac_key_from_user(ukeys->apdakey);
1324 	keys->apdb = pac_key_from_user(ukeys->apdbkey);
1325 }
1326 
1327 static int pac_address_keys_get(struct task_struct *target,
1328 				const struct user_regset *regset,
1329 				struct membuf to)
1330 {
1331 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1332 	struct user_pac_address_keys user_keys;
1333 
1334 	if (!system_supports_address_auth())
1335 		return -EINVAL;
1336 
1337 	pac_address_keys_to_user(&user_keys, keys);
1338 
1339 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1340 }
1341 
1342 static int pac_address_keys_set(struct task_struct *target,
1343 				const struct user_regset *regset,
1344 				unsigned int pos, unsigned int count,
1345 				const void *kbuf, const void __user *ubuf)
1346 {
1347 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1348 	struct user_pac_address_keys user_keys;
1349 	int ret;
1350 
1351 	if (!system_supports_address_auth())
1352 		return -EINVAL;
1353 
1354 	pac_address_keys_to_user(&user_keys, keys);
1355 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1356 				 &user_keys, 0, -1);
1357 	if (ret)
1358 		return ret;
1359 	pac_address_keys_from_user(keys, &user_keys);
1360 
1361 	return 0;
1362 }
1363 
1364 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1365 				     const struct ptrauth_keys_user *keys)
1366 {
1367 	ukeys->apgakey = pac_key_to_user(&keys->apga);
1368 }
1369 
1370 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1371 				       const struct user_pac_generic_keys *ukeys)
1372 {
1373 	keys->apga = pac_key_from_user(ukeys->apgakey);
1374 }
1375 
1376 static int pac_generic_keys_get(struct task_struct *target,
1377 				const struct user_regset *regset,
1378 				struct membuf to)
1379 {
1380 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1381 	struct user_pac_generic_keys user_keys;
1382 
1383 	if (!system_supports_generic_auth())
1384 		return -EINVAL;
1385 
1386 	pac_generic_keys_to_user(&user_keys, keys);
1387 
1388 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1389 }
1390 
1391 static int pac_generic_keys_set(struct task_struct *target,
1392 				const struct user_regset *regset,
1393 				unsigned int pos, unsigned int count,
1394 				const void *kbuf, const void __user *ubuf)
1395 {
1396 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1397 	struct user_pac_generic_keys user_keys;
1398 	int ret;
1399 
1400 	if (!system_supports_generic_auth())
1401 		return -EINVAL;
1402 
1403 	pac_generic_keys_to_user(&user_keys, keys);
1404 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1405 				 &user_keys, 0, -1);
1406 	if (ret)
1407 		return ret;
1408 	pac_generic_keys_from_user(keys, &user_keys);
1409 
1410 	return 0;
1411 }
1412 #endif /* CONFIG_CHECKPOINT_RESTORE */
1413 #endif /* CONFIG_ARM64_PTR_AUTH */
1414 
1415 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1416 static int tagged_addr_ctrl_get(struct task_struct *target,
1417 				const struct user_regset *regset,
1418 				struct membuf to)
1419 {
1420 	long ctrl = get_tagged_addr_ctrl(target);
1421 
1422 	if (IS_ERR_VALUE(ctrl))
1423 		return ctrl;
1424 
1425 	return membuf_write(&to, &ctrl, sizeof(ctrl));
1426 }
1427 
1428 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1429 				user_regset *regset, unsigned int pos,
1430 				unsigned int count, const void *kbuf, const
1431 				void __user *ubuf)
1432 {
1433 	int ret;
1434 	long ctrl;
1435 
1436 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1437 	if (ret)
1438 		return ret;
1439 
1440 	return set_tagged_addr_ctrl(target, ctrl);
1441 }
1442 #endif
1443 
1444 #ifdef CONFIG_ARM64_POE
1445 static int poe_get(struct task_struct *target,
1446 		   const struct user_regset *regset,
1447 		   struct membuf to)
1448 {
1449 	if (!system_supports_poe())
1450 		return -EINVAL;
1451 
1452 	return membuf_write(&to, &target->thread.por_el0,
1453 			    sizeof(target->thread.por_el0));
1454 }
1455 
1456 static int poe_set(struct task_struct *target, const struct
1457 		   user_regset *regset, unsigned int pos,
1458 		   unsigned int count, const void *kbuf, const
1459 		   void __user *ubuf)
1460 {
1461 	int ret;
1462 	long ctrl;
1463 
1464 	if (!system_supports_poe())
1465 		return -EINVAL;
1466 
1467 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1468 	if (ret)
1469 		return ret;
1470 
1471 	target->thread.por_el0 = ctrl;
1472 
1473 	return 0;
1474 }
1475 #endif
1476 
1477 #ifdef CONFIG_ARM64_GCS
1478 static int gcs_get(struct task_struct *target,
1479 		   const struct user_regset *regset,
1480 		   struct membuf to)
1481 {
1482 	struct user_gcs user_gcs;
1483 
1484 	if (!system_supports_gcs())
1485 		return -EINVAL;
1486 
1487 	if (target == current)
1488 		gcs_preserve_current_state();
1489 
1490 	user_gcs.features_enabled = target->thread.gcs_el0_mode;
1491 	user_gcs.features_locked = target->thread.gcs_el0_locked;
1492 	user_gcs.gcspr_el0 = target->thread.gcspr_el0;
1493 
1494 	return membuf_write(&to, &user_gcs, sizeof(user_gcs));
1495 }
1496 
1497 static int gcs_set(struct task_struct *target, const struct
1498 		   user_regset *regset, unsigned int pos,
1499 		   unsigned int count, const void *kbuf, const
1500 		   void __user *ubuf)
1501 {
1502 	int ret;
1503 	struct user_gcs user_gcs;
1504 
1505 	if (!system_supports_gcs())
1506 		return -EINVAL;
1507 
1508 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &user_gcs, 0, -1);
1509 	if (ret)
1510 		return ret;
1511 
1512 	if (user_gcs.features_enabled & ~PR_SHADOW_STACK_SUPPORTED_STATUS_MASK)
1513 		return -EINVAL;
1514 
1515 	target->thread.gcs_el0_mode = user_gcs.features_enabled;
1516 	target->thread.gcs_el0_locked = user_gcs.features_locked;
1517 	target->thread.gcspr_el0 = user_gcs.gcspr_el0;
1518 
1519 	return 0;
1520 }
1521 #endif
1522 
1523 enum aarch64_regset {
1524 	REGSET_GPR,
1525 	REGSET_FPR,
1526 	REGSET_TLS,
1527 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1528 	REGSET_HW_BREAK,
1529 	REGSET_HW_WATCH,
1530 #endif
1531 	REGSET_FPMR,
1532 	REGSET_SYSTEM_CALL,
1533 #ifdef CONFIG_ARM64_SVE
1534 	REGSET_SVE,
1535 #endif
1536 #ifdef CONFIG_ARM64_SME
1537 	REGSET_SSVE,
1538 	REGSET_ZA,
1539 	REGSET_ZT,
1540 #endif
1541 #ifdef CONFIG_ARM64_PTR_AUTH
1542 	REGSET_PAC_MASK,
1543 	REGSET_PAC_ENABLED_KEYS,
1544 #ifdef CONFIG_CHECKPOINT_RESTORE
1545 	REGSET_PACA_KEYS,
1546 	REGSET_PACG_KEYS,
1547 #endif
1548 #endif
1549 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1550 	REGSET_TAGGED_ADDR_CTRL,
1551 #endif
1552 #ifdef CONFIG_ARM64_POE
1553 	REGSET_POE,
1554 #endif
1555 #ifdef CONFIG_ARM64_GCS
1556 	REGSET_GCS,
1557 #endif
1558 };
1559 
1560 static const struct user_regset aarch64_regsets[] = {
1561 	[REGSET_GPR] = {
1562 		.core_note_type = NT_PRSTATUS,
1563 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
1564 		.size = sizeof(u64),
1565 		.align = sizeof(u64),
1566 		.regset_get = gpr_get,
1567 		.set = gpr_set
1568 	},
1569 	[REGSET_FPR] = {
1570 		.core_note_type = NT_PRFPREG,
1571 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1572 		/*
1573 		 * We pretend we have 32-bit registers because the fpsr and
1574 		 * fpcr are 32-bits wide.
1575 		 */
1576 		.size = sizeof(u32),
1577 		.align = sizeof(u32),
1578 		.active = fpr_active,
1579 		.regset_get = fpr_get,
1580 		.set = fpr_set
1581 	},
1582 	[REGSET_TLS] = {
1583 		.core_note_type = NT_ARM_TLS,
1584 		.n = 2,
1585 		.size = sizeof(void *),
1586 		.align = sizeof(void *),
1587 		.regset_get = tls_get,
1588 		.set = tls_set,
1589 	},
1590 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1591 	[REGSET_HW_BREAK] = {
1592 		.core_note_type = NT_ARM_HW_BREAK,
1593 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1594 		.size = sizeof(u32),
1595 		.align = sizeof(u32),
1596 		.regset_get = hw_break_get,
1597 		.set = hw_break_set,
1598 	},
1599 	[REGSET_HW_WATCH] = {
1600 		.core_note_type = NT_ARM_HW_WATCH,
1601 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1602 		.size = sizeof(u32),
1603 		.align = sizeof(u32),
1604 		.regset_get = hw_break_get,
1605 		.set = hw_break_set,
1606 	},
1607 #endif
1608 	[REGSET_SYSTEM_CALL] = {
1609 		.core_note_type = NT_ARM_SYSTEM_CALL,
1610 		.n = 1,
1611 		.size = sizeof(int),
1612 		.align = sizeof(int),
1613 		.regset_get = system_call_get,
1614 		.set = system_call_set,
1615 	},
1616 	[REGSET_FPMR] = {
1617 		.core_note_type = NT_ARM_FPMR,
1618 		.n = 1,
1619 		.size = sizeof(u64),
1620 		.align = sizeof(u64),
1621 		.regset_get = fpmr_get,
1622 		.set = fpmr_set,
1623 	},
1624 #ifdef CONFIG_ARM64_SVE
1625 	[REGSET_SVE] = { /* Scalable Vector Extension */
1626 		.core_note_type = NT_ARM_SVE,
1627 		.n = DIV_ROUND_UP(SVE_PT_SIZE(ARCH_SVE_VQ_MAX,
1628 					      SVE_PT_REGS_SVE),
1629 				  SVE_VQ_BYTES),
1630 		.size = SVE_VQ_BYTES,
1631 		.align = SVE_VQ_BYTES,
1632 		.regset_get = sve_get,
1633 		.set = sve_set,
1634 	},
1635 #endif
1636 #ifdef CONFIG_ARM64_SME
1637 	[REGSET_SSVE] = { /* Streaming mode SVE */
1638 		.core_note_type = NT_ARM_SSVE,
1639 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE),
1640 				  SVE_VQ_BYTES),
1641 		.size = SVE_VQ_BYTES,
1642 		.align = SVE_VQ_BYTES,
1643 		.regset_get = ssve_get,
1644 		.set = ssve_set,
1645 	},
1646 	[REGSET_ZA] = { /* SME ZA */
1647 		.core_note_type = NT_ARM_ZA,
1648 		/*
1649 		 * ZA is a single register but it's variably sized and
1650 		 * the ptrace core requires that the size of any data
1651 		 * be an exact multiple of the configured register
1652 		 * size so report as though we had SVE_VQ_BYTES
1653 		 * registers. These values aren't exposed to
1654 		 * userspace.
1655 		 */
1656 		.n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES),
1657 		.size = SVE_VQ_BYTES,
1658 		.align = SVE_VQ_BYTES,
1659 		.regset_get = za_get,
1660 		.set = za_set,
1661 	},
1662 	[REGSET_ZT] = { /* SME ZT */
1663 		.core_note_type = NT_ARM_ZT,
1664 		.n = 1,
1665 		.size = ZT_SIG_REG_BYTES,
1666 		.align = sizeof(u64),
1667 		.regset_get = zt_get,
1668 		.set = zt_set,
1669 	},
1670 #endif
1671 #ifdef CONFIG_ARM64_PTR_AUTH
1672 	[REGSET_PAC_MASK] = {
1673 		.core_note_type = NT_ARM_PAC_MASK,
1674 		.n = sizeof(struct user_pac_mask) / sizeof(u64),
1675 		.size = sizeof(u64),
1676 		.align = sizeof(u64),
1677 		.regset_get = pac_mask_get,
1678 		/* this cannot be set dynamically */
1679 	},
1680 	[REGSET_PAC_ENABLED_KEYS] = {
1681 		.core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1682 		.n = 1,
1683 		.size = sizeof(long),
1684 		.align = sizeof(long),
1685 		.regset_get = pac_enabled_keys_get,
1686 		.set = pac_enabled_keys_set,
1687 	},
1688 #ifdef CONFIG_CHECKPOINT_RESTORE
1689 	[REGSET_PACA_KEYS] = {
1690 		.core_note_type = NT_ARM_PACA_KEYS,
1691 		.n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1692 		.size = sizeof(__uint128_t),
1693 		.align = sizeof(__uint128_t),
1694 		.regset_get = pac_address_keys_get,
1695 		.set = pac_address_keys_set,
1696 	},
1697 	[REGSET_PACG_KEYS] = {
1698 		.core_note_type = NT_ARM_PACG_KEYS,
1699 		.n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1700 		.size = sizeof(__uint128_t),
1701 		.align = sizeof(__uint128_t),
1702 		.regset_get = pac_generic_keys_get,
1703 		.set = pac_generic_keys_set,
1704 	},
1705 #endif
1706 #endif
1707 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1708 	[REGSET_TAGGED_ADDR_CTRL] = {
1709 		.core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1710 		.n = 1,
1711 		.size = sizeof(long),
1712 		.align = sizeof(long),
1713 		.regset_get = tagged_addr_ctrl_get,
1714 		.set = tagged_addr_ctrl_set,
1715 	},
1716 #endif
1717 #ifdef CONFIG_ARM64_POE
1718 	[REGSET_POE] = {
1719 		.core_note_type = NT_ARM_POE,
1720 		.n = 1,
1721 		.size = sizeof(long),
1722 		.align = sizeof(long),
1723 		.regset_get = poe_get,
1724 		.set = poe_set,
1725 	},
1726 #endif
1727 #ifdef CONFIG_ARM64_GCS
1728 	[REGSET_GCS] = {
1729 		.core_note_type = NT_ARM_GCS,
1730 		.n = sizeof(struct user_gcs) / sizeof(u64),
1731 		.size = sizeof(u64),
1732 		.align = sizeof(u64),
1733 		.regset_get = gcs_get,
1734 		.set = gcs_set,
1735 	},
1736 #endif
1737 };
1738 
1739 static const struct user_regset_view user_aarch64_view = {
1740 	.name = "aarch64", .e_machine = EM_AARCH64,
1741 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1742 };
1743 
1744 enum compat_regset {
1745 	REGSET_COMPAT_GPR,
1746 	REGSET_COMPAT_VFP,
1747 };
1748 
1749 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1750 {
1751 	struct pt_regs *regs = task_pt_regs(task);
1752 
1753 	switch (idx) {
1754 	case 15:
1755 		return regs->pc;
1756 	case 16:
1757 		return pstate_to_compat_psr(regs->pstate);
1758 	case 17:
1759 		return regs->orig_x0;
1760 	default:
1761 		return regs->regs[idx];
1762 	}
1763 }
1764 
1765 static int compat_gpr_get(struct task_struct *target,
1766 			  const struct user_regset *regset,
1767 			  struct membuf to)
1768 {
1769 	int i = 0;
1770 
1771 	while (to.left)
1772 		membuf_store(&to, compat_get_user_reg(target, i++));
1773 	return 0;
1774 }
1775 
1776 static int compat_gpr_set(struct task_struct *target,
1777 			  const struct user_regset *regset,
1778 			  unsigned int pos, unsigned int count,
1779 			  const void *kbuf, const void __user *ubuf)
1780 {
1781 	struct pt_regs newregs;
1782 	int ret = 0;
1783 	unsigned int i, start, num_regs;
1784 
1785 	/* Calculate the number of AArch32 registers contained in count */
1786 	num_regs = count / regset->size;
1787 
1788 	/* Convert pos into an register number */
1789 	start = pos / regset->size;
1790 
1791 	if (start + num_regs > regset->n)
1792 		return -EIO;
1793 
1794 	newregs = *task_pt_regs(target);
1795 
1796 	for (i = 0; i < num_regs; ++i) {
1797 		unsigned int idx = start + i;
1798 		compat_ulong_t reg;
1799 
1800 		if (kbuf) {
1801 			memcpy(&reg, kbuf, sizeof(reg));
1802 			kbuf += sizeof(reg);
1803 		} else {
1804 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1805 			if (ret) {
1806 				ret = -EFAULT;
1807 				break;
1808 			}
1809 
1810 			ubuf += sizeof(reg);
1811 		}
1812 
1813 		switch (idx) {
1814 		case 15:
1815 			newregs.pc = reg;
1816 			break;
1817 		case 16:
1818 			reg = compat_psr_to_pstate(reg);
1819 			newregs.pstate = reg;
1820 			break;
1821 		case 17:
1822 			newregs.orig_x0 = reg;
1823 			break;
1824 		default:
1825 			newregs.regs[idx] = reg;
1826 		}
1827 
1828 	}
1829 
1830 	if (valid_user_regs(&newregs.user_regs, target))
1831 		*task_pt_regs(target) = newregs;
1832 	else
1833 		ret = -EINVAL;
1834 
1835 	return ret;
1836 }
1837 
1838 static int compat_vfp_get(struct task_struct *target,
1839 			  const struct user_regset *regset,
1840 			  struct membuf to)
1841 {
1842 	struct user_fpsimd_state *uregs;
1843 	compat_ulong_t fpscr;
1844 
1845 	if (!system_supports_fpsimd())
1846 		return -EINVAL;
1847 
1848 	uregs = &target->thread.uw.fpsimd_state;
1849 
1850 	if (target == current)
1851 		fpsimd_preserve_current_state();
1852 
1853 	/*
1854 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1855 	 * nicely together for us. We just need to create the fpscr separately.
1856 	 */
1857 	membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1858 	fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1859 		(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1860 	return membuf_store(&to, fpscr);
1861 }
1862 
1863 static int compat_vfp_set(struct task_struct *target,
1864 			  const struct user_regset *regset,
1865 			  unsigned int pos, unsigned int count,
1866 			  const void *kbuf, const void __user *ubuf)
1867 {
1868 	struct user_fpsimd_state *uregs;
1869 	compat_ulong_t fpscr;
1870 	int ret, vregs_end_pos;
1871 
1872 	if (!system_supports_fpsimd())
1873 		return -EINVAL;
1874 
1875 	uregs = &target->thread.uw.fpsimd_state;
1876 
1877 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1878 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1879 				 vregs_end_pos);
1880 
1881 	if (count && !ret) {
1882 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1883 					 vregs_end_pos, VFP_STATE_SIZE);
1884 		if (!ret) {
1885 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1886 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1887 		}
1888 	}
1889 
1890 	fpsimd_flush_task_state(target);
1891 	return ret;
1892 }
1893 
1894 static int compat_tls_get(struct task_struct *target,
1895 			  const struct user_regset *regset,
1896 			  struct membuf to)
1897 {
1898 	return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1899 }
1900 
1901 static int compat_tls_set(struct task_struct *target,
1902 			  const struct user_regset *regset, unsigned int pos,
1903 			  unsigned int count, const void *kbuf,
1904 			  const void __user *ubuf)
1905 {
1906 	int ret;
1907 	compat_ulong_t tls = target->thread.uw.tp_value;
1908 
1909 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1910 	if (ret)
1911 		return ret;
1912 
1913 	target->thread.uw.tp_value = tls;
1914 	return ret;
1915 }
1916 
1917 static const struct user_regset aarch32_regsets[] = {
1918 	[REGSET_COMPAT_GPR] = {
1919 		.core_note_type = NT_PRSTATUS,
1920 		.n = COMPAT_ELF_NGREG,
1921 		.size = sizeof(compat_elf_greg_t),
1922 		.align = sizeof(compat_elf_greg_t),
1923 		.regset_get = compat_gpr_get,
1924 		.set = compat_gpr_set
1925 	},
1926 	[REGSET_COMPAT_VFP] = {
1927 		.core_note_type = NT_ARM_VFP,
1928 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1929 		.size = sizeof(compat_ulong_t),
1930 		.align = sizeof(compat_ulong_t),
1931 		.active = fpr_active,
1932 		.regset_get = compat_vfp_get,
1933 		.set = compat_vfp_set
1934 	},
1935 };
1936 
1937 static const struct user_regset_view user_aarch32_view = {
1938 	.name = "aarch32", .e_machine = EM_ARM,
1939 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1940 };
1941 
1942 static const struct user_regset aarch32_ptrace_regsets[] = {
1943 	[REGSET_GPR] = {
1944 		.core_note_type = NT_PRSTATUS,
1945 		.n = COMPAT_ELF_NGREG,
1946 		.size = sizeof(compat_elf_greg_t),
1947 		.align = sizeof(compat_elf_greg_t),
1948 		.regset_get = compat_gpr_get,
1949 		.set = compat_gpr_set
1950 	},
1951 	[REGSET_FPR] = {
1952 		.core_note_type = NT_ARM_VFP,
1953 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1954 		.size = sizeof(compat_ulong_t),
1955 		.align = sizeof(compat_ulong_t),
1956 		.regset_get = compat_vfp_get,
1957 		.set = compat_vfp_set
1958 	},
1959 	[REGSET_TLS] = {
1960 		.core_note_type = NT_ARM_TLS,
1961 		.n = 1,
1962 		.size = sizeof(compat_ulong_t),
1963 		.align = sizeof(compat_ulong_t),
1964 		.regset_get = compat_tls_get,
1965 		.set = compat_tls_set,
1966 	},
1967 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1968 	[REGSET_HW_BREAK] = {
1969 		.core_note_type = NT_ARM_HW_BREAK,
1970 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1971 		.size = sizeof(u32),
1972 		.align = sizeof(u32),
1973 		.regset_get = hw_break_get,
1974 		.set = hw_break_set,
1975 	},
1976 	[REGSET_HW_WATCH] = {
1977 		.core_note_type = NT_ARM_HW_WATCH,
1978 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1979 		.size = sizeof(u32),
1980 		.align = sizeof(u32),
1981 		.regset_get = hw_break_get,
1982 		.set = hw_break_set,
1983 	},
1984 #endif
1985 	[REGSET_SYSTEM_CALL] = {
1986 		.core_note_type = NT_ARM_SYSTEM_CALL,
1987 		.n = 1,
1988 		.size = sizeof(int),
1989 		.align = sizeof(int),
1990 		.regset_get = system_call_get,
1991 		.set = system_call_set,
1992 	},
1993 };
1994 
1995 static const struct user_regset_view user_aarch32_ptrace_view = {
1996 	.name = "aarch32", .e_machine = EM_ARM,
1997 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1998 };
1999 
2000 #ifdef CONFIG_COMPAT
2001 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
2002 				   compat_ulong_t __user *ret)
2003 {
2004 	compat_ulong_t tmp;
2005 
2006 	if (off & 3)
2007 		return -EIO;
2008 
2009 	if (off == COMPAT_PT_TEXT_ADDR)
2010 		tmp = tsk->mm->start_code;
2011 	else if (off == COMPAT_PT_DATA_ADDR)
2012 		tmp = tsk->mm->start_data;
2013 	else if (off == COMPAT_PT_TEXT_END_ADDR)
2014 		tmp = tsk->mm->end_code;
2015 	else if (off < sizeof(compat_elf_gregset_t))
2016 		tmp = compat_get_user_reg(tsk, off >> 2);
2017 	else if (off >= COMPAT_USER_SZ)
2018 		return -EIO;
2019 	else
2020 		tmp = 0;
2021 
2022 	return put_user(tmp, ret);
2023 }
2024 
2025 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
2026 				    compat_ulong_t val)
2027 {
2028 	struct pt_regs newregs = *task_pt_regs(tsk);
2029 	unsigned int idx = off / 4;
2030 
2031 	if (off & 3 || off >= COMPAT_USER_SZ)
2032 		return -EIO;
2033 
2034 	if (off >= sizeof(compat_elf_gregset_t))
2035 		return 0;
2036 
2037 	switch (idx) {
2038 	case 15:
2039 		newregs.pc = val;
2040 		break;
2041 	case 16:
2042 		newregs.pstate = compat_psr_to_pstate(val);
2043 		break;
2044 	case 17:
2045 		newregs.orig_x0 = val;
2046 		break;
2047 	default:
2048 		newregs.regs[idx] = val;
2049 	}
2050 
2051 	if (!valid_user_regs(&newregs.user_regs, tsk))
2052 		return -EINVAL;
2053 
2054 	*task_pt_regs(tsk) = newregs;
2055 	return 0;
2056 }
2057 
2058 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2059 
2060 /*
2061  * Convert a virtual register number into an index for a thread_info
2062  * breakpoint array. Breakpoints are identified using positive numbers
2063  * whilst watchpoints are negative. The registers are laid out as pairs
2064  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
2065  * Register 0 is reserved for describing resource information.
2066  */
2067 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
2068 {
2069 	return (abs(num) - 1) >> 1;
2070 }
2071 
2072 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
2073 {
2074 	u8 num_brps, num_wrps, debug_arch, wp_len;
2075 	u32 reg = 0;
2076 
2077 	num_brps	= hw_breakpoint_slots(TYPE_INST);
2078 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
2079 
2080 	debug_arch	= debug_monitors_arch();
2081 	wp_len		= 8;
2082 	reg		|= debug_arch;
2083 	reg		<<= 8;
2084 	reg		|= wp_len;
2085 	reg		<<= 8;
2086 	reg		|= num_wrps;
2087 	reg		<<= 8;
2088 	reg		|= num_brps;
2089 
2090 	*kdata = reg;
2091 	return 0;
2092 }
2093 
2094 static int compat_ptrace_hbp_get(unsigned int note_type,
2095 				 struct task_struct *tsk,
2096 				 compat_long_t num,
2097 				 u32 *kdata)
2098 {
2099 	u64 addr = 0;
2100 	u32 ctrl = 0;
2101 
2102 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
2103 
2104 	if (num & 1) {
2105 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
2106 		*kdata = (u32)addr;
2107 	} else {
2108 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
2109 		*kdata = ctrl;
2110 	}
2111 
2112 	return err;
2113 }
2114 
2115 static int compat_ptrace_hbp_set(unsigned int note_type,
2116 				 struct task_struct *tsk,
2117 				 compat_long_t num,
2118 				 u32 *kdata)
2119 {
2120 	u64 addr;
2121 	u32 ctrl;
2122 
2123 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
2124 
2125 	if (num & 1) {
2126 		addr = *kdata;
2127 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
2128 	} else {
2129 		ctrl = *kdata;
2130 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
2131 	}
2132 
2133 	return err;
2134 }
2135 
2136 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
2137 				    compat_ulong_t __user *data)
2138 {
2139 	int ret;
2140 	u32 kdata;
2141 
2142 	/* Watchpoint */
2143 	if (num < 0) {
2144 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
2145 	/* Resource info */
2146 	} else if (num == 0) {
2147 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
2148 	/* Breakpoint */
2149 	} else {
2150 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
2151 	}
2152 
2153 	if (!ret)
2154 		ret = put_user(kdata, data);
2155 
2156 	return ret;
2157 }
2158 
2159 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
2160 				    compat_ulong_t __user *data)
2161 {
2162 	int ret;
2163 	u32 kdata = 0;
2164 
2165 	if (num == 0)
2166 		return 0;
2167 
2168 	ret = get_user(kdata, data);
2169 	if (ret)
2170 		return ret;
2171 
2172 	if (num < 0)
2173 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
2174 	else
2175 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
2176 
2177 	return ret;
2178 }
2179 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
2180 
2181 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
2182 			compat_ulong_t caddr, compat_ulong_t cdata)
2183 {
2184 	unsigned long addr = caddr;
2185 	unsigned long data = cdata;
2186 	void __user *datap = compat_ptr(data);
2187 	int ret;
2188 
2189 	switch (request) {
2190 		case PTRACE_PEEKUSR:
2191 			ret = compat_ptrace_read_user(child, addr, datap);
2192 			break;
2193 
2194 		case PTRACE_POKEUSR:
2195 			ret = compat_ptrace_write_user(child, addr, data);
2196 			break;
2197 
2198 		case COMPAT_PTRACE_GETREGS:
2199 			ret = copy_regset_to_user(child,
2200 						  &user_aarch32_view,
2201 						  REGSET_COMPAT_GPR,
2202 						  0, sizeof(compat_elf_gregset_t),
2203 						  datap);
2204 			break;
2205 
2206 		case COMPAT_PTRACE_SETREGS:
2207 			ret = copy_regset_from_user(child,
2208 						    &user_aarch32_view,
2209 						    REGSET_COMPAT_GPR,
2210 						    0, sizeof(compat_elf_gregset_t),
2211 						    datap);
2212 			break;
2213 
2214 		case COMPAT_PTRACE_GET_THREAD_AREA:
2215 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
2216 				       (compat_ulong_t __user *)datap);
2217 			break;
2218 
2219 		case COMPAT_PTRACE_SET_SYSCALL:
2220 			task_pt_regs(child)->syscallno = data;
2221 			ret = 0;
2222 			break;
2223 
2224 		case COMPAT_PTRACE_GETVFPREGS:
2225 			ret = copy_regset_to_user(child,
2226 						  &user_aarch32_view,
2227 						  REGSET_COMPAT_VFP,
2228 						  0, VFP_STATE_SIZE,
2229 						  datap);
2230 			break;
2231 
2232 		case COMPAT_PTRACE_SETVFPREGS:
2233 			ret = copy_regset_from_user(child,
2234 						    &user_aarch32_view,
2235 						    REGSET_COMPAT_VFP,
2236 						    0, VFP_STATE_SIZE,
2237 						    datap);
2238 			break;
2239 
2240 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2241 		case COMPAT_PTRACE_GETHBPREGS:
2242 			ret = compat_ptrace_gethbpregs(child, addr, datap);
2243 			break;
2244 
2245 		case COMPAT_PTRACE_SETHBPREGS:
2246 			ret = compat_ptrace_sethbpregs(child, addr, datap);
2247 			break;
2248 #endif
2249 
2250 		default:
2251 			ret = compat_ptrace_request(child, request, addr,
2252 						    data);
2253 			break;
2254 	}
2255 
2256 	return ret;
2257 }
2258 #endif /* CONFIG_COMPAT */
2259 
2260 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2261 {
2262 	/*
2263 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
2264 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
2265 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
2266 	 * access to the TLS register.
2267 	 */
2268 	if (is_compat_task())
2269 		return &user_aarch32_view;
2270 	else if (is_compat_thread(task_thread_info(task)))
2271 		return &user_aarch32_ptrace_view;
2272 
2273 	return &user_aarch64_view;
2274 }
2275 
2276 long arch_ptrace(struct task_struct *child, long request,
2277 		 unsigned long addr, unsigned long data)
2278 {
2279 	switch (request) {
2280 	case PTRACE_PEEKMTETAGS:
2281 	case PTRACE_POKEMTETAGS:
2282 		return mte_ptrace_copy_tags(child, request, addr, data);
2283 	}
2284 
2285 	return ptrace_request(child, request, addr, data);
2286 }
2287 
2288 enum ptrace_syscall_dir {
2289 	PTRACE_SYSCALL_ENTER = 0,
2290 	PTRACE_SYSCALL_EXIT,
2291 };
2292 
2293 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
2294 {
2295 	int regno;
2296 	unsigned long saved_reg;
2297 
2298 	/*
2299 	 * We have some ABI weirdness here in the way that we handle syscall
2300 	 * exit stops because we indicate whether or not the stop has been
2301 	 * signalled from syscall entry or syscall exit by clobbering a general
2302 	 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
2303 	 * and restoring its old value after the stop. This means that:
2304 	 *
2305 	 * - Any writes by the tracer to this register during the stop are
2306 	 *   ignored/discarded.
2307 	 *
2308 	 * - The actual value of the register is not available during the stop,
2309 	 *   so the tracer cannot save it and restore it later.
2310 	 *
2311 	 * - Syscall stops behave differently to seccomp and pseudo-step traps
2312 	 *   (the latter do not nobble any registers).
2313 	 */
2314 	regno = (is_compat_task() ? 12 : 7);
2315 	saved_reg = regs->regs[regno];
2316 	regs->regs[regno] = dir;
2317 
2318 	if (dir == PTRACE_SYSCALL_ENTER) {
2319 		if (ptrace_report_syscall_entry(regs))
2320 			forget_syscall(regs);
2321 		regs->regs[regno] = saved_reg;
2322 	} else if (!test_thread_flag(TIF_SINGLESTEP)) {
2323 		ptrace_report_syscall_exit(regs, 0);
2324 		regs->regs[regno] = saved_reg;
2325 	} else {
2326 		regs->regs[regno] = saved_reg;
2327 
2328 		/*
2329 		 * Signal a pseudo-step exception since we are stepping but
2330 		 * tracer modifications to the registers may have rewound the
2331 		 * state machine.
2332 		 */
2333 		ptrace_report_syscall_exit(regs, 1);
2334 	}
2335 }
2336 
2337 int syscall_trace_enter(struct pt_regs *regs)
2338 {
2339 	unsigned long flags = read_thread_flags();
2340 
2341 	if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
2342 		report_syscall(regs, PTRACE_SYSCALL_ENTER);
2343 		if (flags & _TIF_SYSCALL_EMU)
2344 			return NO_SYSCALL;
2345 	}
2346 
2347 	/* Do the secure computing after ptrace; failures should be fast. */
2348 	if (secure_computing() == -1)
2349 		return NO_SYSCALL;
2350 
2351 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
2352 		trace_sys_enter(regs, regs->syscallno);
2353 
2354 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
2355 			    regs->regs[2], regs->regs[3]);
2356 
2357 	return regs->syscallno;
2358 }
2359 
2360 void syscall_trace_exit(struct pt_regs *regs)
2361 {
2362 	unsigned long flags = read_thread_flags();
2363 
2364 	audit_syscall_exit(regs);
2365 
2366 	if (flags & _TIF_SYSCALL_TRACEPOINT)
2367 		trace_sys_exit(regs, syscall_get_return_value(current, regs));
2368 
2369 	if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
2370 		report_syscall(regs, PTRACE_SYSCALL_EXIT);
2371 
2372 	rseq_syscall(regs);
2373 }
2374 
2375 /*
2376  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
2377  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
2378  * not described in ARM DDI 0487D.a.
2379  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
2380  * be allocated an EL0 meaning in future.
2381  * Userspace cannot use these until they have an architectural meaning.
2382  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
2383  * We also reserve IL for the kernel; SS is handled dynamically.
2384  */
2385 #define SPSR_EL1_AARCH64_RES0_BITS \
2386 	(GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
2387 	 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
2388 #define SPSR_EL1_AARCH32_RES0_BITS \
2389 	(GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
2390 
2391 static int valid_compat_regs(struct user_pt_regs *regs)
2392 {
2393 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
2394 
2395 	if (!system_supports_mixed_endian_el0()) {
2396 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
2397 			regs->pstate |= PSR_AA32_E_BIT;
2398 		else
2399 			regs->pstate &= ~PSR_AA32_E_BIT;
2400 	}
2401 
2402 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
2403 	    (regs->pstate & PSR_AA32_A_BIT) == 0 &&
2404 	    (regs->pstate & PSR_AA32_I_BIT) == 0 &&
2405 	    (regs->pstate & PSR_AA32_F_BIT) == 0) {
2406 		return 1;
2407 	}
2408 
2409 	/*
2410 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
2411 	 * arch/arm.
2412 	 */
2413 	regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
2414 			PSR_AA32_C_BIT | PSR_AA32_V_BIT |
2415 			PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
2416 			PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
2417 			PSR_AA32_T_BIT;
2418 	regs->pstate |= PSR_MODE32_BIT;
2419 
2420 	return 0;
2421 }
2422 
2423 static int valid_native_regs(struct user_pt_regs *regs)
2424 {
2425 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
2426 
2427 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
2428 	    (regs->pstate & PSR_D_BIT) == 0 &&
2429 	    (regs->pstate & PSR_A_BIT) == 0 &&
2430 	    (regs->pstate & PSR_I_BIT) == 0 &&
2431 	    (regs->pstate & PSR_F_BIT) == 0) {
2432 		return 1;
2433 	}
2434 
2435 	/* Force PSR to a valid 64-bit EL0t */
2436 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
2437 
2438 	return 0;
2439 }
2440 
2441 /*
2442  * Are the current registers suitable for user mode? (used to maintain
2443  * security in signal handlers)
2444  */
2445 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
2446 {
2447 	/* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
2448 	user_regs_reset_single_step(regs, task);
2449 
2450 	if (is_compat_thread(task_thread_info(task)))
2451 		return valid_compat_regs(regs);
2452 	else
2453 		return valid_native_regs(regs);
2454 }
2455