1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/ptrace.c 4 * 5 * By Ross Biro 1/23/92 6 * edited by Linus Torvalds 7 * ARM modifications Copyright (C) 2000 Russell King 8 * Copyright (C) 2012 ARM Ltd. 9 */ 10 11 #include <linux/audit.h> 12 #include <linux/compat.h> 13 #include <linux/kernel.h> 14 #include <linux/sched/signal.h> 15 #include <linux/sched/task_stack.h> 16 #include <linux/mm.h> 17 #include <linux/nospec.h> 18 #include <linux/smp.h> 19 #include <linux/ptrace.h> 20 #include <linux/user.h> 21 #include <linux/seccomp.h> 22 #include <linux/security.h> 23 #include <linux/init.h> 24 #include <linux/signal.h> 25 #include <linux/string.h> 26 #include <linux/uaccess.h> 27 #include <linux/perf_event.h> 28 #include <linux/hw_breakpoint.h> 29 #include <linux/regset.h> 30 #include <linux/elf.h> 31 #include <linux/rseq.h> 32 33 #include <asm/compat.h> 34 #include <asm/cpufeature.h> 35 #include <asm/debug-monitors.h> 36 #include <asm/fpsimd.h> 37 #include <asm/mte.h> 38 #include <asm/pointer_auth.h> 39 #include <asm/stacktrace.h> 40 #include <asm/syscall.h> 41 #include <asm/traps.h> 42 #include <asm/system_misc.h> 43 44 #define CREATE_TRACE_POINTS 45 #include <trace/events/syscalls.h> 46 47 struct pt_regs_offset { 48 const char *name; 49 int offset; 50 }; 51 52 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)} 53 #define REG_OFFSET_END {.name = NULL, .offset = 0} 54 #define GPR_OFFSET_NAME(r) \ 55 {.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])} 56 57 static const struct pt_regs_offset regoffset_table[] = { 58 GPR_OFFSET_NAME(0), 59 GPR_OFFSET_NAME(1), 60 GPR_OFFSET_NAME(2), 61 GPR_OFFSET_NAME(3), 62 GPR_OFFSET_NAME(4), 63 GPR_OFFSET_NAME(5), 64 GPR_OFFSET_NAME(6), 65 GPR_OFFSET_NAME(7), 66 GPR_OFFSET_NAME(8), 67 GPR_OFFSET_NAME(9), 68 GPR_OFFSET_NAME(10), 69 GPR_OFFSET_NAME(11), 70 GPR_OFFSET_NAME(12), 71 GPR_OFFSET_NAME(13), 72 GPR_OFFSET_NAME(14), 73 GPR_OFFSET_NAME(15), 74 GPR_OFFSET_NAME(16), 75 GPR_OFFSET_NAME(17), 76 GPR_OFFSET_NAME(18), 77 GPR_OFFSET_NAME(19), 78 GPR_OFFSET_NAME(20), 79 GPR_OFFSET_NAME(21), 80 GPR_OFFSET_NAME(22), 81 GPR_OFFSET_NAME(23), 82 GPR_OFFSET_NAME(24), 83 GPR_OFFSET_NAME(25), 84 GPR_OFFSET_NAME(26), 85 GPR_OFFSET_NAME(27), 86 GPR_OFFSET_NAME(28), 87 GPR_OFFSET_NAME(29), 88 GPR_OFFSET_NAME(30), 89 {.name = "lr", .offset = offsetof(struct pt_regs, regs[30])}, 90 REG_OFFSET_NAME(sp), 91 REG_OFFSET_NAME(pc), 92 REG_OFFSET_NAME(pstate), 93 REG_OFFSET_END, 94 }; 95 96 /** 97 * regs_query_register_offset() - query register offset from its name 98 * @name: the name of a register 99 * 100 * regs_query_register_offset() returns the offset of a register in struct 101 * pt_regs from its name. If the name is invalid, this returns -EINVAL; 102 */ 103 int regs_query_register_offset(const char *name) 104 { 105 const struct pt_regs_offset *roff; 106 107 for (roff = regoffset_table; roff->name != NULL; roff++) 108 if (!strcmp(roff->name, name)) 109 return roff->offset; 110 return -EINVAL; 111 } 112 113 /** 114 * regs_within_kernel_stack() - check the address in the stack 115 * @regs: pt_regs which contains kernel stack pointer. 116 * @addr: address which is checked. 117 * 118 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). 119 * If @addr is within the kernel stack, it returns true. If not, returns false. 120 */ 121 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) 122 { 123 return ((addr & ~(THREAD_SIZE - 1)) == 124 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) || 125 on_irq_stack(addr, sizeof(unsigned long)); 126 } 127 128 /** 129 * regs_get_kernel_stack_nth() - get Nth entry of the stack 130 * @regs: pt_regs which contains kernel stack pointer. 131 * @n: stack entry number. 132 * 133 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which 134 * is specified by @regs. If the @n th entry is NOT in the kernel stack, 135 * this returns 0. 136 */ 137 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) 138 { 139 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs); 140 141 addr += n; 142 if (regs_within_kernel_stack(regs, (unsigned long)addr)) 143 return *addr; 144 else 145 return 0; 146 } 147 148 /* 149 * TODO: does not yet catch signals sent when the child dies. 150 * in exit.c or in signal.c. 151 */ 152 153 /* 154 * Called by kernel/ptrace.c when detaching.. 155 */ 156 void ptrace_disable(struct task_struct *child) 157 { 158 /* 159 * This would be better off in core code, but PTRACE_DETACH has 160 * grown its fair share of arch-specific worts and changing it 161 * is likely to cause regressions on obscure architectures. 162 */ 163 user_disable_single_step(child); 164 } 165 166 #ifdef CONFIG_HAVE_HW_BREAKPOINT 167 /* 168 * Handle hitting a HW-breakpoint. 169 */ 170 static void ptrace_hbptriggered(struct perf_event *bp, 171 struct perf_sample_data *data, 172 struct pt_regs *regs) 173 { 174 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp); 175 const char *desc = "Hardware breakpoint trap (ptrace)"; 176 177 if (is_compat_task()) { 178 int si_errno = 0; 179 int i; 180 181 for (i = 0; i < ARM_MAX_BRP; ++i) { 182 if (current->thread.debug.hbp_break[i] == bp) { 183 si_errno = (i << 1) + 1; 184 break; 185 } 186 } 187 188 for (i = 0; i < ARM_MAX_WRP; ++i) { 189 if (current->thread.debug.hbp_watch[i] == bp) { 190 si_errno = -((i << 1) + 1); 191 break; 192 } 193 } 194 arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger, 195 desc); 196 return; 197 } 198 199 arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc); 200 } 201 202 /* 203 * Unregister breakpoints from this task and reset the pointers in 204 * the thread_struct. 205 */ 206 void flush_ptrace_hw_breakpoint(struct task_struct *tsk) 207 { 208 int i; 209 struct thread_struct *t = &tsk->thread; 210 211 for (i = 0; i < ARM_MAX_BRP; i++) { 212 if (t->debug.hbp_break[i]) { 213 unregister_hw_breakpoint(t->debug.hbp_break[i]); 214 t->debug.hbp_break[i] = NULL; 215 } 216 } 217 218 for (i = 0; i < ARM_MAX_WRP; i++) { 219 if (t->debug.hbp_watch[i]) { 220 unregister_hw_breakpoint(t->debug.hbp_watch[i]); 221 t->debug.hbp_watch[i] = NULL; 222 } 223 } 224 } 225 226 void ptrace_hw_copy_thread(struct task_struct *tsk) 227 { 228 memset(&tsk->thread.debug, 0, sizeof(struct debug_info)); 229 } 230 231 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type, 232 struct task_struct *tsk, 233 unsigned long idx) 234 { 235 struct perf_event *bp = ERR_PTR(-EINVAL); 236 237 switch (note_type) { 238 case NT_ARM_HW_BREAK: 239 if (idx >= ARM_MAX_BRP) 240 goto out; 241 idx = array_index_nospec(idx, ARM_MAX_BRP); 242 bp = tsk->thread.debug.hbp_break[idx]; 243 break; 244 case NT_ARM_HW_WATCH: 245 if (idx >= ARM_MAX_WRP) 246 goto out; 247 idx = array_index_nospec(idx, ARM_MAX_WRP); 248 bp = tsk->thread.debug.hbp_watch[idx]; 249 break; 250 } 251 252 out: 253 return bp; 254 } 255 256 static int ptrace_hbp_set_event(unsigned int note_type, 257 struct task_struct *tsk, 258 unsigned long idx, 259 struct perf_event *bp) 260 { 261 int err = -EINVAL; 262 263 switch (note_type) { 264 case NT_ARM_HW_BREAK: 265 if (idx >= ARM_MAX_BRP) 266 goto out; 267 idx = array_index_nospec(idx, ARM_MAX_BRP); 268 tsk->thread.debug.hbp_break[idx] = bp; 269 err = 0; 270 break; 271 case NT_ARM_HW_WATCH: 272 if (idx >= ARM_MAX_WRP) 273 goto out; 274 idx = array_index_nospec(idx, ARM_MAX_WRP); 275 tsk->thread.debug.hbp_watch[idx] = bp; 276 err = 0; 277 break; 278 } 279 280 out: 281 return err; 282 } 283 284 static struct perf_event *ptrace_hbp_create(unsigned int note_type, 285 struct task_struct *tsk, 286 unsigned long idx) 287 { 288 struct perf_event *bp; 289 struct perf_event_attr attr; 290 int err, type; 291 292 switch (note_type) { 293 case NT_ARM_HW_BREAK: 294 type = HW_BREAKPOINT_X; 295 break; 296 case NT_ARM_HW_WATCH: 297 type = HW_BREAKPOINT_RW; 298 break; 299 default: 300 return ERR_PTR(-EINVAL); 301 } 302 303 ptrace_breakpoint_init(&attr); 304 305 /* 306 * Initialise fields to sane defaults 307 * (i.e. values that will pass validation). 308 */ 309 attr.bp_addr = 0; 310 attr.bp_len = HW_BREAKPOINT_LEN_4; 311 attr.bp_type = type; 312 attr.disabled = 1; 313 314 bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk); 315 if (IS_ERR(bp)) 316 return bp; 317 318 err = ptrace_hbp_set_event(note_type, tsk, idx, bp); 319 if (err) 320 return ERR_PTR(err); 321 322 return bp; 323 } 324 325 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type, 326 struct arch_hw_breakpoint_ctrl ctrl, 327 struct perf_event_attr *attr) 328 { 329 int err, len, type, offset, disabled = !ctrl.enabled; 330 331 attr->disabled = disabled; 332 if (disabled) 333 return 0; 334 335 err = arch_bp_generic_fields(ctrl, &len, &type, &offset); 336 if (err) 337 return err; 338 339 switch (note_type) { 340 case NT_ARM_HW_BREAK: 341 if ((type & HW_BREAKPOINT_X) != type) 342 return -EINVAL; 343 break; 344 case NT_ARM_HW_WATCH: 345 if ((type & HW_BREAKPOINT_RW) != type) 346 return -EINVAL; 347 break; 348 default: 349 return -EINVAL; 350 } 351 352 attr->bp_len = len; 353 attr->bp_type = type; 354 attr->bp_addr += offset; 355 356 return 0; 357 } 358 359 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info) 360 { 361 u8 num; 362 u32 reg = 0; 363 364 switch (note_type) { 365 case NT_ARM_HW_BREAK: 366 num = hw_breakpoint_slots(TYPE_INST); 367 break; 368 case NT_ARM_HW_WATCH: 369 num = hw_breakpoint_slots(TYPE_DATA); 370 break; 371 default: 372 return -EINVAL; 373 } 374 375 reg |= debug_monitors_arch(); 376 reg <<= 8; 377 reg |= num; 378 379 *info = reg; 380 return 0; 381 } 382 383 static int ptrace_hbp_get_ctrl(unsigned int note_type, 384 struct task_struct *tsk, 385 unsigned long idx, 386 u32 *ctrl) 387 { 388 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx); 389 390 if (IS_ERR(bp)) 391 return PTR_ERR(bp); 392 393 *ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0; 394 return 0; 395 } 396 397 static int ptrace_hbp_get_addr(unsigned int note_type, 398 struct task_struct *tsk, 399 unsigned long idx, 400 u64 *addr) 401 { 402 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx); 403 404 if (IS_ERR(bp)) 405 return PTR_ERR(bp); 406 407 *addr = bp ? counter_arch_bp(bp)->address : 0; 408 return 0; 409 } 410 411 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type, 412 struct task_struct *tsk, 413 unsigned long idx) 414 { 415 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx); 416 417 if (!bp) 418 bp = ptrace_hbp_create(note_type, tsk, idx); 419 420 return bp; 421 } 422 423 static int ptrace_hbp_set_ctrl(unsigned int note_type, 424 struct task_struct *tsk, 425 unsigned long idx, 426 u32 uctrl) 427 { 428 int err; 429 struct perf_event *bp; 430 struct perf_event_attr attr; 431 struct arch_hw_breakpoint_ctrl ctrl; 432 433 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx); 434 if (IS_ERR(bp)) { 435 err = PTR_ERR(bp); 436 return err; 437 } 438 439 attr = bp->attr; 440 decode_ctrl_reg(uctrl, &ctrl); 441 err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr); 442 if (err) 443 return err; 444 445 return modify_user_hw_breakpoint(bp, &attr); 446 } 447 448 static int ptrace_hbp_set_addr(unsigned int note_type, 449 struct task_struct *tsk, 450 unsigned long idx, 451 u64 addr) 452 { 453 int err; 454 struct perf_event *bp; 455 struct perf_event_attr attr; 456 457 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx); 458 if (IS_ERR(bp)) { 459 err = PTR_ERR(bp); 460 return err; 461 } 462 463 attr = bp->attr; 464 attr.bp_addr = addr; 465 err = modify_user_hw_breakpoint(bp, &attr); 466 return err; 467 } 468 469 #define PTRACE_HBP_ADDR_SZ sizeof(u64) 470 #define PTRACE_HBP_CTRL_SZ sizeof(u32) 471 #define PTRACE_HBP_PAD_SZ sizeof(u32) 472 473 static int hw_break_get(struct task_struct *target, 474 const struct user_regset *regset, 475 struct membuf to) 476 { 477 unsigned int note_type = regset->core_note_type; 478 int ret, idx = 0; 479 u32 info, ctrl; 480 u64 addr; 481 482 /* Resource info */ 483 ret = ptrace_hbp_get_resource_info(note_type, &info); 484 if (ret) 485 return ret; 486 487 membuf_write(&to, &info, sizeof(info)); 488 membuf_zero(&to, sizeof(u32)); 489 /* (address, ctrl) registers */ 490 while (to.left) { 491 ret = ptrace_hbp_get_addr(note_type, target, idx, &addr); 492 if (ret) 493 return ret; 494 ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl); 495 if (ret) 496 return ret; 497 membuf_store(&to, addr); 498 membuf_store(&to, ctrl); 499 membuf_zero(&to, sizeof(u32)); 500 idx++; 501 } 502 return 0; 503 } 504 505 static int hw_break_set(struct task_struct *target, 506 const struct user_regset *regset, 507 unsigned int pos, unsigned int count, 508 const void *kbuf, const void __user *ubuf) 509 { 510 unsigned int note_type = regset->core_note_type; 511 int ret, idx = 0, offset, limit; 512 u32 ctrl; 513 u64 addr; 514 515 /* Resource info and pad */ 516 offset = offsetof(struct user_hwdebug_state, dbg_regs); 517 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset); 518 519 /* (address, ctrl) registers */ 520 limit = regset->n * regset->size; 521 while (count && offset < limit) { 522 if (count < PTRACE_HBP_ADDR_SZ) 523 return -EINVAL; 524 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr, 525 offset, offset + PTRACE_HBP_ADDR_SZ); 526 if (ret) 527 return ret; 528 ret = ptrace_hbp_set_addr(note_type, target, idx, addr); 529 if (ret) 530 return ret; 531 offset += PTRACE_HBP_ADDR_SZ; 532 533 if (!count) 534 break; 535 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 536 offset, offset + PTRACE_HBP_CTRL_SZ); 537 if (ret) 538 return ret; 539 ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl); 540 if (ret) 541 return ret; 542 offset += PTRACE_HBP_CTRL_SZ; 543 544 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 545 offset, offset + PTRACE_HBP_PAD_SZ); 546 offset += PTRACE_HBP_PAD_SZ; 547 idx++; 548 } 549 550 return 0; 551 } 552 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 553 554 static int gpr_get(struct task_struct *target, 555 const struct user_regset *regset, 556 struct membuf to) 557 { 558 struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs; 559 return membuf_write(&to, uregs, sizeof(*uregs)); 560 } 561 562 static int gpr_set(struct task_struct *target, const struct user_regset *regset, 563 unsigned int pos, unsigned int count, 564 const void *kbuf, const void __user *ubuf) 565 { 566 int ret; 567 struct user_pt_regs newregs = task_pt_regs(target)->user_regs; 568 569 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1); 570 if (ret) 571 return ret; 572 573 if (!valid_user_regs(&newregs, target)) 574 return -EINVAL; 575 576 task_pt_regs(target)->user_regs = newregs; 577 return 0; 578 } 579 580 static int fpr_active(struct task_struct *target, const struct user_regset *regset) 581 { 582 if (!system_supports_fpsimd()) 583 return -ENODEV; 584 return regset->n; 585 } 586 587 /* 588 * TODO: update fp accessors for lazy context switching (sync/flush hwstate) 589 */ 590 static int __fpr_get(struct task_struct *target, 591 const struct user_regset *regset, 592 struct membuf to) 593 { 594 struct user_fpsimd_state *uregs; 595 596 sve_sync_to_fpsimd(target); 597 598 uregs = &target->thread.uw.fpsimd_state; 599 600 return membuf_write(&to, uregs, sizeof(*uregs)); 601 } 602 603 static int fpr_get(struct task_struct *target, const struct user_regset *regset, 604 struct membuf to) 605 { 606 if (!system_supports_fpsimd()) 607 return -EINVAL; 608 609 if (target == current) 610 fpsimd_preserve_current_state(); 611 612 return __fpr_get(target, regset, to); 613 } 614 615 static int __fpr_set(struct task_struct *target, 616 const struct user_regset *regset, 617 unsigned int pos, unsigned int count, 618 const void *kbuf, const void __user *ubuf, 619 unsigned int start_pos) 620 { 621 int ret; 622 struct user_fpsimd_state newstate; 623 624 /* 625 * Ensure target->thread.uw.fpsimd_state is up to date, so that a 626 * short copyin can't resurrect stale data. 627 */ 628 sve_sync_to_fpsimd(target); 629 630 newstate = target->thread.uw.fpsimd_state; 631 632 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate, 633 start_pos, start_pos + sizeof(newstate)); 634 if (ret) 635 return ret; 636 637 target->thread.uw.fpsimd_state = newstate; 638 639 return ret; 640 } 641 642 static int fpr_set(struct task_struct *target, const struct user_regset *regset, 643 unsigned int pos, unsigned int count, 644 const void *kbuf, const void __user *ubuf) 645 { 646 int ret; 647 648 if (!system_supports_fpsimd()) 649 return -EINVAL; 650 651 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0); 652 if (ret) 653 return ret; 654 655 sve_sync_from_fpsimd_zeropad(target); 656 fpsimd_flush_task_state(target); 657 658 return ret; 659 } 660 661 static int tls_get(struct task_struct *target, const struct user_regset *regset, 662 struct membuf to) 663 { 664 int ret; 665 666 if (target == current) 667 tls_preserve_current_state(); 668 669 ret = membuf_store(&to, target->thread.uw.tp_value); 670 if (system_supports_tpidr2()) 671 ret = membuf_store(&to, target->thread.tpidr2_el0); 672 else 673 ret = membuf_zero(&to, sizeof(u64)); 674 675 return ret; 676 } 677 678 static int tls_set(struct task_struct *target, const struct user_regset *regset, 679 unsigned int pos, unsigned int count, 680 const void *kbuf, const void __user *ubuf) 681 { 682 int ret; 683 unsigned long tls[2]; 684 685 tls[0] = target->thread.uw.tp_value; 686 if (system_supports_tpidr2()) 687 tls[1] = target->thread.tpidr2_el0; 688 689 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, tls, 0, count); 690 if (ret) 691 return ret; 692 693 target->thread.uw.tp_value = tls[0]; 694 if (system_supports_tpidr2()) 695 target->thread.tpidr2_el0 = tls[1]; 696 697 return ret; 698 } 699 700 static int fpmr_get(struct task_struct *target, const struct user_regset *regset, 701 struct membuf to) 702 { 703 if (!system_supports_fpmr()) 704 return -EINVAL; 705 706 if (target == current) 707 fpsimd_preserve_current_state(); 708 709 return membuf_store(&to, target->thread.uw.fpmr); 710 } 711 712 static int fpmr_set(struct task_struct *target, const struct user_regset *regset, 713 unsigned int pos, unsigned int count, 714 const void *kbuf, const void __user *ubuf) 715 { 716 int ret; 717 unsigned long fpmr; 718 719 if (!system_supports_fpmr()) 720 return -EINVAL; 721 722 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpmr, 0, count); 723 if (ret) 724 return ret; 725 726 target->thread.uw.fpmr = fpmr; 727 728 fpsimd_flush_task_state(target); 729 730 return 0; 731 } 732 733 static int system_call_get(struct task_struct *target, 734 const struct user_regset *regset, 735 struct membuf to) 736 { 737 return membuf_store(&to, task_pt_regs(target)->syscallno); 738 } 739 740 static int system_call_set(struct task_struct *target, 741 const struct user_regset *regset, 742 unsigned int pos, unsigned int count, 743 const void *kbuf, const void __user *ubuf) 744 { 745 int syscallno = task_pt_regs(target)->syscallno; 746 int ret; 747 748 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1); 749 if (ret) 750 return ret; 751 752 task_pt_regs(target)->syscallno = syscallno; 753 return ret; 754 } 755 756 #ifdef CONFIG_ARM64_SVE 757 758 static void sve_init_header_from_task(struct user_sve_header *header, 759 struct task_struct *target, 760 enum vec_type type) 761 { 762 unsigned int vq; 763 bool active; 764 enum vec_type task_type; 765 766 memset(header, 0, sizeof(*header)); 767 768 /* Check if the requested registers are active for the task */ 769 if (thread_sm_enabled(&target->thread)) 770 task_type = ARM64_VEC_SME; 771 else 772 task_type = ARM64_VEC_SVE; 773 active = (task_type == type); 774 775 switch (type) { 776 case ARM64_VEC_SVE: 777 if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT)) 778 header->flags |= SVE_PT_VL_INHERIT; 779 break; 780 case ARM64_VEC_SME: 781 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT)) 782 header->flags |= SVE_PT_VL_INHERIT; 783 break; 784 default: 785 WARN_ON_ONCE(1); 786 return; 787 } 788 789 if (active) { 790 if (target->thread.fp_type == FP_STATE_FPSIMD) { 791 header->flags |= SVE_PT_REGS_FPSIMD; 792 } else { 793 header->flags |= SVE_PT_REGS_SVE; 794 } 795 } 796 797 header->vl = task_get_vl(target, type); 798 vq = sve_vq_from_vl(header->vl); 799 800 header->max_vl = vec_max_vl(type); 801 header->size = SVE_PT_SIZE(vq, header->flags); 802 header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl), 803 SVE_PT_REGS_SVE); 804 } 805 806 static unsigned int sve_size_from_header(struct user_sve_header const *header) 807 { 808 return ALIGN(header->size, SVE_VQ_BYTES); 809 } 810 811 static int sve_get_common(struct task_struct *target, 812 const struct user_regset *regset, 813 struct membuf to, 814 enum vec_type type) 815 { 816 struct user_sve_header header; 817 unsigned int vq; 818 unsigned long start, end; 819 820 /* Header */ 821 sve_init_header_from_task(&header, target, type); 822 vq = sve_vq_from_vl(header.vl); 823 824 membuf_write(&to, &header, sizeof(header)); 825 826 if (target == current) 827 fpsimd_preserve_current_state(); 828 829 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header)); 830 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header)); 831 832 switch ((header.flags & SVE_PT_REGS_MASK)) { 833 case SVE_PT_REGS_FPSIMD: 834 return __fpr_get(target, regset, to); 835 836 case SVE_PT_REGS_SVE: 837 start = SVE_PT_SVE_OFFSET; 838 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq); 839 membuf_write(&to, target->thread.sve_state, end - start); 840 841 start = end; 842 end = SVE_PT_SVE_FPSR_OFFSET(vq); 843 membuf_zero(&to, end - start); 844 845 /* 846 * Copy fpsr, and fpcr which must follow contiguously in 847 * struct fpsimd_state: 848 */ 849 start = end; 850 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE; 851 membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr, 852 end - start); 853 854 start = end; 855 end = sve_size_from_header(&header); 856 return membuf_zero(&to, end - start); 857 858 default: 859 return 0; 860 } 861 } 862 863 static int sve_get(struct task_struct *target, 864 const struct user_regset *regset, 865 struct membuf to) 866 { 867 if (!system_supports_sve()) 868 return -EINVAL; 869 870 return sve_get_common(target, regset, to, ARM64_VEC_SVE); 871 } 872 873 static int sve_set_common(struct task_struct *target, 874 const struct user_regset *regset, 875 unsigned int pos, unsigned int count, 876 const void *kbuf, const void __user *ubuf, 877 enum vec_type type) 878 { 879 int ret; 880 struct user_sve_header header; 881 unsigned int vq; 882 unsigned long start, end; 883 884 /* Header */ 885 if (count < sizeof(header)) 886 return -EINVAL; 887 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header, 888 0, sizeof(header)); 889 if (ret) 890 goto out; 891 892 /* 893 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by 894 * vec_set_vector_length(), which will also validate them for us: 895 */ 896 ret = vec_set_vector_length(target, type, header.vl, 897 ((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16); 898 if (ret) 899 goto out; 900 901 /* Actual VL set may be less than the user asked for: */ 902 vq = sve_vq_from_vl(task_get_vl(target, type)); 903 904 /* Enter/exit streaming mode */ 905 if (system_supports_sme()) { 906 u64 old_svcr = target->thread.svcr; 907 908 switch (type) { 909 case ARM64_VEC_SVE: 910 target->thread.svcr &= ~SVCR_SM_MASK; 911 break; 912 case ARM64_VEC_SME: 913 target->thread.svcr |= SVCR_SM_MASK; 914 915 /* 916 * Disable traps and ensure there is SME storage but 917 * preserve any currently set values in ZA/ZT. 918 */ 919 sme_alloc(target, false); 920 set_tsk_thread_flag(target, TIF_SME); 921 break; 922 default: 923 WARN_ON_ONCE(1); 924 ret = -EINVAL; 925 goto out; 926 } 927 928 /* 929 * If we switched then invalidate any existing SVE 930 * state and ensure there's storage. 931 */ 932 if (target->thread.svcr != old_svcr) 933 sve_alloc(target, true); 934 } 935 936 /* Registers: FPSIMD-only case */ 937 938 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header)); 939 if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) { 940 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 941 SVE_PT_FPSIMD_OFFSET); 942 clear_tsk_thread_flag(target, TIF_SVE); 943 target->thread.fp_type = FP_STATE_FPSIMD; 944 goto out; 945 } 946 947 /* 948 * Otherwise: no registers or full SVE case. For backwards 949 * compatibility reasons we treat empty flags as SVE registers. 950 */ 951 952 /* 953 * If setting a different VL from the requested VL and there is 954 * register data, the data layout will be wrong: don't even 955 * try to set the registers in this case. 956 */ 957 if (count && vq != sve_vq_from_vl(header.vl)) { 958 ret = -EIO; 959 goto out; 960 } 961 962 sve_alloc(target, true); 963 if (!target->thread.sve_state) { 964 ret = -ENOMEM; 965 clear_tsk_thread_flag(target, TIF_SVE); 966 target->thread.fp_type = FP_STATE_FPSIMD; 967 goto out; 968 } 969 970 /* 971 * Ensure target->thread.sve_state is up to date with target's 972 * FPSIMD regs, so that a short copyin leaves trailing 973 * registers unmodified. Only enable SVE if we are 974 * configuring normal SVE, a system with streaming SVE may not 975 * have normal SVE. 976 */ 977 fpsimd_sync_to_sve(target); 978 if (type == ARM64_VEC_SVE) 979 set_tsk_thread_flag(target, TIF_SVE); 980 target->thread.fp_type = FP_STATE_SVE; 981 982 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header)); 983 start = SVE_PT_SVE_OFFSET; 984 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq); 985 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 986 target->thread.sve_state, 987 start, end); 988 if (ret) 989 goto out; 990 991 start = end; 992 end = SVE_PT_SVE_FPSR_OFFSET(vq); 993 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, start, end); 994 995 /* 996 * Copy fpsr, and fpcr which must follow contiguously in 997 * struct fpsimd_state: 998 */ 999 start = end; 1000 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE; 1001 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1002 &target->thread.uw.fpsimd_state.fpsr, 1003 start, end); 1004 1005 out: 1006 fpsimd_flush_task_state(target); 1007 return ret; 1008 } 1009 1010 static int sve_set(struct task_struct *target, 1011 const struct user_regset *regset, 1012 unsigned int pos, unsigned int count, 1013 const void *kbuf, const void __user *ubuf) 1014 { 1015 if (!system_supports_sve()) 1016 return -EINVAL; 1017 1018 return sve_set_common(target, regset, pos, count, kbuf, ubuf, 1019 ARM64_VEC_SVE); 1020 } 1021 1022 #endif /* CONFIG_ARM64_SVE */ 1023 1024 #ifdef CONFIG_ARM64_SME 1025 1026 static int ssve_get(struct task_struct *target, 1027 const struct user_regset *regset, 1028 struct membuf to) 1029 { 1030 if (!system_supports_sme()) 1031 return -EINVAL; 1032 1033 return sve_get_common(target, regset, to, ARM64_VEC_SME); 1034 } 1035 1036 static int ssve_set(struct task_struct *target, 1037 const struct user_regset *regset, 1038 unsigned int pos, unsigned int count, 1039 const void *kbuf, const void __user *ubuf) 1040 { 1041 if (!system_supports_sme()) 1042 return -EINVAL; 1043 1044 return sve_set_common(target, regset, pos, count, kbuf, ubuf, 1045 ARM64_VEC_SME); 1046 } 1047 1048 static int za_get(struct task_struct *target, 1049 const struct user_regset *regset, 1050 struct membuf to) 1051 { 1052 struct user_za_header header; 1053 unsigned int vq; 1054 unsigned long start, end; 1055 1056 if (!system_supports_sme()) 1057 return -EINVAL; 1058 1059 /* Header */ 1060 memset(&header, 0, sizeof(header)); 1061 1062 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT)) 1063 header.flags |= ZA_PT_VL_INHERIT; 1064 1065 header.vl = task_get_sme_vl(target); 1066 vq = sve_vq_from_vl(header.vl); 1067 header.max_vl = sme_max_vl(); 1068 header.max_size = ZA_PT_SIZE(vq); 1069 1070 /* If ZA is not active there is only the header */ 1071 if (thread_za_enabled(&target->thread)) 1072 header.size = ZA_PT_SIZE(vq); 1073 else 1074 header.size = ZA_PT_ZA_OFFSET; 1075 1076 membuf_write(&to, &header, sizeof(header)); 1077 1078 BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header)); 1079 end = ZA_PT_ZA_OFFSET; 1080 1081 if (target == current) 1082 fpsimd_preserve_current_state(); 1083 1084 /* Any register data to include? */ 1085 if (thread_za_enabled(&target->thread)) { 1086 start = end; 1087 end = ZA_PT_SIZE(vq); 1088 membuf_write(&to, target->thread.sme_state, end - start); 1089 } 1090 1091 /* Zero any trailing padding */ 1092 start = end; 1093 end = ALIGN(header.size, SVE_VQ_BYTES); 1094 return membuf_zero(&to, end - start); 1095 } 1096 1097 static int za_set(struct task_struct *target, 1098 const struct user_regset *regset, 1099 unsigned int pos, unsigned int count, 1100 const void *kbuf, const void __user *ubuf) 1101 { 1102 int ret; 1103 struct user_za_header header; 1104 unsigned int vq; 1105 unsigned long start, end; 1106 1107 if (!system_supports_sme()) 1108 return -EINVAL; 1109 1110 /* Header */ 1111 if (count < sizeof(header)) 1112 return -EINVAL; 1113 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header, 1114 0, sizeof(header)); 1115 if (ret) 1116 goto out; 1117 1118 /* 1119 * All current ZA_PT_* flags are consumed by 1120 * vec_set_vector_length(), which will also validate them for 1121 * us: 1122 */ 1123 ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl, 1124 ((unsigned long)header.flags) << 16); 1125 if (ret) 1126 goto out; 1127 1128 /* Actual VL set may be less than the user asked for: */ 1129 vq = sve_vq_from_vl(task_get_sme_vl(target)); 1130 1131 /* Ensure there is some SVE storage for streaming mode */ 1132 if (!target->thread.sve_state) { 1133 sve_alloc(target, false); 1134 if (!target->thread.sve_state) { 1135 ret = -ENOMEM; 1136 goto out; 1137 } 1138 } 1139 1140 /* 1141 * Only flush the storage if PSTATE.ZA was not already set, 1142 * otherwise preserve any existing data. 1143 */ 1144 sme_alloc(target, !thread_za_enabled(&target->thread)); 1145 if (!target->thread.sme_state) 1146 return -ENOMEM; 1147 1148 /* If there is no data then disable ZA */ 1149 if (!count) { 1150 target->thread.svcr &= ~SVCR_ZA_MASK; 1151 goto out; 1152 } 1153 1154 /* 1155 * If setting a different VL from the requested VL and there is 1156 * register data, the data layout will be wrong: don't even 1157 * try to set the registers in this case. 1158 */ 1159 if (vq != sve_vq_from_vl(header.vl)) { 1160 ret = -EIO; 1161 goto out; 1162 } 1163 1164 BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header)); 1165 start = ZA_PT_ZA_OFFSET; 1166 end = ZA_PT_SIZE(vq); 1167 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1168 target->thread.sme_state, 1169 start, end); 1170 if (ret) 1171 goto out; 1172 1173 /* Mark ZA as active and let userspace use it */ 1174 set_tsk_thread_flag(target, TIF_SME); 1175 target->thread.svcr |= SVCR_ZA_MASK; 1176 1177 out: 1178 fpsimd_flush_task_state(target); 1179 return ret; 1180 } 1181 1182 static int zt_get(struct task_struct *target, 1183 const struct user_regset *regset, 1184 struct membuf to) 1185 { 1186 if (!system_supports_sme2()) 1187 return -EINVAL; 1188 1189 /* 1190 * If PSTATE.ZA is not set then ZT will be zeroed when it is 1191 * enabled so report the current register value as zero. 1192 */ 1193 if (thread_za_enabled(&target->thread)) 1194 membuf_write(&to, thread_zt_state(&target->thread), 1195 ZT_SIG_REG_BYTES); 1196 else 1197 membuf_zero(&to, ZT_SIG_REG_BYTES); 1198 1199 return 0; 1200 } 1201 1202 static int zt_set(struct task_struct *target, 1203 const struct user_regset *regset, 1204 unsigned int pos, unsigned int count, 1205 const void *kbuf, const void __user *ubuf) 1206 { 1207 int ret; 1208 1209 if (!system_supports_sme2()) 1210 return -EINVAL; 1211 1212 /* Ensure SVE storage in case this is first use of SME */ 1213 sve_alloc(target, false); 1214 if (!target->thread.sve_state) 1215 return -ENOMEM; 1216 1217 if (!thread_za_enabled(&target->thread)) { 1218 sme_alloc(target, true); 1219 if (!target->thread.sme_state) 1220 return -ENOMEM; 1221 } 1222 1223 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1224 thread_zt_state(&target->thread), 1225 0, ZT_SIG_REG_BYTES); 1226 if (ret == 0) { 1227 target->thread.svcr |= SVCR_ZA_MASK; 1228 set_tsk_thread_flag(target, TIF_SME); 1229 } 1230 1231 fpsimd_flush_task_state(target); 1232 1233 return ret; 1234 } 1235 1236 #endif /* CONFIG_ARM64_SME */ 1237 1238 #ifdef CONFIG_ARM64_PTR_AUTH 1239 static int pac_mask_get(struct task_struct *target, 1240 const struct user_regset *regset, 1241 struct membuf to) 1242 { 1243 /* 1244 * The PAC bits can differ across data and instruction pointers 1245 * depending on TCR_EL1.TBID*, which we may make use of in future, so 1246 * we expose separate masks. 1247 */ 1248 unsigned long mask = ptrauth_user_pac_mask(); 1249 struct user_pac_mask uregs = { 1250 .data_mask = mask, 1251 .insn_mask = mask, 1252 }; 1253 1254 if (!system_supports_address_auth()) 1255 return -EINVAL; 1256 1257 return membuf_write(&to, &uregs, sizeof(uregs)); 1258 } 1259 1260 static int pac_enabled_keys_get(struct task_struct *target, 1261 const struct user_regset *regset, 1262 struct membuf to) 1263 { 1264 long enabled_keys = ptrauth_get_enabled_keys(target); 1265 1266 if (IS_ERR_VALUE(enabled_keys)) 1267 return enabled_keys; 1268 1269 return membuf_write(&to, &enabled_keys, sizeof(enabled_keys)); 1270 } 1271 1272 static int pac_enabled_keys_set(struct task_struct *target, 1273 const struct user_regset *regset, 1274 unsigned int pos, unsigned int count, 1275 const void *kbuf, const void __user *ubuf) 1276 { 1277 int ret; 1278 long enabled_keys = ptrauth_get_enabled_keys(target); 1279 1280 if (IS_ERR_VALUE(enabled_keys)) 1281 return enabled_keys; 1282 1283 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0, 1284 sizeof(long)); 1285 if (ret) 1286 return ret; 1287 1288 return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK, 1289 enabled_keys); 1290 } 1291 1292 #ifdef CONFIG_CHECKPOINT_RESTORE 1293 static __uint128_t pac_key_to_user(const struct ptrauth_key *key) 1294 { 1295 return (__uint128_t)key->hi << 64 | key->lo; 1296 } 1297 1298 static struct ptrauth_key pac_key_from_user(__uint128_t ukey) 1299 { 1300 struct ptrauth_key key = { 1301 .lo = (unsigned long)ukey, 1302 .hi = (unsigned long)(ukey >> 64), 1303 }; 1304 1305 return key; 1306 } 1307 1308 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys, 1309 const struct ptrauth_keys_user *keys) 1310 { 1311 ukeys->apiakey = pac_key_to_user(&keys->apia); 1312 ukeys->apibkey = pac_key_to_user(&keys->apib); 1313 ukeys->apdakey = pac_key_to_user(&keys->apda); 1314 ukeys->apdbkey = pac_key_to_user(&keys->apdb); 1315 } 1316 1317 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys, 1318 const struct user_pac_address_keys *ukeys) 1319 { 1320 keys->apia = pac_key_from_user(ukeys->apiakey); 1321 keys->apib = pac_key_from_user(ukeys->apibkey); 1322 keys->apda = pac_key_from_user(ukeys->apdakey); 1323 keys->apdb = pac_key_from_user(ukeys->apdbkey); 1324 } 1325 1326 static int pac_address_keys_get(struct task_struct *target, 1327 const struct user_regset *regset, 1328 struct membuf to) 1329 { 1330 struct ptrauth_keys_user *keys = &target->thread.keys_user; 1331 struct user_pac_address_keys user_keys; 1332 1333 if (!system_supports_address_auth()) 1334 return -EINVAL; 1335 1336 pac_address_keys_to_user(&user_keys, keys); 1337 1338 return membuf_write(&to, &user_keys, sizeof(user_keys)); 1339 } 1340 1341 static int pac_address_keys_set(struct task_struct *target, 1342 const struct user_regset *regset, 1343 unsigned int pos, unsigned int count, 1344 const void *kbuf, const void __user *ubuf) 1345 { 1346 struct ptrauth_keys_user *keys = &target->thread.keys_user; 1347 struct user_pac_address_keys user_keys; 1348 int ret; 1349 1350 if (!system_supports_address_auth()) 1351 return -EINVAL; 1352 1353 pac_address_keys_to_user(&user_keys, keys); 1354 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1355 &user_keys, 0, -1); 1356 if (ret) 1357 return ret; 1358 pac_address_keys_from_user(keys, &user_keys); 1359 1360 return 0; 1361 } 1362 1363 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys, 1364 const struct ptrauth_keys_user *keys) 1365 { 1366 ukeys->apgakey = pac_key_to_user(&keys->apga); 1367 } 1368 1369 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys, 1370 const struct user_pac_generic_keys *ukeys) 1371 { 1372 keys->apga = pac_key_from_user(ukeys->apgakey); 1373 } 1374 1375 static int pac_generic_keys_get(struct task_struct *target, 1376 const struct user_regset *regset, 1377 struct membuf to) 1378 { 1379 struct ptrauth_keys_user *keys = &target->thread.keys_user; 1380 struct user_pac_generic_keys user_keys; 1381 1382 if (!system_supports_generic_auth()) 1383 return -EINVAL; 1384 1385 pac_generic_keys_to_user(&user_keys, keys); 1386 1387 return membuf_write(&to, &user_keys, sizeof(user_keys)); 1388 } 1389 1390 static int pac_generic_keys_set(struct task_struct *target, 1391 const struct user_regset *regset, 1392 unsigned int pos, unsigned int count, 1393 const void *kbuf, const void __user *ubuf) 1394 { 1395 struct ptrauth_keys_user *keys = &target->thread.keys_user; 1396 struct user_pac_generic_keys user_keys; 1397 int ret; 1398 1399 if (!system_supports_generic_auth()) 1400 return -EINVAL; 1401 1402 pac_generic_keys_to_user(&user_keys, keys); 1403 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1404 &user_keys, 0, -1); 1405 if (ret) 1406 return ret; 1407 pac_generic_keys_from_user(keys, &user_keys); 1408 1409 return 0; 1410 } 1411 #endif /* CONFIG_CHECKPOINT_RESTORE */ 1412 #endif /* CONFIG_ARM64_PTR_AUTH */ 1413 1414 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 1415 static int tagged_addr_ctrl_get(struct task_struct *target, 1416 const struct user_regset *regset, 1417 struct membuf to) 1418 { 1419 long ctrl = get_tagged_addr_ctrl(target); 1420 1421 if (IS_ERR_VALUE(ctrl)) 1422 return ctrl; 1423 1424 return membuf_write(&to, &ctrl, sizeof(ctrl)); 1425 } 1426 1427 static int tagged_addr_ctrl_set(struct task_struct *target, const struct 1428 user_regset *regset, unsigned int pos, 1429 unsigned int count, const void *kbuf, const 1430 void __user *ubuf) 1431 { 1432 int ret; 1433 long ctrl; 1434 1435 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1); 1436 if (ret) 1437 return ret; 1438 1439 return set_tagged_addr_ctrl(target, ctrl); 1440 } 1441 #endif 1442 1443 enum aarch64_regset { 1444 REGSET_GPR, 1445 REGSET_FPR, 1446 REGSET_TLS, 1447 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1448 REGSET_HW_BREAK, 1449 REGSET_HW_WATCH, 1450 #endif 1451 REGSET_FPMR, 1452 REGSET_SYSTEM_CALL, 1453 #ifdef CONFIG_ARM64_SVE 1454 REGSET_SVE, 1455 #endif 1456 #ifdef CONFIG_ARM64_SME 1457 REGSET_SSVE, 1458 REGSET_ZA, 1459 REGSET_ZT, 1460 #endif 1461 #ifdef CONFIG_ARM64_PTR_AUTH 1462 REGSET_PAC_MASK, 1463 REGSET_PAC_ENABLED_KEYS, 1464 #ifdef CONFIG_CHECKPOINT_RESTORE 1465 REGSET_PACA_KEYS, 1466 REGSET_PACG_KEYS, 1467 #endif 1468 #endif 1469 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 1470 REGSET_TAGGED_ADDR_CTRL, 1471 #endif 1472 }; 1473 1474 static const struct user_regset aarch64_regsets[] = { 1475 [REGSET_GPR] = { 1476 .core_note_type = NT_PRSTATUS, 1477 .n = sizeof(struct user_pt_regs) / sizeof(u64), 1478 .size = sizeof(u64), 1479 .align = sizeof(u64), 1480 .regset_get = gpr_get, 1481 .set = gpr_set 1482 }, 1483 [REGSET_FPR] = { 1484 .core_note_type = NT_PRFPREG, 1485 .n = sizeof(struct user_fpsimd_state) / sizeof(u32), 1486 /* 1487 * We pretend we have 32-bit registers because the fpsr and 1488 * fpcr are 32-bits wide. 1489 */ 1490 .size = sizeof(u32), 1491 .align = sizeof(u32), 1492 .active = fpr_active, 1493 .regset_get = fpr_get, 1494 .set = fpr_set 1495 }, 1496 [REGSET_TLS] = { 1497 .core_note_type = NT_ARM_TLS, 1498 .n = 2, 1499 .size = sizeof(void *), 1500 .align = sizeof(void *), 1501 .regset_get = tls_get, 1502 .set = tls_set, 1503 }, 1504 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1505 [REGSET_HW_BREAK] = { 1506 .core_note_type = NT_ARM_HW_BREAK, 1507 .n = sizeof(struct user_hwdebug_state) / sizeof(u32), 1508 .size = sizeof(u32), 1509 .align = sizeof(u32), 1510 .regset_get = hw_break_get, 1511 .set = hw_break_set, 1512 }, 1513 [REGSET_HW_WATCH] = { 1514 .core_note_type = NT_ARM_HW_WATCH, 1515 .n = sizeof(struct user_hwdebug_state) / sizeof(u32), 1516 .size = sizeof(u32), 1517 .align = sizeof(u32), 1518 .regset_get = hw_break_get, 1519 .set = hw_break_set, 1520 }, 1521 #endif 1522 [REGSET_SYSTEM_CALL] = { 1523 .core_note_type = NT_ARM_SYSTEM_CALL, 1524 .n = 1, 1525 .size = sizeof(int), 1526 .align = sizeof(int), 1527 .regset_get = system_call_get, 1528 .set = system_call_set, 1529 }, 1530 [REGSET_FPMR] = { 1531 .core_note_type = NT_ARM_FPMR, 1532 .n = 1, 1533 .size = sizeof(u64), 1534 .align = sizeof(u64), 1535 .regset_get = fpmr_get, 1536 .set = fpmr_set, 1537 }, 1538 #ifdef CONFIG_ARM64_SVE 1539 [REGSET_SVE] = { /* Scalable Vector Extension */ 1540 .core_note_type = NT_ARM_SVE, 1541 .n = DIV_ROUND_UP(SVE_PT_SIZE(ARCH_SVE_VQ_MAX, 1542 SVE_PT_REGS_SVE), 1543 SVE_VQ_BYTES), 1544 .size = SVE_VQ_BYTES, 1545 .align = SVE_VQ_BYTES, 1546 .regset_get = sve_get, 1547 .set = sve_set, 1548 }, 1549 #endif 1550 #ifdef CONFIG_ARM64_SME 1551 [REGSET_SSVE] = { /* Streaming mode SVE */ 1552 .core_note_type = NT_ARM_SSVE, 1553 .n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE), 1554 SVE_VQ_BYTES), 1555 .size = SVE_VQ_BYTES, 1556 .align = SVE_VQ_BYTES, 1557 .regset_get = ssve_get, 1558 .set = ssve_set, 1559 }, 1560 [REGSET_ZA] = { /* SME ZA */ 1561 .core_note_type = NT_ARM_ZA, 1562 /* 1563 * ZA is a single register but it's variably sized and 1564 * the ptrace core requires that the size of any data 1565 * be an exact multiple of the configured register 1566 * size so report as though we had SVE_VQ_BYTES 1567 * registers. These values aren't exposed to 1568 * userspace. 1569 */ 1570 .n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES), 1571 .size = SVE_VQ_BYTES, 1572 .align = SVE_VQ_BYTES, 1573 .regset_get = za_get, 1574 .set = za_set, 1575 }, 1576 [REGSET_ZT] = { /* SME ZT */ 1577 .core_note_type = NT_ARM_ZT, 1578 .n = 1, 1579 .size = ZT_SIG_REG_BYTES, 1580 .align = sizeof(u64), 1581 .regset_get = zt_get, 1582 .set = zt_set, 1583 }, 1584 #endif 1585 #ifdef CONFIG_ARM64_PTR_AUTH 1586 [REGSET_PAC_MASK] = { 1587 .core_note_type = NT_ARM_PAC_MASK, 1588 .n = sizeof(struct user_pac_mask) / sizeof(u64), 1589 .size = sizeof(u64), 1590 .align = sizeof(u64), 1591 .regset_get = pac_mask_get, 1592 /* this cannot be set dynamically */ 1593 }, 1594 [REGSET_PAC_ENABLED_KEYS] = { 1595 .core_note_type = NT_ARM_PAC_ENABLED_KEYS, 1596 .n = 1, 1597 .size = sizeof(long), 1598 .align = sizeof(long), 1599 .regset_get = pac_enabled_keys_get, 1600 .set = pac_enabled_keys_set, 1601 }, 1602 #ifdef CONFIG_CHECKPOINT_RESTORE 1603 [REGSET_PACA_KEYS] = { 1604 .core_note_type = NT_ARM_PACA_KEYS, 1605 .n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t), 1606 .size = sizeof(__uint128_t), 1607 .align = sizeof(__uint128_t), 1608 .regset_get = pac_address_keys_get, 1609 .set = pac_address_keys_set, 1610 }, 1611 [REGSET_PACG_KEYS] = { 1612 .core_note_type = NT_ARM_PACG_KEYS, 1613 .n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t), 1614 .size = sizeof(__uint128_t), 1615 .align = sizeof(__uint128_t), 1616 .regset_get = pac_generic_keys_get, 1617 .set = pac_generic_keys_set, 1618 }, 1619 #endif 1620 #endif 1621 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 1622 [REGSET_TAGGED_ADDR_CTRL] = { 1623 .core_note_type = NT_ARM_TAGGED_ADDR_CTRL, 1624 .n = 1, 1625 .size = sizeof(long), 1626 .align = sizeof(long), 1627 .regset_get = tagged_addr_ctrl_get, 1628 .set = tagged_addr_ctrl_set, 1629 }, 1630 #endif 1631 }; 1632 1633 static const struct user_regset_view user_aarch64_view = { 1634 .name = "aarch64", .e_machine = EM_AARCH64, 1635 .regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets) 1636 }; 1637 1638 enum compat_regset { 1639 REGSET_COMPAT_GPR, 1640 REGSET_COMPAT_VFP, 1641 }; 1642 1643 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx) 1644 { 1645 struct pt_regs *regs = task_pt_regs(task); 1646 1647 switch (idx) { 1648 case 15: 1649 return regs->pc; 1650 case 16: 1651 return pstate_to_compat_psr(regs->pstate); 1652 case 17: 1653 return regs->orig_x0; 1654 default: 1655 return regs->regs[idx]; 1656 } 1657 } 1658 1659 static int compat_gpr_get(struct task_struct *target, 1660 const struct user_regset *regset, 1661 struct membuf to) 1662 { 1663 int i = 0; 1664 1665 while (to.left) 1666 membuf_store(&to, compat_get_user_reg(target, i++)); 1667 return 0; 1668 } 1669 1670 static int compat_gpr_set(struct task_struct *target, 1671 const struct user_regset *regset, 1672 unsigned int pos, unsigned int count, 1673 const void *kbuf, const void __user *ubuf) 1674 { 1675 struct pt_regs newregs; 1676 int ret = 0; 1677 unsigned int i, start, num_regs; 1678 1679 /* Calculate the number of AArch32 registers contained in count */ 1680 num_regs = count / regset->size; 1681 1682 /* Convert pos into an register number */ 1683 start = pos / regset->size; 1684 1685 if (start + num_regs > regset->n) 1686 return -EIO; 1687 1688 newregs = *task_pt_regs(target); 1689 1690 for (i = 0; i < num_regs; ++i) { 1691 unsigned int idx = start + i; 1692 compat_ulong_t reg; 1693 1694 if (kbuf) { 1695 memcpy(®, kbuf, sizeof(reg)); 1696 kbuf += sizeof(reg); 1697 } else { 1698 ret = copy_from_user(®, ubuf, sizeof(reg)); 1699 if (ret) { 1700 ret = -EFAULT; 1701 break; 1702 } 1703 1704 ubuf += sizeof(reg); 1705 } 1706 1707 switch (idx) { 1708 case 15: 1709 newregs.pc = reg; 1710 break; 1711 case 16: 1712 reg = compat_psr_to_pstate(reg); 1713 newregs.pstate = reg; 1714 break; 1715 case 17: 1716 newregs.orig_x0 = reg; 1717 break; 1718 default: 1719 newregs.regs[idx] = reg; 1720 } 1721 1722 } 1723 1724 if (valid_user_regs(&newregs.user_regs, target)) 1725 *task_pt_regs(target) = newregs; 1726 else 1727 ret = -EINVAL; 1728 1729 return ret; 1730 } 1731 1732 static int compat_vfp_get(struct task_struct *target, 1733 const struct user_regset *regset, 1734 struct membuf to) 1735 { 1736 struct user_fpsimd_state *uregs; 1737 compat_ulong_t fpscr; 1738 1739 if (!system_supports_fpsimd()) 1740 return -EINVAL; 1741 1742 uregs = &target->thread.uw.fpsimd_state; 1743 1744 if (target == current) 1745 fpsimd_preserve_current_state(); 1746 1747 /* 1748 * The VFP registers are packed into the fpsimd_state, so they all sit 1749 * nicely together for us. We just need to create the fpscr separately. 1750 */ 1751 membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t)); 1752 fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) | 1753 (uregs->fpcr & VFP_FPSCR_CTRL_MASK); 1754 return membuf_store(&to, fpscr); 1755 } 1756 1757 static int compat_vfp_set(struct task_struct *target, 1758 const struct user_regset *regset, 1759 unsigned int pos, unsigned int count, 1760 const void *kbuf, const void __user *ubuf) 1761 { 1762 struct user_fpsimd_state *uregs; 1763 compat_ulong_t fpscr; 1764 int ret, vregs_end_pos; 1765 1766 if (!system_supports_fpsimd()) 1767 return -EINVAL; 1768 1769 uregs = &target->thread.uw.fpsimd_state; 1770 1771 vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t); 1772 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0, 1773 vregs_end_pos); 1774 1775 if (count && !ret) { 1776 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr, 1777 vregs_end_pos, VFP_STATE_SIZE); 1778 if (!ret) { 1779 uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK; 1780 uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK; 1781 } 1782 } 1783 1784 fpsimd_flush_task_state(target); 1785 return ret; 1786 } 1787 1788 static int compat_tls_get(struct task_struct *target, 1789 const struct user_regset *regset, 1790 struct membuf to) 1791 { 1792 return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value); 1793 } 1794 1795 static int compat_tls_set(struct task_struct *target, 1796 const struct user_regset *regset, unsigned int pos, 1797 unsigned int count, const void *kbuf, 1798 const void __user *ubuf) 1799 { 1800 int ret; 1801 compat_ulong_t tls = target->thread.uw.tp_value; 1802 1803 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1); 1804 if (ret) 1805 return ret; 1806 1807 target->thread.uw.tp_value = tls; 1808 return ret; 1809 } 1810 1811 static const struct user_regset aarch32_regsets[] = { 1812 [REGSET_COMPAT_GPR] = { 1813 .core_note_type = NT_PRSTATUS, 1814 .n = COMPAT_ELF_NGREG, 1815 .size = sizeof(compat_elf_greg_t), 1816 .align = sizeof(compat_elf_greg_t), 1817 .regset_get = compat_gpr_get, 1818 .set = compat_gpr_set 1819 }, 1820 [REGSET_COMPAT_VFP] = { 1821 .core_note_type = NT_ARM_VFP, 1822 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t), 1823 .size = sizeof(compat_ulong_t), 1824 .align = sizeof(compat_ulong_t), 1825 .active = fpr_active, 1826 .regset_get = compat_vfp_get, 1827 .set = compat_vfp_set 1828 }, 1829 }; 1830 1831 static const struct user_regset_view user_aarch32_view = { 1832 .name = "aarch32", .e_machine = EM_ARM, 1833 .regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets) 1834 }; 1835 1836 static const struct user_regset aarch32_ptrace_regsets[] = { 1837 [REGSET_GPR] = { 1838 .core_note_type = NT_PRSTATUS, 1839 .n = COMPAT_ELF_NGREG, 1840 .size = sizeof(compat_elf_greg_t), 1841 .align = sizeof(compat_elf_greg_t), 1842 .regset_get = compat_gpr_get, 1843 .set = compat_gpr_set 1844 }, 1845 [REGSET_FPR] = { 1846 .core_note_type = NT_ARM_VFP, 1847 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t), 1848 .size = sizeof(compat_ulong_t), 1849 .align = sizeof(compat_ulong_t), 1850 .regset_get = compat_vfp_get, 1851 .set = compat_vfp_set 1852 }, 1853 [REGSET_TLS] = { 1854 .core_note_type = NT_ARM_TLS, 1855 .n = 1, 1856 .size = sizeof(compat_ulong_t), 1857 .align = sizeof(compat_ulong_t), 1858 .regset_get = compat_tls_get, 1859 .set = compat_tls_set, 1860 }, 1861 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1862 [REGSET_HW_BREAK] = { 1863 .core_note_type = NT_ARM_HW_BREAK, 1864 .n = sizeof(struct user_hwdebug_state) / sizeof(u32), 1865 .size = sizeof(u32), 1866 .align = sizeof(u32), 1867 .regset_get = hw_break_get, 1868 .set = hw_break_set, 1869 }, 1870 [REGSET_HW_WATCH] = { 1871 .core_note_type = NT_ARM_HW_WATCH, 1872 .n = sizeof(struct user_hwdebug_state) / sizeof(u32), 1873 .size = sizeof(u32), 1874 .align = sizeof(u32), 1875 .regset_get = hw_break_get, 1876 .set = hw_break_set, 1877 }, 1878 #endif 1879 [REGSET_SYSTEM_CALL] = { 1880 .core_note_type = NT_ARM_SYSTEM_CALL, 1881 .n = 1, 1882 .size = sizeof(int), 1883 .align = sizeof(int), 1884 .regset_get = system_call_get, 1885 .set = system_call_set, 1886 }, 1887 }; 1888 1889 static const struct user_regset_view user_aarch32_ptrace_view = { 1890 .name = "aarch32", .e_machine = EM_ARM, 1891 .regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets) 1892 }; 1893 1894 #ifdef CONFIG_COMPAT 1895 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off, 1896 compat_ulong_t __user *ret) 1897 { 1898 compat_ulong_t tmp; 1899 1900 if (off & 3) 1901 return -EIO; 1902 1903 if (off == COMPAT_PT_TEXT_ADDR) 1904 tmp = tsk->mm->start_code; 1905 else if (off == COMPAT_PT_DATA_ADDR) 1906 tmp = tsk->mm->start_data; 1907 else if (off == COMPAT_PT_TEXT_END_ADDR) 1908 tmp = tsk->mm->end_code; 1909 else if (off < sizeof(compat_elf_gregset_t)) 1910 tmp = compat_get_user_reg(tsk, off >> 2); 1911 else if (off >= COMPAT_USER_SZ) 1912 return -EIO; 1913 else 1914 tmp = 0; 1915 1916 return put_user(tmp, ret); 1917 } 1918 1919 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off, 1920 compat_ulong_t val) 1921 { 1922 struct pt_regs newregs = *task_pt_regs(tsk); 1923 unsigned int idx = off / 4; 1924 1925 if (off & 3 || off >= COMPAT_USER_SZ) 1926 return -EIO; 1927 1928 if (off >= sizeof(compat_elf_gregset_t)) 1929 return 0; 1930 1931 switch (idx) { 1932 case 15: 1933 newregs.pc = val; 1934 break; 1935 case 16: 1936 newregs.pstate = compat_psr_to_pstate(val); 1937 break; 1938 case 17: 1939 newregs.orig_x0 = val; 1940 break; 1941 default: 1942 newregs.regs[idx] = val; 1943 } 1944 1945 if (!valid_user_regs(&newregs.user_regs, tsk)) 1946 return -EINVAL; 1947 1948 *task_pt_regs(tsk) = newregs; 1949 return 0; 1950 } 1951 1952 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1953 1954 /* 1955 * Convert a virtual register number into an index for a thread_info 1956 * breakpoint array. Breakpoints are identified using positive numbers 1957 * whilst watchpoints are negative. The registers are laid out as pairs 1958 * of (address, control), each pair mapping to a unique hw_breakpoint struct. 1959 * Register 0 is reserved for describing resource information. 1960 */ 1961 static int compat_ptrace_hbp_num_to_idx(compat_long_t num) 1962 { 1963 return (abs(num) - 1) >> 1; 1964 } 1965 1966 static int compat_ptrace_hbp_get_resource_info(u32 *kdata) 1967 { 1968 u8 num_brps, num_wrps, debug_arch, wp_len; 1969 u32 reg = 0; 1970 1971 num_brps = hw_breakpoint_slots(TYPE_INST); 1972 num_wrps = hw_breakpoint_slots(TYPE_DATA); 1973 1974 debug_arch = debug_monitors_arch(); 1975 wp_len = 8; 1976 reg |= debug_arch; 1977 reg <<= 8; 1978 reg |= wp_len; 1979 reg <<= 8; 1980 reg |= num_wrps; 1981 reg <<= 8; 1982 reg |= num_brps; 1983 1984 *kdata = reg; 1985 return 0; 1986 } 1987 1988 static int compat_ptrace_hbp_get(unsigned int note_type, 1989 struct task_struct *tsk, 1990 compat_long_t num, 1991 u32 *kdata) 1992 { 1993 u64 addr = 0; 1994 u32 ctrl = 0; 1995 1996 int err, idx = compat_ptrace_hbp_num_to_idx(num); 1997 1998 if (num & 1) { 1999 err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr); 2000 *kdata = (u32)addr; 2001 } else { 2002 err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl); 2003 *kdata = ctrl; 2004 } 2005 2006 return err; 2007 } 2008 2009 static int compat_ptrace_hbp_set(unsigned int note_type, 2010 struct task_struct *tsk, 2011 compat_long_t num, 2012 u32 *kdata) 2013 { 2014 u64 addr; 2015 u32 ctrl; 2016 2017 int err, idx = compat_ptrace_hbp_num_to_idx(num); 2018 2019 if (num & 1) { 2020 addr = *kdata; 2021 err = ptrace_hbp_set_addr(note_type, tsk, idx, addr); 2022 } else { 2023 ctrl = *kdata; 2024 err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl); 2025 } 2026 2027 return err; 2028 } 2029 2030 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num, 2031 compat_ulong_t __user *data) 2032 { 2033 int ret; 2034 u32 kdata; 2035 2036 /* Watchpoint */ 2037 if (num < 0) { 2038 ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata); 2039 /* Resource info */ 2040 } else if (num == 0) { 2041 ret = compat_ptrace_hbp_get_resource_info(&kdata); 2042 /* Breakpoint */ 2043 } else { 2044 ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata); 2045 } 2046 2047 if (!ret) 2048 ret = put_user(kdata, data); 2049 2050 return ret; 2051 } 2052 2053 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num, 2054 compat_ulong_t __user *data) 2055 { 2056 int ret; 2057 u32 kdata = 0; 2058 2059 if (num == 0) 2060 return 0; 2061 2062 ret = get_user(kdata, data); 2063 if (ret) 2064 return ret; 2065 2066 if (num < 0) 2067 ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata); 2068 else 2069 ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata); 2070 2071 return ret; 2072 } 2073 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 2074 2075 long compat_arch_ptrace(struct task_struct *child, compat_long_t request, 2076 compat_ulong_t caddr, compat_ulong_t cdata) 2077 { 2078 unsigned long addr = caddr; 2079 unsigned long data = cdata; 2080 void __user *datap = compat_ptr(data); 2081 int ret; 2082 2083 switch (request) { 2084 case PTRACE_PEEKUSR: 2085 ret = compat_ptrace_read_user(child, addr, datap); 2086 break; 2087 2088 case PTRACE_POKEUSR: 2089 ret = compat_ptrace_write_user(child, addr, data); 2090 break; 2091 2092 case COMPAT_PTRACE_GETREGS: 2093 ret = copy_regset_to_user(child, 2094 &user_aarch32_view, 2095 REGSET_COMPAT_GPR, 2096 0, sizeof(compat_elf_gregset_t), 2097 datap); 2098 break; 2099 2100 case COMPAT_PTRACE_SETREGS: 2101 ret = copy_regset_from_user(child, 2102 &user_aarch32_view, 2103 REGSET_COMPAT_GPR, 2104 0, sizeof(compat_elf_gregset_t), 2105 datap); 2106 break; 2107 2108 case COMPAT_PTRACE_GET_THREAD_AREA: 2109 ret = put_user((compat_ulong_t)child->thread.uw.tp_value, 2110 (compat_ulong_t __user *)datap); 2111 break; 2112 2113 case COMPAT_PTRACE_SET_SYSCALL: 2114 task_pt_regs(child)->syscallno = data; 2115 ret = 0; 2116 break; 2117 2118 case COMPAT_PTRACE_GETVFPREGS: 2119 ret = copy_regset_to_user(child, 2120 &user_aarch32_view, 2121 REGSET_COMPAT_VFP, 2122 0, VFP_STATE_SIZE, 2123 datap); 2124 break; 2125 2126 case COMPAT_PTRACE_SETVFPREGS: 2127 ret = copy_regset_from_user(child, 2128 &user_aarch32_view, 2129 REGSET_COMPAT_VFP, 2130 0, VFP_STATE_SIZE, 2131 datap); 2132 break; 2133 2134 #ifdef CONFIG_HAVE_HW_BREAKPOINT 2135 case COMPAT_PTRACE_GETHBPREGS: 2136 ret = compat_ptrace_gethbpregs(child, addr, datap); 2137 break; 2138 2139 case COMPAT_PTRACE_SETHBPREGS: 2140 ret = compat_ptrace_sethbpregs(child, addr, datap); 2141 break; 2142 #endif 2143 2144 default: 2145 ret = compat_ptrace_request(child, request, addr, 2146 data); 2147 break; 2148 } 2149 2150 return ret; 2151 } 2152 #endif /* CONFIG_COMPAT */ 2153 2154 const struct user_regset_view *task_user_regset_view(struct task_struct *task) 2155 { 2156 /* 2157 * Core dumping of 32-bit tasks or compat ptrace requests must use the 2158 * user_aarch32_view compatible with arm32. Native ptrace requests on 2159 * 32-bit children use an extended user_aarch32_ptrace_view to allow 2160 * access to the TLS register. 2161 */ 2162 if (is_compat_task()) 2163 return &user_aarch32_view; 2164 else if (is_compat_thread(task_thread_info(task))) 2165 return &user_aarch32_ptrace_view; 2166 2167 return &user_aarch64_view; 2168 } 2169 2170 long arch_ptrace(struct task_struct *child, long request, 2171 unsigned long addr, unsigned long data) 2172 { 2173 switch (request) { 2174 case PTRACE_PEEKMTETAGS: 2175 case PTRACE_POKEMTETAGS: 2176 return mte_ptrace_copy_tags(child, request, addr, data); 2177 } 2178 2179 return ptrace_request(child, request, addr, data); 2180 } 2181 2182 enum ptrace_syscall_dir { 2183 PTRACE_SYSCALL_ENTER = 0, 2184 PTRACE_SYSCALL_EXIT, 2185 }; 2186 2187 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir) 2188 { 2189 int regno; 2190 unsigned long saved_reg; 2191 2192 /* 2193 * We have some ABI weirdness here in the way that we handle syscall 2194 * exit stops because we indicate whether or not the stop has been 2195 * signalled from syscall entry or syscall exit by clobbering a general 2196 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee 2197 * and restoring its old value after the stop. This means that: 2198 * 2199 * - Any writes by the tracer to this register during the stop are 2200 * ignored/discarded. 2201 * 2202 * - The actual value of the register is not available during the stop, 2203 * so the tracer cannot save it and restore it later. 2204 * 2205 * - Syscall stops behave differently to seccomp and pseudo-step traps 2206 * (the latter do not nobble any registers). 2207 */ 2208 regno = (is_compat_task() ? 12 : 7); 2209 saved_reg = regs->regs[regno]; 2210 regs->regs[regno] = dir; 2211 2212 if (dir == PTRACE_SYSCALL_ENTER) { 2213 if (ptrace_report_syscall_entry(regs)) 2214 forget_syscall(regs); 2215 regs->regs[regno] = saved_reg; 2216 } else if (!test_thread_flag(TIF_SINGLESTEP)) { 2217 ptrace_report_syscall_exit(regs, 0); 2218 regs->regs[regno] = saved_reg; 2219 } else { 2220 regs->regs[regno] = saved_reg; 2221 2222 /* 2223 * Signal a pseudo-step exception since we are stepping but 2224 * tracer modifications to the registers may have rewound the 2225 * state machine. 2226 */ 2227 ptrace_report_syscall_exit(regs, 1); 2228 } 2229 } 2230 2231 int syscall_trace_enter(struct pt_regs *regs) 2232 { 2233 unsigned long flags = read_thread_flags(); 2234 2235 if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) { 2236 report_syscall(regs, PTRACE_SYSCALL_ENTER); 2237 if (flags & _TIF_SYSCALL_EMU) 2238 return NO_SYSCALL; 2239 } 2240 2241 /* Do the secure computing after ptrace; failures should be fast. */ 2242 if (secure_computing() == -1) 2243 return NO_SYSCALL; 2244 2245 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT)) 2246 trace_sys_enter(regs, regs->syscallno); 2247 2248 audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1], 2249 regs->regs[2], regs->regs[3]); 2250 2251 return regs->syscallno; 2252 } 2253 2254 void syscall_trace_exit(struct pt_regs *regs) 2255 { 2256 unsigned long flags = read_thread_flags(); 2257 2258 audit_syscall_exit(regs); 2259 2260 if (flags & _TIF_SYSCALL_TRACEPOINT) 2261 trace_sys_exit(regs, syscall_get_return_value(current, regs)); 2262 2263 if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP)) 2264 report_syscall(regs, PTRACE_SYSCALL_EXIT); 2265 2266 rseq_syscall(regs); 2267 } 2268 2269 /* 2270 * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a. 2271 * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is 2272 * not described in ARM DDI 0487D.a. 2273 * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may 2274 * be allocated an EL0 meaning in future. 2275 * Userspace cannot use these until they have an architectural meaning. 2276 * Note that this follows the SPSR_ELx format, not the AArch32 PSR format. 2277 * We also reserve IL for the kernel; SS is handled dynamically. 2278 */ 2279 #define SPSR_EL1_AARCH64_RES0_BITS \ 2280 (GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \ 2281 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5)) 2282 #define SPSR_EL1_AARCH32_RES0_BITS \ 2283 (GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20)) 2284 2285 static int valid_compat_regs(struct user_pt_regs *regs) 2286 { 2287 regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS; 2288 2289 if (!system_supports_mixed_endian_el0()) { 2290 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) 2291 regs->pstate |= PSR_AA32_E_BIT; 2292 else 2293 regs->pstate &= ~PSR_AA32_E_BIT; 2294 } 2295 2296 if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) && 2297 (regs->pstate & PSR_AA32_A_BIT) == 0 && 2298 (regs->pstate & PSR_AA32_I_BIT) == 0 && 2299 (regs->pstate & PSR_AA32_F_BIT) == 0) { 2300 return 1; 2301 } 2302 2303 /* 2304 * Force PSR to a valid 32-bit EL0t, preserving the same bits as 2305 * arch/arm. 2306 */ 2307 regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT | 2308 PSR_AA32_C_BIT | PSR_AA32_V_BIT | 2309 PSR_AA32_Q_BIT | PSR_AA32_IT_MASK | 2310 PSR_AA32_GE_MASK | PSR_AA32_E_BIT | 2311 PSR_AA32_T_BIT; 2312 regs->pstate |= PSR_MODE32_BIT; 2313 2314 return 0; 2315 } 2316 2317 static int valid_native_regs(struct user_pt_regs *regs) 2318 { 2319 regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS; 2320 2321 if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) && 2322 (regs->pstate & PSR_D_BIT) == 0 && 2323 (regs->pstate & PSR_A_BIT) == 0 && 2324 (regs->pstate & PSR_I_BIT) == 0 && 2325 (regs->pstate & PSR_F_BIT) == 0) { 2326 return 1; 2327 } 2328 2329 /* Force PSR to a valid 64-bit EL0t */ 2330 regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT; 2331 2332 return 0; 2333 } 2334 2335 /* 2336 * Are the current registers suitable for user mode? (used to maintain 2337 * security in signal handlers) 2338 */ 2339 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task) 2340 { 2341 /* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */ 2342 user_regs_reset_single_step(regs, task); 2343 2344 if (is_compat_thread(task_thread_info(task))) 2345 return valid_compat_regs(regs); 2346 else 2347 return valid_native_regs(regs); 2348 } 2349