xref: /linux/arch/arm64/kernel/ptrace.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/ptrace.c
4  *
5  * By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  * Copyright (C) 2012 ARM Ltd.
9  */
10 
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/elf.h>
31 #include <linux/rseq.h>
32 
33 #include <asm/compat.h>
34 #include <asm/cpufeature.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/fpsimd.h>
37 #include <asm/gcs.h>
38 #include <asm/mte.h>
39 #include <asm/pointer_auth.h>
40 #include <asm/stacktrace.h>
41 #include <asm/syscall.h>
42 #include <asm/traps.h>
43 #include <asm/system_misc.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/syscalls.h>
47 
48 struct pt_regs_offset {
49 	const char *name;
50 	int offset;
51 };
52 
53 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
54 #define REG_OFFSET_END {.name = NULL, .offset = 0}
55 #define GPR_OFFSET_NAME(r) \
56 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
57 
58 static const struct pt_regs_offset regoffset_table[] = {
59 	GPR_OFFSET_NAME(0),
60 	GPR_OFFSET_NAME(1),
61 	GPR_OFFSET_NAME(2),
62 	GPR_OFFSET_NAME(3),
63 	GPR_OFFSET_NAME(4),
64 	GPR_OFFSET_NAME(5),
65 	GPR_OFFSET_NAME(6),
66 	GPR_OFFSET_NAME(7),
67 	GPR_OFFSET_NAME(8),
68 	GPR_OFFSET_NAME(9),
69 	GPR_OFFSET_NAME(10),
70 	GPR_OFFSET_NAME(11),
71 	GPR_OFFSET_NAME(12),
72 	GPR_OFFSET_NAME(13),
73 	GPR_OFFSET_NAME(14),
74 	GPR_OFFSET_NAME(15),
75 	GPR_OFFSET_NAME(16),
76 	GPR_OFFSET_NAME(17),
77 	GPR_OFFSET_NAME(18),
78 	GPR_OFFSET_NAME(19),
79 	GPR_OFFSET_NAME(20),
80 	GPR_OFFSET_NAME(21),
81 	GPR_OFFSET_NAME(22),
82 	GPR_OFFSET_NAME(23),
83 	GPR_OFFSET_NAME(24),
84 	GPR_OFFSET_NAME(25),
85 	GPR_OFFSET_NAME(26),
86 	GPR_OFFSET_NAME(27),
87 	GPR_OFFSET_NAME(28),
88 	GPR_OFFSET_NAME(29),
89 	GPR_OFFSET_NAME(30),
90 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
91 	REG_OFFSET_NAME(sp),
92 	REG_OFFSET_NAME(pc),
93 	REG_OFFSET_NAME(pstate),
94 	REG_OFFSET_END,
95 };
96 
97 /**
98  * regs_query_register_offset() - query register offset from its name
99  * @name:	the name of a register
100  *
101  * regs_query_register_offset() returns the offset of a register in struct
102  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
103  */
104 int regs_query_register_offset(const char *name)
105 {
106 	const struct pt_regs_offset *roff;
107 
108 	for (roff = regoffset_table; roff->name != NULL; roff++)
109 		if (!strcmp(roff->name, name))
110 			return roff->offset;
111 	return -EINVAL;
112 }
113 
114 /**
115  * regs_within_kernel_stack() - check the address in the stack
116  * @regs:      pt_regs which contains kernel stack pointer.
117  * @addr:      address which is checked.
118  *
119  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
120  * If @addr is within the kernel stack, it returns true. If not, returns false.
121  */
122 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
123 {
124 	return ((addr & ~(THREAD_SIZE - 1))  ==
125 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
126 		on_irq_stack(addr, sizeof(unsigned long));
127 }
128 
129 /**
130  * regs_get_kernel_stack_nth() - get Nth entry of the stack
131  * @regs:	pt_regs which contains kernel stack pointer.
132  * @n:		stack entry number.
133  *
134  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
135  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
136  * this returns 0.
137  */
138 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
139 {
140 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
141 
142 	addr += n;
143 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
144 		return READ_ONCE_NOCHECK(*addr);
145 	else
146 		return 0;
147 }
148 
149 /*
150  * TODO: does not yet catch signals sent when the child dies.
151  * in exit.c or in signal.c.
152  */
153 
154 /*
155  * Called by kernel/ptrace.c when detaching..
156  */
157 void ptrace_disable(struct task_struct *child)
158 {
159 	/*
160 	 * This would be better off in core code, but PTRACE_DETACH has
161 	 * grown its fair share of arch-specific worts and changing it
162 	 * is likely to cause regressions on obscure architectures.
163 	 */
164 	user_disable_single_step(child);
165 }
166 
167 #ifdef CONFIG_HAVE_HW_BREAKPOINT
168 /*
169  * Handle hitting a HW-breakpoint.
170  */
171 static void ptrace_hbptriggered(struct perf_event *bp,
172 				struct perf_sample_data *data,
173 				struct pt_regs *regs)
174 {
175 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
176 	const char *desc = "Hardware breakpoint trap (ptrace)";
177 
178 	if (is_compat_task()) {
179 		int si_errno = 0;
180 		int i;
181 
182 		for (i = 0; i < ARM_MAX_BRP; ++i) {
183 			if (current->thread.debug.hbp_break[i] == bp) {
184 				si_errno = (i << 1) + 1;
185 				break;
186 			}
187 		}
188 
189 		for (i = 0; i < ARM_MAX_WRP; ++i) {
190 			if (current->thread.debug.hbp_watch[i] == bp) {
191 				si_errno = -((i << 1) + 1);
192 				break;
193 			}
194 		}
195 		arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
196 						  desc);
197 		return;
198 	}
199 
200 	arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
201 }
202 
203 /*
204  * Unregister breakpoints from this task and reset the pointers in
205  * the thread_struct.
206  */
207 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
208 {
209 	int i;
210 	struct thread_struct *t = &tsk->thread;
211 
212 	for (i = 0; i < ARM_MAX_BRP; i++) {
213 		if (t->debug.hbp_break[i]) {
214 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
215 			t->debug.hbp_break[i] = NULL;
216 		}
217 	}
218 
219 	for (i = 0; i < ARM_MAX_WRP; i++) {
220 		if (t->debug.hbp_watch[i]) {
221 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
222 			t->debug.hbp_watch[i] = NULL;
223 		}
224 	}
225 }
226 
227 void ptrace_hw_copy_thread(struct task_struct *tsk)
228 {
229 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
230 }
231 
232 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
233 					       struct task_struct *tsk,
234 					       unsigned long idx)
235 {
236 	struct perf_event *bp = ERR_PTR(-EINVAL);
237 
238 	switch (note_type) {
239 	case NT_ARM_HW_BREAK:
240 		if (idx >= ARM_MAX_BRP)
241 			goto out;
242 		idx = array_index_nospec(idx, ARM_MAX_BRP);
243 		bp = tsk->thread.debug.hbp_break[idx];
244 		break;
245 	case NT_ARM_HW_WATCH:
246 		if (idx >= ARM_MAX_WRP)
247 			goto out;
248 		idx = array_index_nospec(idx, ARM_MAX_WRP);
249 		bp = tsk->thread.debug.hbp_watch[idx];
250 		break;
251 	}
252 
253 out:
254 	return bp;
255 }
256 
257 static int ptrace_hbp_set_event(unsigned int note_type,
258 				struct task_struct *tsk,
259 				unsigned long idx,
260 				struct perf_event *bp)
261 {
262 	int err = -EINVAL;
263 
264 	switch (note_type) {
265 	case NT_ARM_HW_BREAK:
266 		if (idx >= ARM_MAX_BRP)
267 			goto out;
268 		idx = array_index_nospec(idx, ARM_MAX_BRP);
269 		tsk->thread.debug.hbp_break[idx] = bp;
270 		err = 0;
271 		break;
272 	case NT_ARM_HW_WATCH:
273 		if (idx >= ARM_MAX_WRP)
274 			goto out;
275 		idx = array_index_nospec(idx, ARM_MAX_WRP);
276 		tsk->thread.debug.hbp_watch[idx] = bp;
277 		err = 0;
278 		break;
279 	}
280 
281 out:
282 	return err;
283 }
284 
285 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
286 					    struct task_struct *tsk,
287 					    unsigned long idx)
288 {
289 	struct perf_event *bp;
290 	struct perf_event_attr attr;
291 	int err, type;
292 
293 	switch (note_type) {
294 	case NT_ARM_HW_BREAK:
295 		type = HW_BREAKPOINT_X;
296 		break;
297 	case NT_ARM_HW_WATCH:
298 		type = HW_BREAKPOINT_RW;
299 		break;
300 	default:
301 		return ERR_PTR(-EINVAL);
302 	}
303 
304 	ptrace_breakpoint_init(&attr);
305 
306 	/*
307 	 * Initialise fields to sane defaults
308 	 * (i.e. values that will pass validation).
309 	 */
310 	attr.bp_addr	= 0;
311 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
312 	attr.bp_type	= type;
313 	attr.disabled	= 1;
314 
315 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
316 	if (IS_ERR(bp))
317 		return bp;
318 
319 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
320 	if (err)
321 		return ERR_PTR(err);
322 
323 	return bp;
324 }
325 
326 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
327 				     struct arch_hw_breakpoint_ctrl ctrl,
328 				     struct perf_event_attr *attr)
329 {
330 	int err, len, type, offset, disabled = !ctrl.enabled;
331 
332 	attr->disabled = disabled;
333 	if (disabled)
334 		return 0;
335 
336 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
337 	if (err)
338 		return err;
339 
340 	switch (note_type) {
341 	case NT_ARM_HW_BREAK:
342 		if ((type & HW_BREAKPOINT_X) != type)
343 			return -EINVAL;
344 		break;
345 	case NT_ARM_HW_WATCH:
346 		if ((type & HW_BREAKPOINT_RW) != type)
347 			return -EINVAL;
348 		break;
349 	default:
350 		return -EINVAL;
351 	}
352 
353 	attr->bp_len	= len;
354 	attr->bp_type	= type;
355 	attr->bp_addr	+= offset;
356 
357 	return 0;
358 }
359 
360 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
361 {
362 	u8 num;
363 	u32 reg = 0;
364 
365 	switch (note_type) {
366 	case NT_ARM_HW_BREAK:
367 		num = hw_breakpoint_slots(TYPE_INST);
368 		break;
369 	case NT_ARM_HW_WATCH:
370 		num = hw_breakpoint_slots(TYPE_DATA);
371 		break;
372 	default:
373 		return -EINVAL;
374 	}
375 
376 	reg |= debug_monitors_arch();
377 	reg <<= 8;
378 	reg |= num;
379 
380 	*info = reg;
381 	return 0;
382 }
383 
384 static int ptrace_hbp_get_ctrl(unsigned int note_type,
385 			       struct task_struct *tsk,
386 			       unsigned long idx,
387 			       u32 *ctrl)
388 {
389 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
390 
391 	if (IS_ERR(bp))
392 		return PTR_ERR(bp);
393 
394 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
395 	return 0;
396 }
397 
398 static int ptrace_hbp_get_addr(unsigned int note_type,
399 			       struct task_struct *tsk,
400 			       unsigned long idx,
401 			       u64 *addr)
402 {
403 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
404 
405 	if (IS_ERR(bp))
406 		return PTR_ERR(bp);
407 
408 	*addr = bp ? counter_arch_bp(bp)->address : 0;
409 	return 0;
410 }
411 
412 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
413 							struct task_struct *tsk,
414 							unsigned long idx)
415 {
416 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
417 
418 	if (!bp)
419 		bp = ptrace_hbp_create(note_type, tsk, idx);
420 
421 	return bp;
422 }
423 
424 static int ptrace_hbp_set_ctrl(unsigned int note_type,
425 			       struct task_struct *tsk,
426 			       unsigned long idx,
427 			       u32 uctrl)
428 {
429 	int err;
430 	struct perf_event *bp;
431 	struct perf_event_attr attr;
432 	struct arch_hw_breakpoint_ctrl ctrl;
433 
434 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
435 	if (IS_ERR(bp)) {
436 		err = PTR_ERR(bp);
437 		return err;
438 	}
439 
440 	attr = bp->attr;
441 	decode_ctrl_reg(uctrl, &ctrl);
442 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
443 	if (err)
444 		return err;
445 
446 	return modify_user_hw_breakpoint(bp, &attr);
447 }
448 
449 static int ptrace_hbp_set_addr(unsigned int note_type,
450 			       struct task_struct *tsk,
451 			       unsigned long idx,
452 			       u64 addr)
453 {
454 	int err;
455 	struct perf_event *bp;
456 	struct perf_event_attr attr;
457 
458 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
459 	if (IS_ERR(bp)) {
460 		err = PTR_ERR(bp);
461 		return err;
462 	}
463 
464 	attr = bp->attr;
465 	attr.bp_addr = addr;
466 	err = modify_user_hw_breakpoint(bp, &attr);
467 	return err;
468 }
469 
470 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
471 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
472 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
473 
474 static int hw_break_get(struct task_struct *target,
475 			const struct user_regset *regset,
476 			struct membuf to)
477 {
478 	unsigned int note_type = regset->core_note_type;
479 	int ret, idx = 0;
480 	u32 info, ctrl;
481 	u64 addr;
482 
483 	/* Resource info */
484 	ret = ptrace_hbp_get_resource_info(note_type, &info);
485 	if (ret)
486 		return ret;
487 
488 	membuf_write(&to, &info, sizeof(info));
489 	membuf_zero(&to, sizeof(u32));
490 	/* (address, ctrl) registers */
491 	while (to.left) {
492 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
493 		if (ret)
494 			return ret;
495 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
496 		if (ret)
497 			return ret;
498 		membuf_store(&to, addr);
499 		membuf_store(&to, ctrl);
500 		membuf_zero(&to, sizeof(u32));
501 		idx++;
502 	}
503 	return 0;
504 }
505 
506 static int hw_break_set(struct task_struct *target,
507 			const struct user_regset *regset,
508 			unsigned int pos, unsigned int count,
509 			const void *kbuf, const void __user *ubuf)
510 {
511 	unsigned int note_type = regset->core_note_type;
512 	int ret, idx = 0, offset, limit;
513 	u32 ctrl;
514 	u64 addr;
515 
516 	/* Resource info and pad */
517 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
518 	user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
519 
520 	/* (address, ctrl) registers */
521 	limit = regset->n * regset->size;
522 	while (count && offset < limit) {
523 		if (count < PTRACE_HBP_ADDR_SZ)
524 			return -EINVAL;
525 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
526 					 offset, offset + PTRACE_HBP_ADDR_SZ);
527 		if (ret)
528 			return ret;
529 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
530 		if (ret)
531 			return ret;
532 		offset += PTRACE_HBP_ADDR_SZ;
533 
534 		if (!count)
535 			break;
536 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
537 					 offset, offset + PTRACE_HBP_CTRL_SZ);
538 		if (ret)
539 			return ret;
540 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
541 		if (ret)
542 			return ret;
543 		offset += PTRACE_HBP_CTRL_SZ;
544 
545 		user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
546 					  offset, offset + PTRACE_HBP_PAD_SZ);
547 		offset += PTRACE_HBP_PAD_SZ;
548 		idx++;
549 	}
550 
551 	return 0;
552 }
553 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
554 
555 static int gpr_get(struct task_struct *target,
556 		   const struct user_regset *regset,
557 		   struct membuf to)
558 {
559 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
560 	return membuf_write(&to, uregs, sizeof(*uregs));
561 }
562 
563 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
564 		   unsigned int pos, unsigned int count,
565 		   const void *kbuf, const void __user *ubuf)
566 {
567 	int ret;
568 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
569 
570 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
571 	if (ret)
572 		return ret;
573 
574 	if (!valid_user_regs(&newregs, target))
575 		return -EINVAL;
576 
577 	task_pt_regs(target)->user_regs = newregs;
578 	return 0;
579 }
580 
581 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
582 {
583 	if (!system_supports_fpsimd())
584 		return -ENODEV;
585 	return regset->n;
586 }
587 
588 /*
589  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
590  */
591 static int __fpr_get(struct task_struct *target,
592 		     const struct user_regset *regset,
593 		     struct membuf to)
594 {
595 	struct user_fpsimd_state *uregs;
596 
597 	fpsimd_sync_from_effective_state(target);
598 
599 	uregs = &target->thread.uw.fpsimd_state;
600 
601 	return membuf_write(&to, uregs, sizeof(*uregs));
602 }
603 
604 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
605 		   struct membuf to)
606 {
607 	if (!system_supports_fpsimd())
608 		return -EINVAL;
609 
610 	if (target == current)
611 		fpsimd_preserve_current_state();
612 
613 	return __fpr_get(target, regset, to);
614 }
615 
616 static int __fpr_set(struct task_struct *target,
617 		     const struct user_regset *regset,
618 		     unsigned int pos, unsigned int count,
619 		     const void *kbuf, const void __user *ubuf,
620 		     unsigned int start_pos)
621 {
622 	int ret;
623 	struct user_fpsimd_state newstate;
624 
625 	/*
626 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
627 	 * short copyin can't resurrect stale data.
628 	 */
629 	fpsimd_sync_from_effective_state(target);
630 
631 	newstate = target->thread.uw.fpsimd_state;
632 
633 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
634 				 start_pos, start_pos + sizeof(newstate));
635 	if (ret)
636 		return ret;
637 
638 	target->thread.uw.fpsimd_state = newstate;
639 
640 	return ret;
641 }
642 
643 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
644 		   unsigned int pos, unsigned int count,
645 		   const void *kbuf, const void __user *ubuf)
646 {
647 	int ret;
648 
649 	if (!system_supports_fpsimd())
650 		return -EINVAL;
651 
652 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
653 	if (ret)
654 		return ret;
655 
656 	fpsimd_sync_to_effective_state_zeropad(target);
657 	fpsimd_flush_task_state(target);
658 
659 	return ret;
660 }
661 
662 static int tls_get(struct task_struct *target, const struct user_regset *regset,
663 		   struct membuf to)
664 {
665 	int ret;
666 
667 	if (target == current)
668 		tls_preserve_current_state();
669 
670 	ret = membuf_store(&to, target->thread.uw.tp_value);
671 	if (system_supports_tpidr2())
672 		ret = membuf_store(&to, target->thread.tpidr2_el0);
673 	else
674 		ret = membuf_zero(&to, sizeof(u64));
675 
676 	return ret;
677 }
678 
679 static int tls_set(struct task_struct *target, const struct user_regset *regset,
680 		   unsigned int pos, unsigned int count,
681 		   const void *kbuf, const void __user *ubuf)
682 {
683 	int ret;
684 	unsigned long tls[2];
685 
686 	tls[0] = target->thread.uw.tp_value;
687 	if (system_supports_tpidr2())
688 		tls[1] = target->thread.tpidr2_el0;
689 
690 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, tls, 0, count);
691 	if (ret)
692 		return ret;
693 
694 	target->thread.uw.tp_value = tls[0];
695 	if (system_supports_tpidr2())
696 		target->thread.tpidr2_el0 = tls[1];
697 
698 	return ret;
699 }
700 
701 static int fpmr_get(struct task_struct *target, const struct user_regset *regset,
702 		   struct membuf to)
703 {
704 	if (!system_supports_fpmr())
705 		return -EINVAL;
706 
707 	if (target == current)
708 		fpsimd_preserve_current_state();
709 
710 	return membuf_store(&to, target->thread.uw.fpmr);
711 }
712 
713 static int fpmr_set(struct task_struct *target, const struct user_regset *regset,
714 		   unsigned int pos, unsigned int count,
715 		   const void *kbuf, const void __user *ubuf)
716 {
717 	int ret;
718 	unsigned long fpmr;
719 
720 	if (!system_supports_fpmr())
721 		return -EINVAL;
722 
723 	fpmr = target->thread.uw.fpmr;
724 
725 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpmr, 0, count);
726 	if (ret)
727 		return ret;
728 
729 	target->thread.uw.fpmr = fpmr;
730 
731 	fpsimd_flush_task_state(target);
732 
733 	return 0;
734 }
735 
736 static int system_call_get(struct task_struct *target,
737 			   const struct user_regset *regset,
738 			   struct membuf to)
739 {
740 	return membuf_store(&to, task_pt_regs(target)->syscallno);
741 }
742 
743 static int system_call_set(struct task_struct *target,
744 			   const struct user_regset *regset,
745 			   unsigned int pos, unsigned int count,
746 			   const void *kbuf, const void __user *ubuf)
747 {
748 	int syscallno = task_pt_regs(target)->syscallno;
749 	int ret;
750 
751 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
752 	if (ret)
753 		return ret;
754 
755 	task_pt_regs(target)->syscallno = syscallno;
756 	return ret;
757 }
758 
759 #ifdef CONFIG_ARM64_SVE
760 
761 static void sve_init_header_from_task(struct user_sve_header *header,
762 				      struct task_struct *target,
763 				      enum vec_type type)
764 {
765 	unsigned int vq;
766 	bool active;
767 	enum vec_type task_type;
768 
769 	memset(header, 0, sizeof(*header));
770 
771 	/* Check if the requested registers are active for the task */
772 	if (thread_sm_enabled(&target->thread))
773 		task_type = ARM64_VEC_SME;
774 	else
775 		task_type = ARM64_VEC_SVE;
776 	active = (task_type == type);
777 
778 	if (active && target->thread.fp_type == FP_STATE_SVE)
779 		header->flags = SVE_PT_REGS_SVE;
780 	else
781 		header->flags = SVE_PT_REGS_FPSIMD;
782 
783 	switch (type) {
784 	case ARM64_VEC_SVE:
785 		if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
786 			header->flags |= SVE_PT_VL_INHERIT;
787 		break;
788 	case ARM64_VEC_SME:
789 		if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
790 			header->flags |= SVE_PT_VL_INHERIT;
791 		break;
792 	default:
793 		WARN_ON_ONCE(1);
794 		return;
795 	}
796 
797 	header->vl = task_get_vl(target, type);
798 	vq = sve_vq_from_vl(header->vl);
799 
800 	header->max_vl = vec_max_vl(type);
801 	if (active)
802 		header->size = SVE_PT_SIZE(vq, header->flags);
803 	else
804 		header->size = sizeof(header);
805 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
806 				      SVE_PT_REGS_SVE);
807 }
808 
809 static unsigned int sve_size_from_header(struct user_sve_header const *header)
810 {
811 	return ALIGN(header->size, SVE_VQ_BYTES);
812 }
813 
814 static int sve_get_common(struct task_struct *target,
815 			  const struct user_regset *regset,
816 			  struct membuf to,
817 			  enum vec_type type)
818 {
819 	struct user_sve_header header;
820 	unsigned int vq;
821 	unsigned long start, end;
822 
823 	if (target == current)
824 		fpsimd_preserve_current_state();
825 
826 	/* Header */
827 	sve_init_header_from_task(&header, target, type);
828 	vq = sve_vq_from_vl(header.vl);
829 
830 	membuf_write(&to, &header, sizeof(header));
831 
832 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
833 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
834 
835 	/*
836 	 * When the requested vector type is not active, do not present data
837 	 * from the other mode to userspace.
838 	 */
839 	if (header.size == sizeof(header))
840 		return 0;
841 
842 	switch ((header.flags & SVE_PT_REGS_MASK)) {
843 	case SVE_PT_REGS_FPSIMD:
844 		return __fpr_get(target, regset, to);
845 
846 	case SVE_PT_REGS_SVE:
847 		start = SVE_PT_SVE_OFFSET;
848 		end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
849 		membuf_write(&to, target->thread.sve_state, end - start);
850 
851 		start = end;
852 		end = SVE_PT_SVE_FPSR_OFFSET(vq);
853 		membuf_zero(&to, end - start);
854 
855 		/*
856 		 * Copy fpsr, and fpcr which must follow contiguously in
857 		 * struct fpsimd_state:
858 		 */
859 		start = end;
860 		end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
861 		membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr,
862 			     end - start);
863 
864 		start = end;
865 		end = sve_size_from_header(&header);
866 		return membuf_zero(&to, end - start);
867 
868 	default:
869 		BUILD_BUG();
870 	}
871 }
872 
873 static int sve_get(struct task_struct *target,
874 		   const struct user_regset *regset,
875 		   struct membuf to)
876 {
877 	if (!system_supports_sve())
878 		return -EINVAL;
879 
880 	return sve_get_common(target, regset, to, ARM64_VEC_SVE);
881 }
882 
883 static int sve_set_common(struct task_struct *target,
884 			  const struct user_regset *regset,
885 			  unsigned int pos, unsigned int count,
886 			  const void *kbuf, const void __user *ubuf,
887 			  enum vec_type type)
888 {
889 	int ret;
890 	struct user_sve_header header;
891 	unsigned int vq;
892 	unsigned long start, end;
893 	bool fpsimd;
894 
895 	fpsimd_flush_task_state(target);
896 
897 	/* Header */
898 	if (count < sizeof(header))
899 		return -EINVAL;
900 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
901 				 0, sizeof(header));
902 	if (ret)
903 		return ret;
904 
905 	/*
906 	 * Streaming SVE data is always stored and presented in SVE format.
907 	 * Require the user to provide SVE formatted data for consistency, and
908 	 * to avoid the risk that we configure the task into an invalid state.
909 	 */
910 	fpsimd = (header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD;
911 	if (fpsimd && type == ARM64_VEC_SME)
912 		return -EINVAL;
913 
914 	/*
915 	 * On systems without SVE we accept FPSIMD format writes with
916 	 * a VL of 0 to allow exiting streaming mode, otherwise a VL
917 	 * is required.
918 	 */
919 	if (header.vl) {
920 		/*
921 		 * If the system does not support SVE we can't
922 		 * configure a SVE VL.
923 		 */
924 		if (!system_supports_sve() && type == ARM64_VEC_SVE)
925 			return -EINVAL;
926 
927 		/*
928 		 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are
929 		 * consumed by vec_set_vector_length(), which will
930 		 * also validate them for us:
931 		 */
932 		ret = vec_set_vector_length(target, type, header.vl,
933 					    ((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
934 		if (ret)
935 			return ret;
936 	} else {
937 		/* If the system supports SVE we require a VL. */
938 		if (system_supports_sve())
939 			return -EINVAL;
940 
941 		/*
942 		 * Only FPSIMD formatted data with no flags set is
943 		 * supported.
944 		 */
945 		if (header.flags != SVE_PT_REGS_FPSIMD)
946 			return -EINVAL;
947 	}
948 
949 	/* Allocate SME storage if necessary, preserving any existing ZA/ZT state */
950 	if (type == ARM64_VEC_SME) {
951 		sme_alloc(target, false);
952 		if (!target->thread.sme_state)
953 			return -ENOMEM;
954 	}
955 
956 	/* Allocate SVE storage if necessary, zeroing any existing SVE state */
957 	if (!fpsimd) {
958 		sve_alloc(target, true);
959 		if (!target->thread.sve_state)
960 			return -ENOMEM;
961 	}
962 
963 	/*
964 	 * Actual VL set may be different from what the user asked
965 	 * for, or we may have configured the _ONEXEC VL not the
966 	 * current VL:
967 	 */
968 	vq = sve_vq_from_vl(task_get_vl(target, type));
969 
970 	/* Enter/exit streaming mode */
971 	if (system_supports_sme()) {
972 		switch (type) {
973 		case ARM64_VEC_SVE:
974 			target->thread.svcr &= ~SVCR_SM_MASK;
975 			set_tsk_thread_flag(target, TIF_SVE);
976 			break;
977 		case ARM64_VEC_SME:
978 			target->thread.svcr |= SVCR_SM_MASK;
979 			set_tsk_thread_flag(target, TIF_SME);
980 			break;
981 		default:
982 			WARN_ON_ONCE(1);
983 			return -EINVAL;
984 		}
985 	}
986 
987 	/* Always zero V regs, FPSR, and FPCR */
988 	memset(&current->thread.uw.fpsimd_state, 0,
989 	       sizeof(current->thread.uw.fpsimd_state));
990 
991 	/* Registers: FPSIMD-only case */
992 
993 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
994 	if (fpsimd) {
995 		clear_tsk_thread_flag(target, TIF_SVE);
996 		target->thread.fp_type = FP_STATE_FPSIMD;
997 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
998 				SVE_PT_FPSIMD_OFFSET);
999 		return ret;
1000 	}
1001 
1002 	/* Otherwise: no registers or full SVE case. */
1003 
1004 	target->thread.fp_type = FP_STATE_SVE;
1005 
1006 	/*
1007 	 * If setting a different VL from the requested VL and there is
1008 	 * register data, the data layout will be wrong: don't even
1009 	 * try to set the registers in this case.
1010 	 */
1011 	if (count && vq != sve_vq_from_vl(header.vl))
1012 		return -EIO;
1013 
1014 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
1015 	start = SVE_PT_SVE_OFFSET;
1016 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
1017 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1018 				 target->thread.sve_state,
1019 				 start, end);
1020 	if (ret)
1021 		return ret;
1022 
1023 	start = end;
1024 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
1025 	user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, start, end);
1026 
1027 	/*
1028 	 * Copy fpsr, and fpcr which must follow contiguously in
1029 	 * struct fpsimd_state:
1030 	 */
1031 	start = end;
1032 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
1033 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1034 				 &target->thread.uw.fpsimd_state.fpsr,
1035 				 start, end);
1036 
1037 	return ret;
1038 }
1039 
1040 static int sve_set(struct task_struct *target,
1041 		   const struct user_regset *regset,
1042 		   unsigned int pos, unsigned int count,
1043 		   const void *kbuf, const void __user *ubuf)
1044 {
1045 	if (!system_supports_sve() && !system_supports_sme())
1046 		return -EINVAL;
1047 
1048 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1049 			      ARM64_VEC_SVE);
1050 }
1051 
1052 #endif /* CONFIG_ARM64_SVE */
1053 
1054 #ifdef CONFIG_ARM64_SME
1055 
1056 static int ssve_get(struct task_struct *target,
1057 		   const struct user_regset *regset,
1058 		   struct membuf to)
1059 {
1060 	if (!system_supports_sme())
1061 		return -EINVAL;
1062 
1063 	return sve_get_common(target, regset, to, ARM64_VEC_SME);
1064 }
1065 
1066 static int ssve_set(struct task_struct *target,
1067 		    const struct user_regset *regset,
1068 		    unsigned int pos, unsigned int count,
1069 		    const void *kbuf, const void __user *ubuf)
1070 {
1071 	if (!system_supports_sme())
1072 		return -EINVAL;
1073 
1074 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1075 			      ARM64_VEC_SME);
1076 }
1077 
1078 static int za_get(struct task_struct *target,
1079 		  const struct user_regset *regset,
1080 		  struct membuf to)
1081 {
1082 	struct user_za_header header;
1083 	unsigned int vq;
1084 	unsigned long start, end;
1085 
1086 	if (!system_supports_sme())
1087 		return -EINVAL;
1088 
1089 	/* Header */
1090 	memset(&header, 0, sizeof(header));
1091 
1092 	if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
1093 		header.flags |= ZA_PT_VL_INHERIT;
1094 
1095 	header.vl = task_get_sme_vl(target);
1096 	vq = sve_vq_from_vl(header.vl);
1097 	header.max_vl = sme_max_vl();
1098 	header.max_size = ZA_PT_SIZE(vq);
1099 
1100 	/* If ZA is not active there is only the header */
1101 	if (thread_za_enabled(&target->thread))
1102 		header.size = ZA_PT_SIZE(vq);
1103 	else
1104 		header.size = ZA_PT_ZA_OFFSET;
1105 
1106 	membuf_write(&to, &header, sizeof(header));
1107 
1108 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1109 	end = ZA_PT_ZA_OFFSET;
1110 
1111 	if (target == current)
1112 		fpsimd_preserve_current_state();
1113 
1114 	/* Any register data to include? */
1115 	if (thread_za_enabled(&target->thread)) {
1116 		start = end;
1117 		end = ZA_PT_SIZE(vq);
1118 		membuf_write(&to, target->thread.sme_state, end - start);
1119 	}
1120 
1121 	/* Zero any trailing padding */
1122 	start = end;
1123 	end = ALIGN(header.size, SVE_VQ_BYTES);
1124 	return membuf_zero(&to, end - start);
1125 }
1126 
1127 static int za_set(struct task_struct *target,
1128 		  const struct user_regset *regset,
1129 		  unsigned int pos, unsigned int count,
1130 		  const void *kbuf, const void __user *ubuf)
1131 {
1132 	int ret;
1133 	struct user_za_header header;
1134 	unsigned int vq;
1135 	unsigned long start, end;
1136 
1137 	if (!system_supports_sme())
1138 		return -EINVAL;
1139 
1140 	/* Header */
1141 	if (count < sizeof(header))
1142 		return -EINVAL;
1143 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
1144 				 0, sizeof(header));
1145 	if (ret)
1146 		goto out;
1147 
1148 	/*
1149 	 * All current ZA_PT_* flags are consumed by
1150 	 * vec_set_vector_length(), which will also validate them for
1151 	 * us:
1152 	 */
1153 	ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl,
1154 		((unsigned long)header.flags) << 16);
1155 	if (ret)
1156 		goto out;
1157 
1158 	/*
1159 	 * Actual VL set may be different from what the user asked
1160 	 * for, or we may have configured the _ONEXEC rather than
1161 	 * current VL:
1162 	 */
1163 	vq = sve_vq_from_vl(task_get_sme_vl(target));
1164 
1165 	/* Ensure there is some SVE storage for streaming mode */
1166 	if (!target->thread.sve_state) {
1167 		sve_alloc(target, false);
1168 		if (!target->thread.sve_state) {
1169 			ret = -ENOMEM;
1170 			goto out;
1171 		}
1172 	}
1173 
1174 	/*
1175 	 * Only flush the storage if PSTATE.ZA was not already set,
1176 	 * otherwise preserve any existing data.
1177 	 */
1178 	sme_alloc(target, !thread_za_enabled(&target->thread));
1179 	if (!target->thread.sme_state)
1180 		return -ENOMEM;
1181 
1182 	/* If there is no data then disable ZA */
1183 	if (!count) {
1184 		target->thread.svcr &= ~SVCR_ZA_MASK;
1185 		goto out;
1186 	}
1187 
1188 	/*
1189 	 * If setting a different VL from the requested VL and there is
1190 	 * register data, the data layout will be wrong: don't even
1191 	 * try to set the registers in this case.
1192 	 */
1193 	if (vq != sve_vq_from_vl(header.vl)) {
1194 		ret = -EIO;
1195 		goto out;
1196 	}
1197 
1198 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1199 	start = ZA_PT_ZA_OFFSET;
1200 	end = ZA_PT_SIZE(vq);
1201 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1202 				 target->thread.sme_state,
1203 				 start, end);
1204 	if (ret)
1205 		goto out;
1206 
1207 	/* Mark ZA as active and let userspace use it */
1208 	set_tsk_thread_flag(target, TIF_SME);
1209 	target->thread.svcr |= SVCR_ZA_MASK;
1210 
1211 out:
1212 	fpsimd_flush_task_state(target);
1213 	return ret;
1214 }
1215 
1216 static int zt_get(struct task_struct *target,
1217 		  const struct user_regset *regset,
1218 		  struct membuf to)
1219 {
1220 	if (!system_supports_sme2())
1221 		return -EINVAL;
1222 
1223 	/*
1224 	 * If PSTATE.ZA is not set then ZT will be zeroed when it is
1225 	 * enabled so report the current register value as zero.
1226 	 */
1227 	if (thread_za_enabled(&target->thread))
1228 		membuf_write(&to, thread_zt_state(&target->thread),
1229 			     ZT_SIG_REG_BYTES);
1230 	else
1231 		membuf_zero(&to, ZT_SIG_REG_BYTES);
1232 
1233 	return 0;
1234 }
1235 
1236 static int zt_set(struct task_struct *target,
1237 		  const struct user_regset *regset,
1238 		  unsigned int pos, unsigned int count,
1239 		  const void *kbuf, const void __user *ubuf)
1240 {
1241 	int ret;
1242 
1243 	if (!system_supports_sme2())
1244 		return -EINVAL;
1245 
1246 	/* Ensure SVE storage in case this is first use of SME */
1247 	sve_alloc(target, false);
1248 	if (!target->thread.sve_state)
1249 		return -ENOMEM;
1250 
1251 	if (!thread_za_enabled(&target->thread)) {
1252 		sme_alloc(target, true);
1253 		if (!target->thread.sme_state)
1254 			return -ENOMEM;
1255 	}
1256 
1257 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1258 				 thread_zt_state(&target->thread),
1259 				 0, ZT_SIG_REG_BYTES);
1260 	if (ret == 0) {
1261 		target->thread.svcr |= SVCR_ZA_MASK;
1262 		set_tsk_thread_flag(target, TIF_SME);
1263 	}
1264 
1265 	fpsimd_flush_task_state(target);
1266 
1267 	return ret;
1268 }
1269 
1270 #endif /* CONFIG_ARM64_SME */
1271 
1272 #ifdef CONFIG_ARM64_PTR_AUTH
1273 static int pac_mask_get(struct task_struct *target,
1274 			const struct user_regset *regset,
1275 			struct membuf to)
1276 {
1277 	/*
1278 	 * The PAC bits can differ across data and instruction pointers
1279 	 * depending on TCR_EL1.TBID*, which we may make use of in future, so
1280 	 * we expose separate masks.
1281 	 */
1282 	unsigned long mask = ptrauth_user_pac_mask();
1283 	struct user_pac_mask uregs = {
1284 		.data_mask = mask,
1285 		.insn_mask = mask,
1286 	};
1287 
1288 	if (!system_supports_address_auth())
1289 		return -EINVAL;
1290 
1291 	return membuf_write(&to, &uregs, sizeof(uregs));
1292 }
1293 
1294 static int pac_enabled_keys_get(struct task_struct *target,
1295 				const struct user_regset *regset,
1296 				struct membuf to)
1297 {
1298 	long enabled_keys = ptrauth_get_enabled_keys(target);
1299 
1300 	if (IS_ERR_VALUE(enabled_keys))
1301 		return enabled_keys;
1302 
1303 	return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
1304 }
1305 
1306 static int pac_enabled_keys_set(struct task_struct *target,
1307 				const struct user_regset *regset,
1308 				unsigned int pos, unsigned int count,
1309 				const void *kbuf, const void __user *ubuf)
1310 {
1311 	int ret;
1312 	long enabled_keys = ptrauth_get_enabled_keys(target);
1313 
1314 	if (IS_ERR_VALUE(enabled_keys))
1315 		return enabled_keys;
1316 
1317 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
1318 				 sizeof(long));
1319 	if (ret)
1320 		return ret;
1321 
1322 	return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
1323 					enabled_keys);
1324 }
1325 
1326 #ifdef CONFIG_CHECKPOINT_RESTORE
1327 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
1328 {
1329 	return (__uint128_t)key->hi << 64 | key->lo;
1330 }
1331 
1332 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
1333 {
1334 	struct ptrauth_key key = {
1335 		.lo = (unsigned long)ukey,
1336 		.hi = (unsigned long)(ukey >> 64),
1337 	};
1338 
1339 	return key;
1340 }
1341 
1342 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1343 				     const struct ptrauth_keys_user *keys)
1344 {
1345 	ukeys->apiakey = pac_key_to_user(&keys->apia);
1346 	ukeys->apibkey = pac_key_to_user(&keys->apib);
1347 	ukeys->apdakey = pac_key_to_user(&keys->apda);
1348 	ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1349 }
1350 
1351 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
1352 				       const struct user_pac_address_keys *ukeys)
1353 {
1354 	keys->apia = pac_key_from_user(ukeys->apiakey);
1355 	keys->apib = pac_key_from_user(ukeys->apibkey);
1356 	keys->apda = pac_key_from_user(ukeys->apdakey);
1357 	keys->apdb = pac_key_from_user(ukeys->apdbkey);
1358 }
1359 
1360 static int pac_address_keys_get(struct task_struct *target,
1361 				const struct user_regset *regset,
1362 				struct membuf to)
1363 {
1364 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1365 	struct user_pac_address_keys user_keys;
1366 
1367 	if (!system_supports_address_auth())
1368 		return -EINVAL;
1369 
1370 	pac_address_keys_to_user(&user_keys, keys);
1371 
1372 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1373 }
1374 
1375 static int pac_address_keys_set(struct task_struct *target,
1376 				const struct user_regset *regset,
1377 				unsigned int pos, unsigned int count,
1378 				const void *kbuf, const void __user *ubuf)
1379 {
1380 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1381 	struct user_pac_address_keys user_keys;
1382 	int ret;
1383 
1384 	if (!system_supports_address_auth())
1385 		return -EINVAL;
1386 
1387 	pac_address_keys_to_user(&user_keys, keys);
1388 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1389 				 &user_keys, 0, -1);
1390 	if (ret)
1391 		return ret;
1392 	pac_address_keys_from_user(keys, &user_keys);
1393 
1394 	return 0;
1395 }
1396 
1397 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1398 				     const struct ptrauth_keys_user *keys)
1399 {
1400 	ukeys->apgakey = pac_key_to_user(&keys->apga);
1401 }
1402 
1403 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1404 				       const struct user_pac_generic_keys *ukeys)
1405 {
1406 	keys->apga = pac_key_from_user(ukeys->apgakey);
1407 }
1408 
1409 static int pac_generic_keys_get(struct task_struct *target,
1410 				const struct user_regset *regset,
1411 				struct membuf to)
1412 {
1413 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1414 	struct user_pac_generic_keys user_keys;
1415 
1416 	if (!system_supports_generic_auth())
1417 		return -EINVAL;
1418 
1419 	pac_generic_keys_to_user(&user_keys, keys);
1420 
1421 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1422 }
1423 
1424 static int pac_generic_keys_set(struct task_struct *target,
1425 				const struct user_regset *regset,
1426 				unsigned int pos, unsigned int count,
1427 				const void *kbuf, const void __user *ubuf)
1428 {
1429 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1430 	struct user_pac_generic_keys user_keys;
1431 	int ret;
1432 
1433 	if (!system_supports_generic_auth())
1434 		return -EINVAL;
1435 
1436 	pac_generic_keys_to_user(&user_keys, keys);
1437 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1438 				 &user_keys, 0, -1);
1439 	if (ret)
1440 		return ret;
1441 	pac_generic_keys_from_user(keys, &user_keys);
1442 
1443 	return 0;
1444 }
1445 #endif /* CONFIG_CHECKPOINT_RESTORE */
1446 #endif /* CONFIG_ARM64_PTR_AUTH */
1447 
1448 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1449 static int tagged_addr_ctrl_get(struct task_struct *target,
1450 				const struct user_regset *regset,
1451 				struct membuf to)
1452 {
1453 	long ctrl = get_tagged_addr_ctrl(target);
1454 
1455 	if (WARN_ON_ONCE(IS_ERR_VALUE(ctrl)))
1456 		return ctrl;
1457 
1458 	return membuf_write(&to, &ctrl, sizeof(ctrl));
1459 }
1460 
1461 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1462 				user_regset *regset, unsigned int pos,
1463 				unsigned int count, const void *kbuf, const
1464 				void __user *ubuf)
1465 {
1466 	int ret;
1467 	long ctrl;
1468 
1469 	ctrl = get_tagged_addr_ctrl(target);
1470 	if (WARN_ON_ONCE(IS_ERR_VALUE(ctrl)))
1471 		return ctrl;
1472 
1473 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1474 	if (ret)
1475 		return ret;
1476 
1477 	return set_tagged_addr_ctrl(target, ctrl);
1478 }
1479 #endif
1480 
1481 #ifdef CONFIG_ARM64_POE
1482 static int poe_get(struct task_struct *target,
1483 		   const struct user_regset *regset,
1484 		   struct membuf to)
1485 {
1486 	if (!system_supports_poe())
1487 		return -EINVAL;
1488 
1489 	return membuf_write(&to, &target->thread.por_el0,
1490 			    sizeof(target->thread.por_el0));
1491 }
1492 
1493 static int poe_set(struct task_struct *target, const struct
1494 		   user_regset *regset, unsigned int pos,
1495 		   unsigned int count, const void *kbuf, const
1496 		   void __user *ubuf)
1497 {
1498 	int ret;
1499 	long ctrl;
1500 
1501 	if (!system_supports_poe())
1502 		return -EINVAL;
1503 
1504 	ctrl = target->thread.por_el0;
1505 
1506 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1507 	if (ret)
1508 		return ret;
1509 
1510 	target->thread.por_el0 = ctrl;
1511 
1512 	return 0;
1513 }
1514 #endif
1515 
1516 #ifdef CONFIG_ARM64_GCS
1517 static void task_gcs_to_user(struct user_gcs *user_gcs,
1518 			     const struct task_struct *target)
1519 {
1520 	user_gcs->features_enabled = target->thread.gcs_el0_mode;
1521 	user_gcs->features_locked = target->thread.gcs_el0_locked;
1522 	user_gcs->gcspr_el0 = target->thread.gcspr_el0;
1523 }
1524 
1525 static void task_gcs_from_user(struct task_struct *target,
1526 			       const struct user_gcs *user_gcs)
1527 {
1528 	target->thread.gcs_el0_mode = user_gcs->features_enabled;
1529 	target->thread.gcs_el0_locked = user_gcs->features_locked;
1530 	target->thread.gcspr_el0 = user_gcs->gcspr_el0;
1531 }
1532 
1533 static int gcs_get(struct task_struct *target,
1534 		   const struct user_regset *regset,
1535 		   struct membuf to)
1536 {
1537 	struct user_gcs user_gcs;
1538 
1539 	if (!system_supports_gcs())
1540 		return -EINVAL;
1541 
1542 	if (target == current)
1543 		gcs_preserve_current_state();
1544 
1545 	task_gcs_to_user(&user_gcs, target);
1546 
1547 	return membuf_write(&to, &user_gcs, sizeof(user_gcs));
1548 }
1549 
1550 static int gcs_set(struct task_struct *target, const struct
1551 		   user_regset *regset, unsigned int pos,
1552 		   unsigned int count, const void *kbuf, const
1553 		   void __user *ubuf)
1554 {
1555 	int ret;
1556 	struct user_gcs user_gcs;
1557 
1558 	if (!system_supports_gcs())
1559 		return -EINVAL;
1560 
1561 	task_gcs_to_user(&user_gcs, target);
1562 
1563 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &user_gcs, 0, -1);
1564 	if (ret)
1565 		return ret;
1566 
1567 	if (user_gcs.features_enabled & ~PR_SHADOW_STACK_SUPPORTED_STATUS_MASK)
1568 		return -EINVAL;
1569 
1570 	task_gcs_from_user(target, &user_gcs);
1571 
1572 	return 0;
1573 }
1574 #endif
1575 
1576 enum aarch64_regset {
1577 	REGSET_GPR,
1578 	REGSET_FPR,
1579 	REGSET_TLS,
1580 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1581 	REGSET_HW_BREAK,
1582 	REGSET_HW_WATCH,
1583 #endif
1584 	REGSET_FPMR,
1585 	REGSET_SYSTEM_CALL,
1586 #ifdef CONFIG_ARM64_SVE
1587 	REGSET_SVE,
1588 #endif
1589 #ifdef CONFIG_ARM64_SME
1590 	REGSET_SSVE,
1591 	REGSET_ZA,
1592 	REGSET_ZT,
1593 #endif
1594 #ifdef CONFIG_ARM64_PTR_AUTH
1595 	REGSET_PAC_MASK,
1596 	REGSET_PAC_ENABLED_KEYS,
1597 #ifdef CONFIG_CHECKPOINT_RESTORE
1598 	REGSET_PACA_KEYS,
1599 	REGSET_PACG_KEYS,
1600 #endif
1601 #endif
1602 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1603 	REGSET_TAGGED_ADDR_CTRL,
1604 #endif
1605 #ifdef CONFIG_ARM64_POE
1606 	REGSET_POE,
1607 #endif
1608 #ifdef CONFIG_ARM64_GCS
1609 	REGSET_GCS,
1610 #endif
1611 };
1612 
1613 static const struct user_regset aarch64_regsets[] = {
1614 	[REGSET_GPR] = {
1615 		USER_REGSET_NOTE_TYPE(PRSTATUS),
1616 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
1617 		.size = sizeof(u64),
1618 		.align = sizeof(u64),
1619 		.regset_get = gpr_get,
1620 		.set = gpr_set
1621 	},
1622 	[REGSET_FPR] = {
1623 		USER_REGSET_NOTE_TYPE(PRFPREG),
1624 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1625 		/*
1626 		 * We pretend we have 32-bit registers because the fpsr and
1627 		 * fpcr are 32-bits wide.
1628 		 */
1629 		.size = sizeof(u32),
1630 		.align = sizeof(u32),
1631 		.active = fpr_active,
1632 		.regset_get = fpr_get,
1633 		.set = fpr_set
1634 	},
1635 	[REGSET_TLS] = {
1636 		USER_REGSET_NOTE_TYPE(ARM_TLS),
1637 		.n = 2,
1638 		.size = sizeof(void *),
1639 		.align = sizeof(void *),
1640 		.regset_get = tls_get,
1641 		.set = tls_set,
1642 	},
1643 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1644 	[REGSET_HW_BREAK] = {
1645 		USER_REGSET_NOTE_TYPE(ARM_HW_BREAK),
1646 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1647 		.size = sizeof(u32),
1648 		.align = sizeof(u32),
1649 		.regset_get = hw_break_get,
1650 		.set = hw_break_set,
1651 	},
1652 	[REGSET_HW_WATCH] = {
1653 		USER_REGSET_NOTE_TYPE(ARM_HW_WATCH),
1654 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1655 		.size = sizeof(u32),
1656 		.align = sizeof(u32),
1657 		.regset_get = hw_break_get,
1658 		.set = hw_break_set,
1659 	},
1660 #endif
1661 	[REGSET_SYSTEM_CALL] = {
1662 		USER_REGSET_NOTE_TYPE(ARM_SYSTEM_CALL),
1663 		.n = 1,
1664 		.size = sizeof(int),
1665 		.align = sizeof(int),
1666 		.regset_get = system_call_get,
1667 		.set = system_call_set,
1668 	},
1669 	[REGSET_FPMR] = {
1670 		USER_REGSET_NOTE_TYPE(ARM_FPMR),
1671 		.n = 1,
1672 		.size = sizeof(u64),
1673 		.align = sizeof(u64),
1674 		.regset_get = fpmr_get,
1675 		.set = fpmr_set,
1676 	},
1677 #ifdef CONFIG_ARM64_SVE
1678 	[REGSET_SVE] = { /* Scalable Vector Extension */
1679 		USER_REGSET_NOTE_TYPE(ARM_SVE),
1680 		.n = DIV_ROUND_UP(SVE_PT_SIZE(ARCH_SVE_VQ_MAX,
1681 					      SVE_PT_REGS_SVE),
1682 				  SVE_VQ_BYTES),
1683 		.size = SVE_VQ_BYTES,
1684 		.align = SVE_VQ_BYTES,
1685 		.regset_get = sve_get,
1686 		.set = sve_set,
1687 	},
1688 #endif
1689 #ifdef CONFIG_ARM64_SME
1690 	[REGSET_SSVE] = { /* Streaming mode SVE */
1691 		USER_REGSET_NOTE_TYPE(ARM_SSVE),
1692 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE),
1693 				  SVE_VQ_BYTES),
1694 		.size = SVE_VQ_BYTES,
1695 		.align = SVE_VQ_BYTES,
1696 		.regset_get = ssve_get,
1697 		.set = ssve_set,
1698 	},
1699 	[REGSET_ZA] = { /* SME ZA */
1700 		USER_REGSET_NOTE_TYPE(ARM_ZA),
1701 		/*
1702 		 * ZA is a single register but it's variably sized and
1703 		 * the ptrace core requires that the size of any data
1704 		 * be an exact multiple of the configured register
1705 		 * size so report as though we had SVE_VQ_BYTES
1706 		 * registers. These values aren't exposed to
1707 		 * userspace.
1708 		 */
1709 		.n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES),
1710 		.size = SVE_VQ_BYTES,
1711 		.align = SVE_VQ_BYTES,
1712 		.regset_get = za_get,
1713 		.set = za_set,
1714 	},
1715 	[REGSET_ZT] = { /* SME ZT */
1716 		USER_REGSET_NOTE_TYPE(ARM_ZT),
1717 		.n = 1,
1718 		.size = ZT_SIG_REG_BYTES,
1719 		.align = sizeof(u64),
1720 		.regset_get = zt_get,
1721 		.set = zt_set,
1722 	},
1723 #endif
1724 #ifdef CONFIG_ARM64_PTR_AUTH
1725 	[REGSET_PAC_MASK] = {
1726 		USER_REGSET_NOTE_TYPE(ARM_PAC_MASK),
1727 		.n = sizeof(struct user_pac_mask) / sizeof(u64),
1728 		.size = sizeof(u64),
1729 		.align = sizeof(u64),
1730 		.regset_get = pac_mask_get,
1731 		/* this cannot be set dynamically */
1732 	},
1733 	[REGSET_PAC_ENABLED_KEYS] = {
1734 		USER_REGSET_NOTE_TYPE(ARM_PAC_ENABLED_KEYS),
1735 		.n = 1,
1736 		.size = sizeof(long),
1737 		.align = sizeof(long),
1738 		.regset_get = pac_enabled_keys_get,
1739 		.set = pac_enabled_keys_set,
1740 	},
1741 #ifdef CONFIG_CHECKPOINT_RESTORE
1742 	[REGSET_PACA_KEYS] = {
1743 		USER_REGSET_NOTE_TYPE(ARM_PACA_KEYS),
1744 		.n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1745 		.size = sizeof(__uint128_t),
1746 		.align = sizeof(__uint128_t),
1747 		.regset_get = pac_address_keys_get,
1748 		.set = pac_address_keys_set,
1749 	},
1750 	[REGSET_PACG_KEYS] = {
1751 		USER_REGSET_NOTE_TYPE(ARM_PACG_KEYS),
1752 		.n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1753 		.size = sizeof(__uint128_t),
1754 		.align = sizeof(__uint128_t),
1755 		.regset_get = pac_generic_keys_get,
1756 		.set = pac_generic_keys_set,
1757 	},
1758 #endif
1759 #endif
1760 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1761 	[REGSET_TAGGED_ADDR_CTRL] = {
1762 		USER_REGSET_NOTE_TYPE(ARM_TAGGED_ADDR_CTRL),
1763 		.n = 1,
1764 		.size = sizeof(long),
1765 		.align = sizeof(long),
1766 		.regset_get = tagged_addr_ctrl_get,
1767 		.set = tagged_addr_ctrl_set,
1768 	},
1769 #endif
1770 #ifdef CONFIG_ARM64_POE
1771 	[REGSET_POE] = {
1772 		USER_REGSET_NOTE_TYPE(ARM_POE),
1773 		.n = 1,
1774 		.size = sizeof(long),
1775 		.align = sizeof(long),
1776 		.regset_get = poe_get,
1777 		.set = poe_set,
1778 	},
1779 #endif
1780 #ifdef CONFIG_ARM64_GCS
1781 	[REGSET_GCS] = {
1782 		USER_REGSET_NOTE_TYPE(ARM_GCS),
1783 		.n = sizeof(struct user_gcs) / sizeof(u64),
1784 		.size = sizeof(u64),
1785 		.align = sizeof(u64),
1786 		.regset_get = gcs_get,
1787 		.set = gcs_set,
1788 	},
1789 #endif
1790 };
1791 
1792 static const struct user_regset_view user_aarch64_view = {
1793 	.name = "aarch64", .e_machine = EM_AARCH64,
1794 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1795 };
1796 
1797 enum compat_regset {
1798 	REGSET_COMPAT_GPR,
1799 	REGSET_COMPAT_VFP,
1800 };
1801 
1802 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1803 {
1804 	struct pt_regs *regs = task_pt_regs(task);
1805 
1806 	switch (idx) {
1807 	case 15:
1808 		return regs->pc;
1809 	case 16:
1810 		return pstate_to_compat_psr(regs->pstate);
1811 	case 17:
1812 		return regs->orig_x0;
1813 	default:
1814 		return regs->regs[idx];
1815 	}
1816 }
1817 
1818 static int compat_gpr_get(struct task_struct *target,
1819 			  const struct user_regset *regset,
1820 			  struct membuf to)
1821 {
1822 	int i = 0;
1823 
1824 	while (to.left)
1825 		membuf_store(&to, compat_get_user_reg(target, i++));
1826 	return 0;
1827 }
1828 
1829 static int compat_gpr_set(struct task_struct *target,
1830 			  const struct user_regset *regset,
1831 			  unsigned int pos, unsigned int count,
1832 			  const void *kbuf, const void __user *ubuf)
1833 {
1834 	struct pt_regs newregs;
1835 	int ret = 0;
1836 	unsigned int i, start, num_regs;
1837 
1838 	/* Calculate the number of AArch32 registers contained in count */
1839 	num_regs = count / regset->size;
1840 
1841 	/* Convert pos into an register number */
1842 	start = pos / regset->size;
1843 
1844 	if (start + num_regs > regset->n)
1845 		return -EIO;
1846 
1847 	newregs = *task_pt_regs(target);
1848 
1849 	for (i = 0; i < num_regs; ++i) {
1850 		unsigned int idx = start + i;
1851 		compat_ulong_t reg;
1852 
1853 		if (kbuf) {
1854 			memcpy(&reg, kbuf, sizeof(reg));
1855 			kbuf += sizeof(reg);
1856 		} else {
1857 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1858 			if (ret) {
1859 				ret = -EFAULT;
1860 				break;
1861 			}
1862 
1863 			ubuf += sizeof(reg);
1864 		}
1865 
1866 		switch (idx) {
1867 		case 15:
1868 			newregs.pc = reg;
1869 			break;
1870 		case 16:
1871 			reg = compat_psr_to_pstate(reg);
1872 			newregs.pstate = reg;
1873 			break;
1874 		case 17:
1875 			newregs.orig_x0 = reg;
1876 			break;
1877 		default:
1878 			newregs.regs[idx] = reg;
1879 		}
1880 
1881 	}
1882 
1883 	if (valid_user_regs(&newregs.user_regs, target))
1884 		*task_pt_regs(target) = newregs;
1885 	else
1886 		ret = -EINVAL;
1887 
1888 	return ret;
1889 }
1890 
1891 static int compat_vfp_get(struct task_struct *target,
1892 			  const struct user_regset *regset,
1893 			  struct membuf to)
1894 {
1895 	struct user_fpsimd_state *uregs;
1896 	compat_ulong_t fpscr;
1897 
1898 	if (!system_supports_fpsimd())
1899 		return -EINVAL;
1900 
1901 	uregs = &target->thread.uw.fpsimd_state;
1902 
1903 	if (target == current)
1904 		fpsimd_preserve_current_state();
1905 
1906 	/*
1907 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1908 	 * nicely together for us. We just need to create the fpscr separately.
1909 	 */
1910 	membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1911 	fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1912 		(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1913 	return membuf_store(&to, fpscr);
1914 }
1915 
1916 static int compat_vfp_set(struct task_struct *target,
1917 			  const struct user_regset *regset,
1918 			  unsigned int pos, unsigned int count,
1919 			  const void *kbuf, const void __user *ubuf)
1920 {
1921 	struct user_fpsimd_state *uregs;
1922 	compat_ulong_t fpscr;
1923 	int ret, vregs_end_pos;
1924 
1925 	if (!system_supports_fpsimd())
1926 		return -EINVAL;
1927 
1928 	uregs = &target->thread.uw.fpsimd_state;
1929 
1930 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1931 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1932 				 vregs_end_pos);
1933 
1934 	if (count && !ret) {
1935 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1936 					 vregs_end_pos, VFP_STATE_SIZE);
1937 		if (!ret) {
1938 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1939 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1940 		}
1941 	}
1942 
1943 	fpsimd_flush_task_state(target);
1944 	return ret;
1945 }
1946 
1947 static int compat_tls_get(struct task_struct *target,
1948 			  const struct user_regset *regset,
1949 			  struct membuf to)
1950 {
1951 	return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1952 }
1953 
1954 static int compat_tls_set(struct task_struct *target,
1955 			  const struct user_regset *regset, unsigned int pos,
1956 			  unsigned int count, const void *kbuf,
1957 			  const void __user *ubuf)
1958 {
1959 	int ret;
1960 	compat_ulong_t tls = target->thread.uw.tp_value;
1961 
1962 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1963 	if (ret)
1964 		return ret;
1965 
1966 	target->thread.uw.tp_value = tls;
1967 	return ret;
1968 }
1969 
1970 static const struct user_regset aarch32_regsets[] = {
1971 	[REGSET_COMPAT_GPR] = {
1972 		USER_REGSET_NOTE_TYPE(PRSTATUS),
1973 		.n = COMPAT_ELF_NGREG,
1974 		.size = sizeof(compat_elf_greg_t),
1975 		.align = sizeof(compat_elf_greg_t),
1976 		.regset_get = compat_gpr_get,
1977 		.set = compat_gpr_set
1978 	},
1979 	[REGSET_COMPAT_VFP] = {
1980 		USER_REGSET_NOTE_TYPE(ARM_VFP),
1981 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1982 		.size = sizeof(compat_ulong_t),
1983 		.align = sizeof(compat_ulong_t),
1984 		.active = fpr_active,
1985 		.regset_get = compat_vfp_get,
1986 		.set = compat_vfp_set
1987 	},
1988 };
1989 
1990 static const struct user_regset_view user_aarch32_view = {
1991 	.name = "aarch32", .e_machine = EM_ARM,
1992 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1993 };
1994 
1995 static const struct user_regset aarch32_ptrace_regsets[] = {
1996 	[REGSET_GPR] = {
1997 		USER_REGSET_NOTE_TYPE(PRSTATUS),
1998 		.n = COMPAT_ELF_NGREG,
1999 		.size = sizeof(compat_elf_greg_t),
2000 		.align = sizeof(compat_elf_greg_t),
2001 		.regset_get = compat_gpr_get,
2002 		.set = compat_gpr_set
2003 	},
2004 	[REGSET_FPR] = {
2005 		USER_REGSET_NOTE_TYPE(ARM_VFP),
2006 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
2007 		.size = sizeof(compat_ulong_t),
2008 		.align = sizeof(compat_ulong_t),
2009 		.regset_get = compat_vfp_get,
2010 		.set = compat_vfp_set
2011 	},
2012 	[REGSET_TLS] = {
2013 		USER_REGSET_NOTE_TYPE(ARM_TLS),
2014 		.n = 1,
2015 		.size = sizeof(compat_ulong_t),
2016 		.align = sizeof(compat_ulong_t),
2017 		.regset_get = compat_tls_get,
2018 		.set = compat_tls_set,
2019 	},
2020 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2021 	[REGSET_HW_BREAK] = {
2022 		USER_REGSET_NOTE_TYPE(ARM_HW_BREAK),
2023 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
2024 		.size = sizeof(u32),
2025 		.align = sizeof(u32),
2026 		.regset_get = hw_break_get,
2027 		.set = hw_break_set,
2028 	},
2029 	[REGSET_HW_WATCH] = {
2030 		USER_REGSET_NOTE_TYPE(ARM_HW_WATCH),
2031 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
2032 		.size = sizeof(u32),
2033 		.align = sizeof(u32),
2034 		.regset_get = hw_break_get,
2035 		.set = hw_break_set,
2036 	},
2037 #endif
2038 	[REGSET_SYSTEM_CALL] = {
2039 		USER_REGSET_NOTE_TYPE(ARM_SYSTEM_CALL),
2040 		.n = 1,
2041 		.size = sizeof(int),
2042 		.align = sizeof(int),
2043 		.regset_get = system_call_get,
2044 		.set = system_call_set,
2045 	},
2046 };
2047 
2048 static const struct user_regset_view user_aarch32_ptrace_view = {
2049 	.name = "aarch32", .e_machine = EM_ARM,
2050 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
2051 };
2052 
2053 #ifdef CONFIG_COMPAT
2054 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
2055 				   compat_ulong_t __user *ret)
2056 {
2057 	compat_ulong_t tmp;
2058 
2059 	if (off & 3)
2060 		return -EIO;
2061 
2062 	if (off == COMPAT_PT_TEXT_ADDR)
2063 		tmp = tsk->mm->start_code;
2064 	else if (off == COMPAT_PT_DATA_ADDR)
2065 		tmp = tsk->mm->start_data;
2066 	else if (off == COMPAT_PT_TEXT_END_ADDR)
2067 		tmp = tsk->mm->end_code;
2068 	else if (off < sizeof(compat_elf_gregset_t))
2069 		tmp = compat_get_user_reg(tsk, off >> 2);
2070 	else if (off >= COMPAT_USER_SZ)
2071 		return -EIO;
2072 	else
2073 		tmp = 0;
2074 
2075 	return put_user(tmp, ret);
2076 }
2077 
2078 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
2079 				    compat_ulong_t val)
2080 {
2081 	struct pt_regs newregs = *task_pt_regs(tsk);
2082 	unsigned int idx = off / 4;
2083 
2084 	if (off & 3 || off >= COMPAT_USER_SZ)
2085 		return -EIO;
2086 
2087 	if (off >= sizeof(compat_elf_gregset_t))
2088 		return 0;
2089 
2090 	switch (idx) {
2091 	case 15:
2092 		newregs.pc = val;
2093 		break;
2094 	case 16:
2095 		newregs.pstate = compat_psr_to_pstate(val);
2096 		break;
2097 	case 17:
2098 		newregs.orig_x0 = val;
2099 		break;
2100 	default:
2101 		newregs.regs[idx] = val;
2102 	}
2103 
2104 	if (!valid_user_regs(&newregs.user_regs, tsk))
2105 		return -EINVAL;
2106 
2107 	*task_pt_regs(tsk) = newregs;
2108 	return 0;
2109 }
2110 
2111 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2112 
2113 /*
2114  * Convert a virtual register number into an index for a thread_info
2115  * breakpoint array. Breakpoints are identified using positive numbers
2116  * whilst watchpoints are negative. The registers are laid out as pairs
2117  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
2118  * Register 0 is reserved for describing resource information.
2119  */
2120 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
2121 {
2122 	return (abs(num) - 1) >> 1;
2123 }
2124 
2125 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
2126 {
2127 	u8 num_brps, num_wrps, debug_arch, wp_len;
2128 	u32 reg = 0;
2129 
2130 	num_brps	= hw_breakpoint_slots(TYPE_INST);
2131 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
2132 
2133 	debug_arch	= debug_monitors_arch();
2134 	wp_len		= 8;
2135 	reg		|= debug_arch;
2136 	reg		<<= 8;
2137 	reg		|= wp_len;
2138 	reg		<<= 8;
2139 	reg		|= num_wrps;
2140 	reg		<<= 8;
2141 	reg		|= num_brps;
2142 
2143 	*kdata = reg;
2144 	return 0;
2145 }
2146 
2147 static int compat_ptrace_hbp_get(unsigned int note_type,
2148 				 struct task_struct *tsk,
2149 				 compat_long_t num,
2150 				 u32 *kdata)
2151 {
2152 	u64 addr = 0;
2153 	u32 ctrl = 0;
2154 
2155 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
2156 
2157 	if (num & 1) {
2158 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
2159 		*kdata = (u32)addr;
2160 	} else {
2161 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
2162 		*kdata = ctrl;
2163 	}
2164 
2165 	return err;
2166 }
2167 
2168 static int compat_ptrace_hbp_set(unsigned int note_type,
2169 				 struct task_struct *tsk,
2170 				 compat_long_t num,
2171 				 u32 *kdata)
2172 {
2173 	u64 addr;
2174 	u32 ctrl;
2175 
2176 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
2177 
2178 	if (num & 1) {
2179 		addr = *kdata;
2180 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
2181 	} else {
2182 		ctrl = *kdata;
2183 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
2184 	}
2185 
2186 	return err;
2187 }
2188 
2189 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
2190 				    compat_ulong_t __user *data)
2191 {
2192 	int ret;
2193 	u32 kdata;
2194 
2195 	/* Watchpoint */
2196 	if (num < 0) {
2197 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
2198 	/* Resource info */
2199 	} else if (num == 0) {
2200 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
2201 	/* Breakpoint */
2202 	} else {
2203 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
2204 	}
2205 
2206 	if (!ret)
2207 		ret = put_user(kdata, data);
2208 
2209 	return ret;
2210 }
2211 
2212 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
2213 				    compat_ulong_t __user *data)
2214 {
2215 	int ret;
2216 	u32 kdata = 0;
2217 
2218 	if (num == 0)
2219 		return 0;
2220 
2221 	ret = get_user(kdata, data);
2222 	if (ret)
2223 		return ret;
2224 
2225 	if (num < 0)
2226 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
2227 	else
2228 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
2229 
2230 	return ret;
2231 }
2232 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
2233 
2234 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
2235 			compat_ulong_t caddr, compat_ulong_t cdata)
2236 {
2237 	unsigned long addr = caddr;
2238 	unsigned long data = cdata;
2239 	void __user *datap = compat_ptr(data);
2240 	int ret;
2241 
2242 	switch (request) {
2243 		case PTRACE_PEEKUSR:
2244 			ret = compat_ptrace_read_user(child, addr, datap);
2245 			break;
2246 
2247 		case PTRACE_POKEUSR:
2248 			ret = compat_ptrace_write_user(child, addr, data);
2249 			break;
2250 
2251 		case COMPAT_PTRACE_GETREGS:
2252 			ret = copy_regset_to_user(child,
2253 						  &user_aarch32_view,
2254 						  REGSET_COMPAT_GPR,
2255 						  0, sizeof(compat_elf_gregset_t),
2256 						  datap);
2257 			break;
2258 
2259 		case COMPAT_PTRACE_SETREGS:
2260 			ret = copy_regset_from_user(child,
2261 						    &user_aarch32_view,
2262 						    REGSET_COMPAT_GPR,
2263 						    0, sizeof(compat_elf_gregset_t),
2264 						    datap);
2265 			break;
2266 
2267 		case COMPAT_PTRACE_GET_THREAD_AREA:
2268 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
2269 				       (compat_ulong_t __user *)datap);
2270 			break;
2271 
2272 		case COMPAT_PTRACE_SET_SYSCALL:
2273 			task_pt_regs(child)->syscallno = data;
2274 			ret = 0;
2275 			break;
2276 
2277 		case COMPAT_PTRACE_GETVFPREGS:
2278 			ret = copy_regset_to_user(child,
2279 						  &user_aarch32_view,
2280 						  REGSET_COMPAT_VFP,
2281 						  0, VFP_STATE_SIZE,
2282 						  datap);
2283 			break;
2284 
2285 		case COMPAT_PTRACE_SETVFPREGS:
2286 			ret = copy_regset_from_user(child,
2287 						    &user_aarch32_view,
2288 						    REGSET_COMPAT_VFP,
2289 						    0, VFP_STATE_SIZE,
2290 						    datap);
2291 			break;
2292 
2293 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2294 		case COMPAT_PTRACE_GETHBPREGS:
2295 			ret = compat_ptrace_gethbpregs(child, addr, datap);
2296 			break;
2297 
2298 		case COMPAT_PTRACE_SETHBPREGS:
2299 			ret = compat_ptrace_sethbpregs(child, addr, datap);
2300 			break;
2301 #endif
2302 
2303 		default:
2304 			ret = compat_ptrace_request(child, request, addr,
2305 						    data);
2306 			break;
2307 	}
2308 
2309 	return ret;
2310 }
2311 #endif /* CONFIG_COMPAT */
2312 
2313 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2314 {
2315 	/*
2316 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
2317 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
2318 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
2319 	 * access to the TLS register.
2320 	 */
2321 	if (is_compat_task())
2322 		return &user_aarch32_view;
2323 	else if (is_compat_thread(task_thread_info(task)))
2324 		return &user_aarch32_ptrace_view;
2325 
2326 	return &user_aarch64_view;
2327 }
2328 
2329 long arch_ptrace(struct task_struct *child, long request,
2330 		 unsigned long addr, unsigned long data)
2331 {
2332 	switch (request) {
2333 	case PTRACE_PEEKMTETAGS:
2334 	case PTRACE_POKEMTETAGS:
2335 		return mte_ptrace_copy_tags(child, request, addr, data);
2336 	}
2337 
2338 	return ptrace_request(child, request, addr, data);
2339 }
2340 
2341 enum ptrace_syscall_dir {
2342 	PTRACE_SYSCALL_ENTER = 0,
2343 	PTRACE_SYSCALL_EXIT,
2344 };
2345 
2346 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
2347 {
2348 	int regno;
2349 	unsigned long saved_reg;
2350 
2351 	/*
2352 	 * We have some ABI weirdness here in the way that we handle syscall
2353 	 * exit stops because we indicate whether or not the stop has been
2354 	 * signalled from syscall entry or syscall exit by clobbering a general
2355 	 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
2356 	 * and restoring its old value after the stop. This means that:
2357 	 *
2358 	 * - Any writes by the tracer to this register during the stop are
2359 	 *   ignored/discarded.
2360 	 *
2361 	 * - The actual value of the register is not available during the stop,
2362 	 *   so the tracer cannot save it and restore it later.
2363 	 *
2364 	 * - Syscall stops behave differently to seccomp and pseudo-step traps
2365 	 *   (the latter do not nobble any registers).
2366 	 */
2367 	regno = (is_compat_task() ? 12 : 7);
2368 	saved_reg = regs->regs[regno];
2369 	regs->regs[regno] = dir;
2370 
2371 	if (dir == PTRACE_SYSCALL_ENTER) {
2372 		if (ptrace_report_syscall_entry(regs))
2373 			forget_syscall(regs);
2374 		regs->regs[regno] = saved_reg;
2375 	} else if (!test_thread_flag(TIF_SINGLESTEP)) {
2376 		ptrace_report_syscall_exit(regs, 0);
2377 		regs->regs[regno] = saved_reg;
2378 	} else {
2379 		regs->regs[regno] = saved_reg;
2380 
2381 		/*
2382 		 * Signal a pseudo-step exception since we are stepping but
2383 		 * tracer modifications to the registers may have rewound the
2384 		 * state machine.
2385 		 */
2386 		ptrace_report_syscall_exit(regs, 1);
2387 	}
2388 }
2389 
2390 int syscall_trace_enter(struct pt_regs *regs)
2391 {
2392 	unsigned long flags = read_thread_flags();
2393 
2394 	if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
2395 		report_syscall(regs, PTRACE_SYSCALL_ENTER);
2396 		if (flags & _TIF_SYSCALL_EMU)
2397 			return NO_SYSCALL;
2398 	}
2399 
2400 	/* Do the secure computing after ptrace; failures should be fast. */
2401 	if (secure_computing() == -1)
2402 		return NO_SYSCALL;
2403 
2404 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
2405 		trace_sys_enter(regs, regs->syscallno);
2406 
2407 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
2408 			    regs->regs[2], regs->regs[3]);
2409 
2410 	return regs->syscallno;
2411 }
2412 
2413 void syscall_trace_exit(struct pt_regs *regs)
2414 {
2415 	unsigned long flags = read_thread_flags();
2416 
2417 	audit_syscall_exit(regs);
2418 
2419 	if (flags & _TIF_SYSCALL_TRACEPOINT)
2420 		trace_sys_exit(regs, syscall_get_return_value(current, regs));
2421 
2422 	if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
2423 		report_syscall(regs, PTRACE_SYSCALL_EXIT);
2424 
2425 	rseq_syscall(regs);
2426 }
2427 
2428 /*
2429  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
2430  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
2431  * not described in ARM DDI 0487D.a.
2432  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
2433  * be allocated an EL0 meaning in future.
2434  * Userspace cannot use these until they have an architectural meaning.
2435  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
2436  * We also reserve IL for the kernel; SS is handled dynamically.
2437  */
2438 #define SPSR_EL1_AARCH64_RES0_BITS \
2439 	(GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
2440 	 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
2441 #define SPSR_EL1_AARCH32_RES0_BITS \
2442 	(GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
2443 
2444 static int valid_compat_regs(struct user_pt_regs *regs)
2445 {
2446 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
2447 
2448 	if (!system_supports_mixed_endian_el0()) {
2449 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
2450 			regs->pstate |= PSR_AA32_E_BIT;
2451 		else
2452 			regs->pstate &= ~PSR_AA32_E_BIT;
2453 	}
2454 
2455 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
2456 	    (regs->pstate & PSR_AA32_A_BIT) == 0 &&
2457 	    (regs->pstate & PSR_AA32_I_BIT) == 0 &&
2458 	    (regs->pstate & PSR_AA32_F_BIT) == 0) {
2459 		return 1;
2460 	}
2461 
2462 	/*
2463 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
2464 	 * arch/arm.
2465 	 */
2466 	regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
2467 			PSR_AA32_C_BIT | PSR_AA32_V_BIT |
2468 			PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
2469 			PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
2470 			PSR_AA32_T_BIT;
2471 	regs->pstate |= PSR_MODE32_BIT;
2472 
2473 	return 0;
2474 }
2475 
2476 static int valid_native_regs(struct user_pt_regs *regs)
2477 {
2478 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
2479 
2480 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
2481 	    (regs->pstate & PSR_D_BIT) == 0 &&
2482 	    (regs->pstate & PSR_A_BIT) == 0 &&
2483 	    (regs->pstate & PSR_I_BIT) == 0 &&
2484 	    (regs->pstate & PSR_F_BIT) == 0) {
2485 		return 1;
2486 	}
2487 
2488 	/* Force PSR to a valid 64-bit EL0t */
2489 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
2490 
2491 	return 0;
2492 }
2493 
2494 /*
2495  * Are the current registers suitable for user mode? (used to maintain
2496  * security in signal handlers)
2497  */
2498 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
2499 {
2500 	/* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
2501 	user_regs_reset_single_step(regs, task);
2502 
2503 	if (is_compat_thread(task_thread_info(task)))
2504 		return valid_compat_regs(regs);
2505 	else
2506 		return valid_native_regs(regs);
2507 }
2508