xref: /linux/arch/arm64/kernel/ptrace.c (revision 3f58ff6b53c11773b1bd564082fae37d48e0cc40)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/ptrace.c
4  *
5  * By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  * Copyright (C) 2012 ARM Ltd.
9  */
10 
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/elf.h>
31 
32 #include <asm/compat.h>
33 #include <asm/cpufeature.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/fpsimd.h>
36 #include <asm/mte.h>
37 #include <asm/pointer_auth.h>
38 #include <asm/stacktrace.h>
39 #include <asm/syscall.h>
40 #include <asm/traps.h>
41 #include <asm/system_misc.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/syscalls.h>
45 
46 struct pt_regs_offset {
47 	const char *name;
48 	int offset;
49 };
50 
51 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
52 #define REG_OFFSET_END {.name = NULL, .offset = 0}
53 #define GPR_OFFSET_NAME(r) \
54 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
55 
56 static const struct pt_regs_offset regoffset_table[] = {
57 	GPR_OFFSET_NAME(0),
58 	GPR_OFFSET_NAME(1),
59 	GPR_OFFSET_NAME(2),
60 	GPR_OFFSET_NAME(3),
61 	GPR_OFFSET_NAME(4),
62 	GPR_OFFSET_NAME(5),
63 	GPR_OFFSET_NAME(6),
64 	GPR_OFFSET_NAME(7),
65 	GPR_OFFSET_NAME(8),
66 	GPR_OFFSET_NAME(9),
67 	GPR_OFFSET_NAME(10),
68 	GPR_OFFSET_NAME(11),
69 	GPR_OFFSET_NAME(12),
70 	GPR_OFFSET_NAME(13),
71 	GPR_OFFSET_NAME(14),
72 	GPR_OFFSET_NAME(15),
73 	GPR_OFFSET_NAME(16),
74 	GPR_OFFSET_NAME(17),
75 	GPR_OFFSET_NAME(18),
76 	GPR_OFFSET_NAME(19),
77 	GPR_OFFSET_NAME(20),
78 	GPR_OFFSET_NAME(21),
79 	GPR_OFFSET_NAME(22),
80 	GPR_OFFSET_NAME(23),
81 	GPR_OFFSET_NAME(24),
82 	GPR_OFFSET_NAME(25),
83 	GPR_OFFSET_NAME(26),
84 	GPR_OFFSET_NAME(27),
85 	GPR_OFFSET_NAME(28),
86 	GPR_OFFSET_NAME(29),
87 	GPR_OFFSET_NAME(30),
88 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
89 	REG_OFFSET_NAME(sp),
90 	REG_OFFSET_NAME(pc),
91 	REG_OFFSET_NAME(pstate),
92 	REG_OFFSET_END,
93 };
94 
95 /**
96  * regs_query_register_offset() - query register offset from its name
97  * @name:	the name of a register
98  *
99  * regs_query_register_offset() returns the offset of a register in struct
100  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
101  */
102 int regs_query_register_offset(const char *name)
103 {
104 	const struct pt_regs_offset *roff;
105 
106 	for (roff = regoffset_table; roff->name != NULL; roff++)
107 		if (!strcmp(roff->name, name))
108 			return roff->offset;
109 	return -EINVAL;
110 }
111 
112 /**
113  * regs_within_kernel_stack() - check the address in the stack
114  * @regs:      pt_regs which contains kernel stack pointer.
115  * @addr:      address which is checked.
116  *
117  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
118  * If @addr is within the kernel stack, it returns true. If not, returns false.
119  */
120 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
121 {
122 	return ((addr & ~(THREAD_SIZE - 1))  ==
123 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
124 		on_irq_stack(addr, sizeof(unsigned long));
125 }
126 
127 /**
128  * regs_get_kernel_stack_nth() - get Nth entry of the stack
129  * @regs:	pt_regs which contains kernel stack pointer.
130  * @n:		stack entry number.
131  *
132  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
133  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
134  * this returns 0.
135  */
136 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
137 {
138 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
139 
140 	addr += n;
141 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
142 		return *addr;
143 	else
144 		return 0;
145 }
146 
147 /*
148  * TODO: does not yet catch signals sent when the child dies.
149  * in exit.c or in signal.c.
150  */
151 
152 /*
153  * Called by kernel/ptrace.c when detaching..
154  */
155 void ptrace_disable(struct task_struct *child)
156 {
157 	/*
158 	 * This would be better off in core code, but PTRACE_DETACH has
159 	 * grown its fair share of arch-specific worts and changing it
160 	 * is likely to cause regressions on obscure architectures.
161 	 */
162 	user_disable_single_step(child);
163 }
164 
165 #ifdef CONFIG_HAVE_HW_BREAKPOINT
166 /*
167  * Handle hitting a HW-breakpoint.
168  */
169 static void ptrace_hbptriggered(struct perf_event *bp,
170 				struct perf_sample_data *data,
171 				struct pt_regs *regs)
172 {
173 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
174 	const char *desc = "Hardware breakpoint trap (ptrace)";
175 
176 #ifdef CONFIG_COMPAT
177 	if (is_compat_task()) {
178 		int si_errno = 0;
179 		int i;
180 
181 		for (i = 0; i < ARM_MAX_BRP; ++i) {
182 			if (current->thread.debug.hbp_break[i] == bp) {
183 				si_errno = (i << 1) + 1;
184 				break;
185 			}
186 		}
187 
188 		for (i = 0; i < ARM_MAX_WRP; ++i) {
189 			if (current->thread.debug.hbp_watch[i] == bp) {
190 				si_errno = -((i << 1) + 1);
191 				break;
192 			}
193 		}
194 		arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
195 						  desc);
196 		return;
197 	}
198 #endif
199 	arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
200 }
201 
202 /*
203  * Unregister breakpoints from this task and reset the pointers in
204  * the thread_struct.
205  */
206 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
207 {
208 	int i;
209 	struct thread_struct *t = &tsk->thread;
210 
211 	for (i = 0; i < ARM_MAX_BRP; i++) {
212 		if (t->debug.hbp_break[i]) {
213 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
214 			t->debug.hbp_break[i] = NULL;
215 		}
216 	}
217 
218 	for (i = 0; i < ARM_MAX_WRP; i++) {
219 		if (t->debug.hbp_watch[i]) {
220 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
221 			t->debug.hbp_watch[i] = NULL;
222 		}
223 	}
224 }
225 
226 void ptrace_hw_copy_thread(struct task_struct *tsk)
227 {
228 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
229 }
230 
231 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
232 					       struct task_struct *tsk,
233 					       unsigned long idx)
234 {
235 	struct perf_event *bp = ERR_PTR(-EINVAL);
236 
237 	switch (note_type) {
238 	case NT_ARM_HW_BREAK:
239 		if (idx >= ARM_MAX_BRP)
240 			goto out;
241 		idx = array_index_nospec(idx, ARM_MAX_BRP);
242 		bp = tsk->thread.debug.hbp_break[idx];
243 		break;
244 	case NT_ARM_HW_WATCH:
245 		if (idx >= ARM_MAX_WRP)
246 			goto out;
247 		idx = array_index_nospec(idx, ARM_MAX_WRP);
248 		bp = tsk->thread.debug.hbp_watch[idx];
249 		break;
250 	}
251 
252 out:
253 	return bp;
254 }
255 
256 static int ptrace_hbp_set_event(unsigned int note_type,
257 				struct task_struct *tsk,
258 				unsigned long idx,
259 				struct perf_event *bp)
260 {
261 	int err = -EINVAL;
262 
263 	switch (note_type) {
264 	case NT_ARM_HW_BREAK:
265 		if (idx >= ARM_MAX_BRP)
266 			goto out;
267 		idx = array_index_nospec(idx, ARM_MAX_BRP);
268 		tsk->thread.debug.hbp_break[idx] = bp;
269 		err = 0;
270 		break;
271 	case NT_ARM_HW_WATCH:
272 		if (idx >= ARM_MAX_WRP)
273 			goto out;
274 		idx = array_index_nospec(idx, ARM_MAX_WRP);
275 		tsk->thread.debug.hbp_watch[idx] = bp;
276 		err = 0;
277 		break;
278 	}
279 
280 out:
281 	return err;
282 }
283 
284 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
285 					    struct task_struct *tsk,
286 					    unsigned long idx)
287 {
288 	struct perf_event *bp;
289 	struct perf_event_attr attr;
290 	int err, type;
291 
292 	switch (note_type) {
293 	case NT_ARM_HW_BREAK:
294 		type = HW_BREAKPOINT_X;
295 		break;
296 	case NT_ARM_HW_WATCH:
297 		type = HW_BREAKPOINT_RW;
298 		break;
299 	default:
300 		return ERR_PTR(-EINVAL);
301 	}
302 
303 	ptrace_breakpoint_init(&attr);
304 
305 	/*
306 	 * Initialise fields to sane defaults
307 	 * (i.e. values that will pass validation).
308 	 */
309 	attr.bp_addr	= 0;
310 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
311 	attr.bp_type	= type;
312 	attr.disabled	= 1;
313 
314 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
315 	if (IS_ERR(bp))
316 		return bp;
317 
318 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
319 	if (err)
320 		return ERR_PTR(err);
321 
322 	return bp;
323 }
324 
325 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
326 				     struct arch_hw_breakpoint_ctrl ctrl,
327 				     struct perf_event_attr *attr)
328 {
329 	int err, len, type, offset, disabled = !ctrl.enabled;
330 
331 	attr->disabled = disabled;
332 	if (disabled)
333 		return 0;
334 
335 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
336 	if (err)
337 		return err;
338 
339 	switch (note_type) {
340 	case NT_ARM_HW_BREAK:
341 		if ((type & HW_BREAKPOINT_X) != type)
342 			return -EINVAL;
343 		break;
344 	case NT_ARM_HW_WATCH:
345 		if ((type & HW_BREAKPOINT_RW) != type)
346 			return -EINVAL;
347 		break;
348 	default:
349 		return -EINVAL;
350 	}
351 
352 	attr->bp_len	= len;
353 	attr->bp_type	= type;
354 	attr->bp_addr	+= offset;
355 
356 	return 0;
357 }
358 
359 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
360 {
361 	u8 num;
362 	u32 reg = 0;
363 
364 	switch (note_type) {
365 	case NT_ARM_HW_BREAK:
366 		num = hw_breakpoint_slots(TYPE_INST);
367 		break;
368 	case NT_ARM_HW_WATCH:
369 		num = hw_breakpoint_slots(TYPE_DATA);
370 		break;
371 	default:
372 		return -EINVAL;
373 	}
374 
375 	reg |= debug_monitors_arch();
376 	reg <<= 8;
377 	reg |= num;
378 
379 	*info = reg;
380 	return 0;
381 }
382 
383 static int ptrace_hbp_get_ctrl(unsigned int note_type,
384 			       struct task_struct *tsk,
385 			       unsigned long idx,
386 			       u32 *ctrl)
387 {
388 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
389 
390 	if (IS_ERR(bp))
391 		return PTR_ERR(bp);
392 
393 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
394 	return 0;
395 }
396 
397 static int ptrace_hbp_get_addr(unsigned int note_type,
398 			       struct task_struct *tsk,
399 			       unsigned long idx,
400 			       u64 *addr)
401 {
402 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
403 
404 	if (IS_ERR(bp))
405 		return PTR_ERR(bp);
406 
407 	*addr = bp ? counter_arch_bp(bp)->address : 0;
408 	return 0;
409 }
410 
411 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
412 							struct task_struct *tsk,
413 							unsigned long idx)
414 {
415 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
416 
417 	if (!bp)
418 		bp = ptrace_hbp_create(note_type, tsk, idx);
419 
420 	return bp;
421 }
422 
423 static int ptrace_hbp_set_ctrl(unsigned int note_type,
424 			       struct task_struct *tsk,
425 			       unsigned long idx,
426 			       u32 uctrl)
427 {
428 	int err;
429 	struct perf_event *bp;
430 	struct perf_event_attr attr;
431 	struct arch_hw_breakpoint_ctrl ctrl;
432 
433 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
434 	if (IS_ERR(bp)) {
435 		err = PTR_ERR(bp);
436 		return err;
437 	}
438 
439 	attr = bp->attr;
440 	decode_ctrl_reg(uctrl, &ctrl);
441 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
442 	if (err)
443 		return err;
444 
445 	return modify_user_hw_breakpoint(bp, &attr);
446 }
447 
448 static int ptrace_hbp_set_addr(unsigned int note_type,
449 			       struct task_struct *tsk,
450 			       unsigned long idx,
451 			       u64 addr)
452 {
453 	int err;
454 	struct perf_event *bp;
455 	struct perf_event_attr attr;
456 
457 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
458 	if (IS_ERR(bp)) {
459 		err = PTR_ERR(bp);
460 		return err;
461 	}
462 
463 	attr = bp->attr;
464 	attr.bp_addr = addr;
465 	err = modify_user_hw_breakpoint(bp, &attr);
466 	return err;
467 }
468 
469 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
470 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
471 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
472 
473 static int hw_break_get(struct task_struct *target,
474 			const struct user_regset *regset,
475 			struct membuf to)
476 {
477 	unsigned int note_type = regset->core_note_type;
478 	int ret, idx = 0;
479 	u32 info, ctrl;
480 	u64 addr;
481 
482 	/* Resource info */
483 	ret = ptrace_hbp_get_resource_info(note_type, &info);
484 	if (ret)
485 		return ret;
486 
487 	membuf_write(&to, &info, sizeof(info));
488 	membuf_zero(&to, sizeof(u32));
489 	/* (address, ctrl) registers */
490 	while (to.left) {
491 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
492 		if (ret)
493 			return ret;
494 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
495 		if (ret)
496 			return ret;
497 		membuf_store(&to, addr);
498 		membuf_store(&to, ctrl);
499 		membuf_zero(&to, sizeof(u32));
500 		idx++;
501 	}
502 	return 0;
503 }
504 
505 static int hw_break_set(struct task_struct *target,
506 			const struct user_regset *regset,
507 			unsigned int pos, unsigned int count,
508 			const void *kbuf, const void __user *ubuf)
509 {
510 	unsigned int note_type = regset->core_note_type;
511 	int ret, idx = 0, offset, limit;
512 	u32 ctrl;
513 	u64 addr;
514 
515 	/* Resource info and pad */
516 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
517 	user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
518 
519 	/* (address, ctrl) registers */
520 	limit = regset->n * regset->size;
521 	while (count && offset < limit) {
522 		if (count < PTRACE_HBP_ADDR_SZ)
523 			return -EINVAL;
524 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
525 					 offset, offset + PTRACE_HBP_ADDR_SZ);
526 		if (ret)
527 			return ret;
528 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
529 		if (ret)
530 			return ret;
531 		offset += PTRACE_HBP_ADDR_SZ;
532 
533 		if (!count)
534 			break;
535 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
536 					 offset, offset + PTRACE_HBP_CTRL_SZ);
537 		if (ret)
538 			return ret;
539 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
540 		if (ret)
541 			return ret;
542 		offset += PTRACE_HBP_CTRL_SZ;
543 
544 		user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
545 					  offset, offset + PTRACE_HBP_PAD_SZ);
546 		offset += PTRACE_HBP_PAD_SZ;
547 		idx++;
548 	}
549 
550 	return 0;
551 }
552 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
553 
554 static int gpr_get(struct task_struct *target,
555 		   const struct user_regset *regset,
556 		   struct membuf to)
557 {
558 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
559 	return membuf_write(&to, uregs, sizeof(*uregs));
560 }
561 
562 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
563 		   unsigned int pos, unsigned int count,
564 		   const void *kbuf, const void __user *ubuf)
565 {
566 	int ret;
567 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
568 
569 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
570 	if (ret)
571 		return ret;
572 
573 	if (!valid_user_regs(&newregs, target))
574 		return -EINVAL;
575 
576 	task_pt_regs(target)->user_regs = newregs;
577 	return 0;
578 }
579 
580 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
581 {
582 	if (!system_supports_fpsimd())
583 		return -ENODEV;
584 	return regset->n;
585 }
586 
587 /*
588  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
589  */
590 static int __fpr_get(struct task_struct *target,
591 		     const struct user_regset *regset,
592 		     struct membuf to)
593 {
594 	struct user_fpsimd_state *uregs;
595 
596 	sve_sync_to_fpsimd(target);
597 
598 	uregs = &target->thread.uw.fpsimd_state;
599 
600 	return membuf_write(&to, uregs, sizeof(*uregs));
601 }
602 
603 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
604 		   struct membuf to)
605 {
606 	if (!system_supports_fpsimd())
607 		return -EINVAL;
608 
609 	if (target == current)
610 		fpsimd_preserve_current_state();
611 
612 	return __fpr_get(target, regset, to);
613 }
614 
615 static int __fpr_set(struct task_struct *target,
616 		     const struct user_regset *regset,
617 		     unsigned int pos, unsigned int count,
618 		     const void *kbuf, const void __user *ubuf,
619 		     unsigned int start_pos)
620 {
621 	int ret;
622 	struct user_fpsimd_state newstate;
623 
624 	/*
625 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
626 	 * short copyin can't resurrect stale data.
627 	 */
628 	sve_sync_to_fpsimd(target);
629 
630 	newstate = target->thread.uw.fpsimd_state;
631 
632 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
633 				 start_pos, start_pos + sizeof(newstate));
634 	if (ret)
635 		return ret;
636 
637 	target->thread.uw.fpsimd_state = newstate;
638 
639 	return ret;
640 }
641 
642 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
643 		   unsigned int pos, unsigned int count,
644 		   const void *kbuf, const void __user *ubuf)
645 {
646 	int ret;
647 
648 	if (!system_supports_fpsimd())
649 		return -EINVAL;
650 
651 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
652 	if (ret)
653 		return ret;
654 
655 	sve_sync_from_fpsimd_zeropad(target);
656 	fpsimd_flush_task_state(target);
657 
658 	return ret;
659 }
660 
661 static int tls_get(struct task_struct *target, const struct user_regset *regset,
662 		   struct membuf to)
663 {
664 	int ret;
665 
666 	if (target == current)
667 		tls_preserve_current_state();
668 
669 	ret = membuf_store(&to, target->thread.uw.tp_value);
670 	if (system_supports_tpidr2())
671 		ret = membuf_store(&to, target->thread.tpidr2_el0);
672 	else
673 		ret = membuf_zero(&to, sizeof(u64));
674 
675 	return ret;
676 }
677 
678 static int tls_set(struct task_struct *target, const struct user_regset *regset,
679 		   unsigned int pos, unsigned int count,
680 		   const void *kbuf, const void __user *ubuf)
681 {
682 	int ret;
683 	unsigned long tls[2];
684 
685 	tls[0] = target->thread.uw.tp_value;
686 	if (system_supports_sme())
687 		tls[1] = target->thread.tpidr2_el0;
688 
689 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, tls, 0, count);
690 	if (ret)
691 		return ret;
692 
693 	target->thread.uw.tp_value = tls[0];
694 	if (system_supports_sme())
695 		target->thread.tpidr2_el0 = tls[1];
696 
697 	return ret;
698 }
699 
700 static int system_call_get(struct task_struct *target,
701 			   const struct user_regset *regset,
702 			   struct membuf to)
703 {
704 	return membuf_store(&to, task_pt_regs(target)->syscallno);
705 }
706 
707 static int system_call_set(struct task_struct *target,
708 			   const struct user_regset *regset,
709 			   unsigned int pos, unsigned int count,
710 			   const void *kbuf, const void __user *ubuf)
711 {
712 	int syscallno = task_pt_regs(target)->syscallno;
713 	int ret;
714 
715 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
716 	if (ret)
717 		return ret;
718 
719 	task_pt_regs(target)->syscallno = syscallno;
720 	return ret;
721 }
722 
723 #ifdef CONFIG_ARM64_SVE
724 
725 static void sve_init_header_from_task(struct user_sve_header *header,
726 				      struct task_struct *target,
727 				      enum vec_type type)
728 {
729 	unsigned int vq;
730 	bool active;
731 	bool fpsimd_only;
732 	enum vec_type task_type;
733 
734 	memset(header, 0, sizeof(*header));
735 
736 	/* Check if the requested registers are active for the task */
737 	if (thread_sm_enabled(&target->thread))
738 		task_type = ARM64_VEC_SME;
739 	else
740 		task_type = ARM64_VEC_SVE;
741 	active = (task_type == type);
742 
743 	switch (type) {
744 	case ARM64_VEC_SVE:
745 		if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
746 			header->flags |= SVE_PT_VL_INHERIT;
747 		fpsimd_only = !test_tsk_thread_flag(target, TIF_SVE);
748 		break;
749 	case ARM64_VEC_SME:
750 		if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
751 			header->flags |= SVE_PT_VL_INHERIT;
752 		fpsimd_only = false;
753 		break;
754 	default:
755 		WARN_ON_ONCE(1);
756 		return;
757 	}
758 
759 	if (active) {
760 		if (fpsimd_only) {
761 			header->flags |= SVE_PT_REGS_FPSIMD;
762 		} else {
763 			header->flags |= SVE_PT_REGS_SVE;
764 		}
765 	}
766 
767 	header->vl = task_get_vl(target, type);
768 	vq = sve_vq_from_vl(header->vl);
769 
770 	header->max_vl = vec_max_vl(type);
771 	header->size = SVE_PT_SIZE(vq, header->flags);
772 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
773 				      SVE_PT_REGS_SVE);
774 }
775 
776 static unsigned int sve_size_from_header(struct user_sve_header const *header)
777 {
778 	return ALIGN(header->size, SVE_VQ_BYTES);
779 }
780 
781 static int sve_get_common(struct task_struct *target,
782 			  const struct user_regset *regset,
783 			  struct membuf to,
784 			  enum vec_type type)
785 {
786 	struct user_sve_header header;
787 	unsigned int vq;
788 	unsigned long start, end;
789 
790 	/* Header */
791 	sve_init_header_from_task(&header, target, type);
792 	vq = sve_vq_from_vl(header.vl);
793 
794 	membuf_write(&to, &header, sizeof(header));
795 
796 	if (target == current)
797 		fpsimd_preserve_current_state();
798 
799 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
800 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
801 
802 	switch ((header.flags & SVE_PT_REGS_MASK)) {
803 	case SVE_PT_REGS_FPSIMD:
804 		return __fpr_get(target, regset, to);
805 
806 	case SVE_PT_REGS_SVE:
807 		start = SVE_PT_SVE_OFFSET;
808 		end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
809 		membuf_write(&to, target->thread.sve_state, end - start);
810 
811 		start = end;
812 		end = SVE_PT_SVE_FPSR_OFFSET(vq);
813 		membuf_zero(&to, end - start);
814 
815 		/*
816 		 * Copy fpsr, and fpcr which must follow contiguously in
817 		 * struct fpsimd_state:
818 		 */
819 		start = end;
820 		end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
821 		membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr,
822 			     end - start);
823 
824 		start = end;
825 		end = sve_size_from_header(&header);
826 		return membuf_zero(&to, end - start);
827 
828 	default:
829 		return 0;
830 	}
831 }
832 
833 static int sve_get(struct task_struct *target,
834 		   const struct user_regset *regset,
835 		   struct membuf to)
836 {
837 	if (!system_supports_sve())
838 		return -EINVAL;
839 
840 	return sve_get_common(target, regset, to, ARM64_VEC_SVE);
841 }
842 
843 static int sve_set_common(struct task_struct *target,
844 			  const struct user_regset *regset,
845 			  unsigned int pos, unsigned int count,
846 			  const void *kbuf, const void __user *ubuf,
847 			  enum vec_type type)
848 {
849 	int ret;
850 	struct user_sve_header header;
851 	unsigned int vq;
852 	unsigned long start, end;
853 
854 	/* Header */
855 	if (count < sizeof(header))
856 		return -EINVAL;
857 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
858 				 0, sizeof(header));
859 	if (ret)
860 		goto out;
861 
862 	/*
863 	 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
864 	 * vec_set_vector_length(), which will also validate them for us:
865 	 */
866 	ret = vec_set_vector_length(target, type, header.vl,
867 		((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
868 	if (ret)
869 		goto out;
870 
871 	/* Actual VL set may be less than the user asked for: */
872 	vq = sve_vq_from_vl(task_get_vl(target, type));
873 
874 	/* Enter/exit streaming mode */
875 	if (system_supports_sme()) {
876 		u64 old_svcr = target->thread.svcr;
877 
878 		switch (type) {
879 		case ARM64_VEC_SVE:
880 			target->thread.svcr &= ~SVCR_SM_MASK;
881 			break;
882 		case ARM64_VEC_SME:
883 			target->thread.svcr |= SVCR_SM_MASK;
884 			break;
885 		default:
886 			WARN_ON_ONCE(1);
887 			return -EINVAL;
888 		}
889 
890 		/*
891 		 * If we switched then invalidate any existing SVE
892 		 * state and ensure there's storage.
893 		 */
894 		if (target->thread.svcr != old_svcr)
895 			sve_alloc(target, true);
896 	}
897 
898 	/* Registers: FPSIMD-only case */
899 
900 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
901 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
902 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
903 				SVE_PT_FPSIMD_OFFSET);
904 		clear_tsk_thread_flag(target, TIF_SVE);
905 		target->thread.fp_type = FP_STATE_FPSIMD;
906 		goto out;
907 	}
908 
909 	/*
910 	 * Otherwise: no registers or full SVE case.  For backwards
911 	 * compatibility reasons we treat empty flags as SVE registers.
912 	 */
913 
914 	/*
915 	 * If setting a different VL from the requested VL and there is
916 	 * register data, the data layout will be wrong: don't even
917 	 * try to set the registers in this case.
918 	 */
919 	if (count && vq != sve_vq_from_vl(header.vl)) {
920 		ret = -EIO;
921 		goto out;
922 	}
923 
924 	sve_alloc(target, true);
925 	if (!target->thread.sve_state) {
926 		ret = -ENOMEM;
927 		clear_tsk_thread_flag(target, TIF_SVE);
928 		target->thread.fp_type = FP_STATE_FPSIMD;
929 		goto out;
930 	}
931 
932 	/*
933 	 * Ensure target->thread.sve_state is up to date with target's
934 	 * FPSIMD regs, so that a short copyin leaves trailing
935 	 * registers unmodified.  Always enable SVE even if going into
936 	 * streaming mode.
937 	 */
938 	fpsimd_sync_to_sve(target);
939 	set_tsk_thread_flag(target, TIF_SVE);
940 	target->thread.fp_type = FP_STATE_SVE;
941 
942 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
943 	start = SVE_PT_SVE_OFFSET;
944 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
945 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
946 				 target->thread.sve_state,
947 				 start, end);
948 	if (ret)
949 		goto out;
950 
951 	start = end;
952 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
953 	user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, start, end);
954 
955 	/*
956 	 * Copy fpsr, and fpcr which must follow contiguously in
957 	 * struct fpsimd_state:
958 	 */
959 	start = end;
960 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
961 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
962 				 &target->thread.uw.fpsimd_state.fpsr,
963 				 start, end);
964 
965 out:
966 	fpsimd_flush_task_state(target);
967 	return ret;
968 }
969 
970 static int sve_set(struct task_struct *target,
971 		   const struct user_regset *regset,
972 		   unsigned int pos, unsigned int count,
973 		   const void *kbuf, const void __user *ubuf)
974 {
975 	if (!system_supports_sve())
976 		return -EINVAL;
977 
978 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
979 			      ARM64_VEC_SVE);
980 }
981 
982 #endif /* CONFIG_ARM64_SVE */
983 
984 #ifdef CONFIG_ARM64_SME
985 
986 static int ssve_get(struct task_struct *target,
987 		   const struct user_regset *regset,
988 		   struct membuf to)
989 {
990 	if (!system_supports_sme())
991 		return -EINVAL;
992 
993 	return sve_get_common(target, regset, to, ARM64_VEC_SME);
994 }
995 
996 static int ssve_set(struct task_struct *target,
997 		    const struct user_regset *regset,
998 		    unsigned int pos, unsigned int count,
999 		    const void *kbuf, const void __user *ubuf)
1000 {
1001 	if (!system_supports_sme())
1002 		return -EINVAL;
1003 
1004 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1005 			      ARM64_VEC_SME);
1006 }
1007 
1008 static int za_get(struct task_struct *target,
1009 		  const struct user_regset *regset,
1010 		  struct membuf to)
1011 {
1012 	struct user_za_header header;
1013 	unsigned int vq;
1014 	unsigned long start, end;
1015 
1016 	if (!system_supports_sme())
1017 		return -EINVAL;
1018 
1019 	/* Header */
1020 	memset(&header, 0, sizeof(header));
1021 
1022 	if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
1023 		header.flags |= ZA_PT_VL_INHERIT;
1024 
1025 	header.vl = task_get_sme_vl(target);
1026 	vq = sve_vq_from_vl(header.vl);
1027 	header.max_vl = sme_max_vl();
1028 	header.max_size = ZA_PT_SIZE(vq);
1029 
1030 	/* If ZA is not active there is only the header */
1031 	if (thread_za_enabled(&target->thread))
1032 		header.size = ZA_PT_SIZE(vq);
1033 	else
1034 		header.size = ZA_PT_ZA_OFFSET;
1035 
1036 	membuf_write(&to, &header, sizeof(header));
1037 
1038 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1039 	end = ZA_PT_ZA_OFFSET;
1040 
1041 	if (target == current)
1042 		fpsimd_preserve_current_state();
1043 
1044 	/* Any register data to include? */
1045 	if (thread_za_enabled(&target->thread)) {
1046 		start = end;
1047 		end = ZA_PT_SIZE(vq);
1048 		membuf_write(&to, target->thread.za_state, end - start);
1049 	}
1050 
1051 	/* Zero any trailing padding */
1052 	start = end;
1053 	end = ALIGN(header.size, SVE_VQ_BYTES);
1054 	return membuf_zero(&to, end - start);
1055 }
1056 
1057 static int za_set(struct task_struct *target,
1058 		  const struct user_regset *regset,
1059 		  unsigned int pos, unsigned int count,
1060 		  const void *kbuf, const void __user *ubuf)
1061 {
1062 	int ret;
1063 	struct user_za_header header;
1064 	unsigned int vq;
1065 	unsigned long start, end;
1066 
1067 	if (!system_supports_sme())
1068 		return -EINVAL;
1069 
1070 	/* Header */
1071 	if (count < sizeof(header))
1072 		return -EINVAL;
1073 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
1074 				 0, sizeof(header));
1075 	if (ret)
1076 		goto out;
1077 
1078 	/*
1079 	 * All current ZA_PT_* flags are consumed by
1080 	 * vec_set_vector_length(), which will also validate them for
1081 	 * us:
1082 	 */
1083 	ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl,
1084 		((unsigned long)header.flags) << 16);
1085 	if (ret)
1086 		goto out;
1087 
1088 	/* Actual VL set may be less than the user asked for: */
1089 	vq = sve_vq_from_vl(task_get_sme_vl(target));
1090 
1091 	/* Ensure there is some SVE storage for streaming mode */
1092 	if (!target->thread.sve_state) {
1093 		sve_alloc(target, false);
1094 		if (!target->thread.sve_state) {
1095 			ret = -ENOMEM;
1096 			goto out;
1097 		}
1098 	}
1099 
1100 	/* Allocate/reinit ZA storage */
1101 	sme_alloc(target);
1102 	if (!target->thread.za_state) {
1103 		ret = -ENOMEM;
1104 		goto out;
1105 	}
1106 
1107 	/* If there is no data then disable ZA */
1108 	if (!count) {
1109 		target->thread.svcr &= ~SVCR_ZA_MASK;
1110 		goto out;
1111 	}
1112 
1113 	/*
1114 	 * If setting a different VL from the requested VL and there is
1115 	 * register data, the data layout will be wrong: don't even
1116 	 * try to set the registers in this case.
1117 	 */
1118 	if (vq != sve_vq_from_vl(header.vl)) {
1119 		ret = -EIO;
1120 		goto out;
1121 	}
1122 
1123 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1124 	start = ZA_PT_ZA_OFFSET;
1125 	end = ZA_PT_SIZE(vq);
1126 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1127 				 target->thread.za_state,
1128 				 start, end);
1129 	if (ret)
1130 		goto out;
1131 
1132 	/* Mark ZA as active and let userspace use it */
1133 	set_tsk_thread_flag(target, TIF_SME);
1134 	target->thread.svcr |= SVCR_ZA_MASK;
1135 
1136 out:
1137 	fpsimd_flush_task_state(target);
1138 	return ret;
1139 }
1140 
1141 #endif /* CONFIG_ARM64_SME */
1142 
1143 #ifdef CONFIG_ARM64_PTR_AUTH
1144 static int pac_mask_get(struct task_struct *target,
1145 			const struct user_regset *regset,
1146 			struct membuf to)
1147 {
1148 	/*
1149 	 * The PAC bits can differ across data and instruction pointers
1150 	 * depending on TCR_EL1.TBID*, which we may make use of in future, so
1151 	 * we expose separate masks.
1152 	 */
1153 	unsigned long mask = ptrauth_user_pac_mask();
1154 	struct user_pac_mask uregs = {
1155 		.data_mask = mask,
1156 		.insn_mask = mask,
1157 	};
1158 
1159 	if (!system_supports_address_auth())
1160 		return -EINVAL;
1161 
1162 	return membuf_write(&to, &uregs, sizeof(uregs));
1163 }
1164 
1165 static int pac_enabled_keys_get(struct task_struct *target,
1166 				const struct user_regset *regset,
1167 				struct membuf to)
1168 {
1169 	long enabled_keys = ptrauth_get_enabled_keys(target);
1170 
1171 	if (IS_ERR_VALUE(enabled_keys))
1172 		return enabled_keys;
1173 
1174 	return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
1175 }
1176 
1177 static int pac_enabled_keys_set(struct task_struct *target,
1178 				const struct user_regset *regset,
1179 				unsigned int pos, unsigned int count,
1180 				const void *kbuf, const void __user *ubuf)
1181 {
1182 	int ret;
1183 	long enabled_keys = ptrauth_get_enabled_keys(target);
1184 
1185 	if (IS_ERR_VALUE(enabled_keys))
1186 		return enabled_keys;
1187 
1188 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
1189 				 sizeof(long));
1190 	if (ret)
1191 		return ret;
1192 
1193 	return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
1194 					enabled_keys);
1195 }
1196 
1197 #ifdef CONFIG_CHECKPOINT_RESTORE
1198 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
1199 {
1200 	return (__uint128_t)key->hi << 64 | key->lo;
1201 }
1202 
1203 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
1204 {
1205 	struct ptrauth_key key = {
1206 		.lo = (unsigned long)ukey,
1207 		.hi = (unsigned long)(ukey >> 64),
1208 	};
1209 
1210 	return key;
1211 }
1212 
1213 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1214 				     const struct ptrauth_keys_user *keys)
1215 {
1216 	ukeys->apiakey = pac_key_to_user(&keys->apia);
1217 	ukeys->apibkey = pac_key_to_user(&keys->apib);
1218 	ukeys->apdakey = pac_key_to_user(&keys->apda);
1219 	ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1220 }
1221 
1222 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
1223 				       const struct user_pac_address_keys *ukeys)
1224 {
1225 	keys->apia = pac_key_from_user(ukeys->apiakey);
1226 	keys->apib = pac_key_from_user(ukeys->apibkey);
1227 	keys->apda = pac_key_from_user(ukeys->apdakey);
1228 	keys->apdb = pac_key_from_user(ukeys->apdbkey);
1229 }
1230 
1231 static int pac_address_keys_get(struct task_struct *target,
1232 				const struct user_regset *regset,
1233 				struct membuf to)
1234 {
1235 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1236 	struct user_pac_address_keys user_keys;
1237 
1238 	if (!system_supports_address_auth())
1239 		return -EINVAL;
1240 
1241 	pac_address_keys_to_user(&user_keys, keys);
1242 
1243 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1244 }
1245 
1246 static int pac_address_keys_set(struct task_struct *target,
1247 				const struct user_regset *regset,
1248 				unsigned int pos, unsigned int count,
1249 				const void *kbuf, const void __user *ubuf)
1250 {
1251 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1252 	struct user_pac_address_keys user_keys;
1253 	int ret;
1254 
1255 	if (!system_supports_address_auth())
1256 		return -EINVAL;
1257 
1258 	pac_address_keys_to_user(&user_keys, keys);
1259 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1260 				 &user_keys, 0, -1);
1261 	if (ret)
1262 		return ret;
1263 	pac_address_keys_from_user(keys, &user_keys);
1264 
1265 	return 0;
1266 }
1267 
1268 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1269 				     const struct ptrauth_keys_user *keys)
1270 {
1271 	ukeys->apgakey = pac_key_to_user(&keys->apga);
1272 }
1273 
1274 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1275 				       const struct user_pac_generic_keys *ukeys)
1276 {
1277 	keys->apga = pac_key_from_user(ukeys->apgakey);
1278 }
1279 
1280 static int pac_generic_keys_get(struct task_struct *target,
1281 				const struct user_regset *regset,
1282 				struct membuf to)
1283 {
1284 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1285 	struct user_pac_generic_keys user_keys;
1286 
1287 	if (!system_supports_generic_auth())
1288 		return -EINVAL;
1289 
1290 	pac_generic_keys_to_user(&user_keys, keys);
1291 
1292 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1293 }
1294 
1295 static int pac_generic_keys_set(struct task_struct *target,
1296 				const struct user_regset *regset,
1297 				unsigned int pos, unsigned int count,
1298 				const void *kbuf, const void __user *ubuf)
1299 {
1300 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1301 	struct user_pac_generic_keys user_keys;
1302 	int ret;
1303 
1304 	if (!system_supports_generic_auth())
1305 		return -EINVAL;
1306 
1307 	pac_generic_keys_to_user(&user_keys, keys);
1308 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1309 				 &user_keys, 0, -1);
1310 	if (ret)
1311 		return ret;
1312 	pac_generic_keys_from_user(keys, &user_keys);
1313 
1314 	return 0;
1315 }
1316 #endif /* CONFIG_CHECKPOINT_RESTORE */
1317 #endif /* CONFIG_ARM64_PTR_AUTH */
1318 
1319 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1320 static int tagged_addr_ctrl_get(struct task_struct *target,
1321 				const struct user_regset *regset,
1322 				struct membuf to)
1323 {
1324 	long ctrl = get_tagged_addr_ctrl(target);
1325 
1326 	if (IS_ERR_VALUE(ctrl))
1327 		return ctrl;
1328 
1329 	return membuf_write(&to, &ctrl, sizeof(ctrl));
1330 }
1331 
1332 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1333 				user_regset *regset, unsigned int pos,
1334 				unsigned int count, const void *kbuf, const
1335 				void __user *ubuf)
1336 {
1337 	int ret;
1338 	long ctrl;
1339 
1340 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1341 	if (ret)
1342 		return ret;
1343 
1344 	return set_tagged_addr_ctrl(target, ctrl);
1345 }
1346 #endif
1347 
1348 enum aarch64_regset {
1349 	REGSET_GPR,
1350 	REGSET_FPR,
1351 	REGSET_TLS,
1352 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1353 	REGSET_HW_BREAK,
1354 	REGSET_HW_WATCH,
1355 #endif
1356 	REGSET_SYSTEM_CALL,
1357 #ifdef CONFIG_ARM64_SVE
1358 	REGSET_SVE,
1359 #endif
1360 #ifdef CONFIG_ARM64_SVE
1361 	REGSET_SSVE,
1362 	REGSET_ZA,
1363 #endif
1364 #ifdef CONFIG_ARM64_PTR_AUTH
1365 	REGSET_PAC_MASK,
1366 	REGSET_PAC_ENABLED_KEYS,
1367 #ifdef CONFIG_CHECKPOINT_RESTORE
1368 	REGSET_PACA_KEYS,
1369 	REGSET_PACG_KEYS,
1370 #endif
1371 #endif
1372 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1373 	REGSET_TAGGED_ADDR_CTRL,
1374 #endif
1375 };
1376 
1377 static const struct user_regset aarch64_regsets[] = {
1378 	[REGSET_GPR] = {
1379 		.core_note_type = NT_PRSTATUS,
1380 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
1381 		.size = sizeof(u64),
1382 		.align = sizeof(u64),
1383 		.regset_get = gpr_get,
1384 		.set = gpr_set
1385 	},
1386 	[REGSET_FPR] = {
1387 		.core_note_type = NT_PRFPREG,
1388 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1389 		/*
1390 		 * We pretend we have 32-bit registers because the fpsr and
1391 		 * fpcr are 32-bits wide.
1392 		 */
1393 		.size = sizeof(u32),
1394 		.align = sizeof(u32),
1395 		.active = fpr_active,
1396 		.regset_get = fpr_get,
1397 		.set = fpr_set
1398 	},
1399 	[REGSET_TLS] = {
1400 		.core_note_type = NT_ARM_TLS,
1401 		.n = 2,
1402 		.size = sizeof(void *),
1403 		.align = sizeof(void *),
1404 		.regset_get = tls_get,
1405 		.set = tls_set,
1406 	},
1407 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1408 	[REGSET_HW_BREAK] = {
1409 		.core_note_type = NT_ARM_HW_BREAK,
1410 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1411 		.size = sizeof(u32),
1412 		.align = sizeof(u32),
1413 		.regset_get = hw_break_get,
1414 		.set = hw_break_set,
1415 	},
1416 	[REGSET_HW_WATCH] = {
1417 		.core_note_type = NT_ARM_HW_WATCH,
1418 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1419 		.size = sizeof(u32),
1420 		.align = sizeof(u32),
1421 		.regset_get = hw_break_get,
1422 		.set = hw_break_set,
1423 	},
1424 #endif
1425 	[REGSET_SYSTEM_CALL] = {
1426 		.core_note_type = NT_ARM_SYSTEM_CALL,
1427 		.n = 1,
1428 		.size = sizeof(int),
1429 		.align = sizeof(int),
1430 		.regset_get = system_call_get,
1431 		.set = system_call_set,
1432 	},
1433 #ifdef CONFIG_ARM64_SVE
1434 	[REGSET_SVE] = { /* Scalable Vector Extension */
1435 		.core_note_type = NT_ARM_SVE,
1436 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1437 				  SVE_VQ_BYTES),
1438 		.size = SVE_VQ_BYTES,
1439 		.align = SVE_VQ_BYTES,
1440 		.regset_get = sve_get,
1441 		.set = sve_set,
1442 	},
1443 #endif
1444 #ifdef CONFIG_ARM64_SME
1445 	[REGSET_SSVE] = { /* Streaming mode SVE */
1446 		.core_note_type = NT_ARM_SSVE,
1447 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE),
1448 				  SVE_VQ_BYTES),
1449 		.size = SVE_VQ_BYTES,
1450 		.align = SVE_VQ_BYTES,
1451 		.regset_get = ssve_get,
1452 		.set = ssve_set,
1453 	},
1454 	[REGSET_ZA] = { /* SME ZA */
1455 		.core_note_type = NT_ARM_ZA,
1456 		/*
1457 		 * ZA is a single register but it's variably sized and
1458 		 * the ptrace core requires that the size of any data
1459 		 * be an exact multiple of the configured register
1460 		 * size so report as though we had SVE_VQ_BYTES
1461 		 * registers. These values aren't exposed to
1462 		 * userspace.
1463 		 */
1464 		.n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES),
1465 		.size = SVE_VQ_BYTES,
1466 		.align = SVE_VQ_BYTES,
1467 		.regset_get = za_get,
1468 		.set = za_set,
1469 	},
1470 #endif
1471 #ifdef CONFIG_ARM64_PTR_AUTH
1472 	[REGSET_PAC_MASK] = {
1473 		.core_note_type = NT_ARM_PAC_MASK,
1474 		.n = sizeof(struct user_pac_mask) / sizeof(u64),
1475 		.size = sizeof(u64),
1476 		.align = sizeof(u64),
1477 		.regset_get = pac_mask_get,
1478 		/* this cannot be set dynamically */
1479 	},
1480 	[REGSET_PAC_ENABLED_KEYS] = {
1481 		.core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1482 		.n = 1,
1483 		.size = sizeof(long),
1484 		.align = sizeof(long),
1485 		.regset_get = pac_enabled_keys_get,
1486 		.set = pac_enabled_keys_set,
1487 	},
1488 #ifdef CONFIG_CHECKPOINT_RESTORE
1489 	[REGSET_PACA_KEYS] = {
1490 		.core_note_type = NT_ARM_PACA_KEYS,
1491 		.n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1492 		.size = sizeof(__uint128_t),
1493 		.align = sizeof(__uint128_t),
1494 		.regset_get = pac_address_keys_get,
1495 		.set = pac_address_keys_set,
1496 	},
1497 	[REGSET_PACG_KEYS] = {
1498 		.core_note_type = NT_ARM_PACG_KEYS,
1499 		.n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1500 		.size = sizeof(__uint128_t),
1501 		.align = sizeof(__uint128_t),
1502 		.regset_get = pac_generic_keys_get,
1503 		.set = pac_generic_keys_set,
1504 	},
1505 #endif
1506 #endif
1507 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1508 	[REGSET_TAGGED_ADDR_CTRL] = {
1509 		.core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1510 		.n = 1,
1511 		.size = sizeof(long),
1512 		.align = sizeof(long),
1513 		.regset_get = tagged_addr_ctrl_get,
1514 		.set = tagged_addr_ctrl_set,
1515 	},
1516 #endif
1517 };
1518 
1519 static const struct user_regset_view user_aarch64_view = {
1520 	.name = "aarch64", .e_machine = EM_AARCH64,
1521 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1522 };
1523 
1524 #ifdef CONFIG_COMPAT
1525 enum compat_regset {
1526 	REGSET_COMPAT_GPR,
1527 	REGSET_COMPAT_VFP,
1528 };
1529 
1530 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1531 {
1532 	struct pt_regs *regs = task_pt_regs(task);
1533 
1534 	switch (idx) {
1535 	case 15:
1536 		return regs->pc;
1537 	case 16:
1538 		return pstate_to_compat_psr(regs->pstate);
1539 	case 17:
1540 		return regs->orig_x0;
1541 	default:
1542 		return regs->regs[idx];
1543 	}
1544 }
1545 
1546 static int compat_gpr_get(struct task_struct *target,
1547 			  const struct user_regset *regset,
1548 			  struct membuf to)
1549 {
1550 	int i = 0;
1551 
1552 	while (to.left)
1553 		membuf_store(&to, compat_get_user_reg(target, i++));
1554 	return 0;
1555 }
1556 
1557 static int compat_gpr_set(struct task_struct *target,
1558 			  const struct user_regset *regset,
1559 			  unsigned int pos, unsigned int count,
1560 			  const void *kbuf, const void __user *ubuf)
1561 {
1562 	struct pt_regs newregs;
1563 	int ret = 0;
1564 	unsigned int i, start, num_regs;
1565 
1566 	/* Calculate the number of AArch32 registers contained in count */
1567 	num_regs = count / regset->size;
1568 
1569 	/* Convert pos into an register number */
1570 	start = pos / regset->size;
1571 
1572 	if (start + num_regs > regset->n)
1573 		return -EIO;
1574 
1575 	newregs = *task_pt_regs(target);
1576 
1577 	for (i = 0; i < num_regs; ++i) {
1578 		unsigned int idx = start + i;
1579 		compat_ulong_t reg;
1580 
1581 		if (kbuf) {
1582 			memcpy(&reg, kbuf, sizeof(reg));
1583 			kbuf += sizeof(reg);
1584 		} else {
1585 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1586 			if (ret) {
1587 				ret = -EFAULT;
1588 				break;
1589 			}
1590 
1591 			ubuf += sizeof(reg);
1592 		}
1593 
1594 		switch (idx) {
1595 		case 15:
1596 			newregs.pc = reg;
1597 			break;
1598 		case 16:
1599 			reg = compat_psr_to_pstate(reg);
1600 			newregs.pstate = reg;
1601 			break;
1602 		case 17:
1603 			newregs.orig_x0 = reg;
1604 			break;
1605 		default:
1606 			newregs.regs[idx] = reg;
1607 		}
1608 
1609 	}
1610 
1611 	if (valid_user_regs(&newregs.user_regs, target))
1612 		*task_pt_regs(target) = newregs;
1613 	else
1614 		ret = -EINVAL;
1615 
1616 	return ret;
1617 }
1618 
1619 static int compat_vfp_get(struct task_struct *target,
1620 			  const struct user_regset *regset,
1621 			  struct membuf to)
1622 {
1623 	struct user_fpsimd_state *uregs;
1624 	compat_ulong_t fpscr;
1625 
1626 	if (!system_supports_fpsimd())
1627 		return -EINVAL;
1628 
1629 	uregs = &target->thread.uw.fpsimd_state;
1630 
1631 	if (target == current)
1632 		fpsimd_preserve_current_state();
1633 
1634 	/*
1635 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1636 	 * nicely together for us. We just need to create the fpscr separately.
1637 	 */
1638 	membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1639 	fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1640 		(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1641 	return membuf_store(&to, fpscr);
1642 }
1643 
1644 static int compat_vfp_set(struct task_struct *target,
1645 			  const struct user_regset *regset,
1646 			  unsigned int pos, unsigned int count,
1647 			  const void *kbuf, const void __user *ubuf)
1648 {
1649 	struct user_fpsimd_state *uregs;
1650 	compat_ulong_t fpscr;
1651 	int ret, vregs_end_pos;
1652 
1653 	if (!system_supports_fpsimd())
1654 		return -EINVAL;
1655 
1656 	uregs = &target->thread.uw.fpsimd_state;
1657 
1658 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1659 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1660 				 vregs_end_pos);
1661 
1662 	if (count && !ret) {
1663 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1664 					 vregs_end_pos, VFP_STATE_SIZE);
1665 		if (!ret) {
1666 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1667 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1668 		}
1669 	}
1670 
1671 	fpsimd_flush_task_state(target);
1672 	return ret;
1673 }
1674 
1675 static int compat_tls_get(struct task_struct *target,
1676 			  const struct user_regset *regset,
1677 			  struct membuf to)
1678 {
1679 	return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1680 }
1681 
1682 static int compat_tls_set(struct task_struct *target,
1683 			  const struct user_regset *regset, unsigned int pos,
1684 			  unsigned int count, const void *kbuf,
1685 			  const void __user *ubuf)
1686 {
1687 	int ret;
1688 	compat_ulong_t tls = target->thread.uw.tp_value;
1689 
1690 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1691 	if (ret)
1692 		return ret;
1693 
1694 	target->thread.uw.tp_value = tls;
1695 	return ret;
1696 }
1697 
1698 static const struct user_regset aarch32_regsets[] = {
1699 	[REGSET_COMPAT_GPR] = {
1700 		.core_note_type = NT_PRSTATUS,
1701 		.n = COMPAT_ELF_NGREG,
1702 		.size = sizeof(compat_elf_greg_t),
1703 		.align = sizeof(compat_elf_greg_t),
1704 		.regset_get = compat_gpr_get,
1705 		.set = compat_gpr_set
1706 	},
1707 	[REGSET_COMPAT_VFP] = {
1708 		.core_note_type = NT_ARM_VFP,
1709 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1710 		.size = sizeof(compat_ulong_t),
1711 		.align = sizeof(compat_ulong_t),
1712 		.active = fpr_active,
1713 		.regset_get = compat_vfp_get,
1714 		.set = compat_vfp_set
1715 	},
1716 };
1717 
1718 static const struct user_regset_view user_aarch32_view = {
1719 	.name = "aarch32", .e_machine = EM_ARM,
1720 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1721 };
1722 
1723 static const struct user_regset aarch32_ptrace_regsets[] = {
1724 	[REGSET_GPR] = {
1725 		.core_note_type = NT_PRSTATUS,
1726 		.n = COMPAT_ELF_NGREG,
1727 		.size = sizeof(compat_elf_greg_t),
1728 		.align = sizeof(compat_elf_greg_t),
1729 		.regset_get = compat_gpr_get,
1730 		.set = compat_gpr_set
1731 	},
1732 	[REGSET_FPR] = {
1733 		.core_note_type = NT_ARM_VFP,
1734 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1735 		.size = sizeof(compat_ulong_t),
1736 		.align = sizeof(compat_ulong_t),
1737 		.regset_get = compat_vfp_get,
1738 		.set = compat_vfp_set
1739 	},
1740 	[REGSET_TLS] = {
1741 		.core_note_type = NT_ARM_TLS,
1742 		.n = 1,
1743 		.size = sizeof(compat_ulong_t),
1744 		.align = sizeof(compat_ulong_t),
1745 		.regset_get = compat_tls_get,
1746 		.set = compat_tls_set,
1747 	},
1748 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1749 	[REGSET_HW_BREAK] = {
1750 		.core_note_type = NT_ARM_HW_BREAK,
1751 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1752 		.size = sizeof(u32),
1753 		.align = sizeof(u32),
1754 		.regset_get = hw_break_get,
1755 		.set = hw_break_set,
1756 	},
1757 	[REGSET_HW_WATCH] = {
1758 		.core_note_type = NT_ARM_HW_WATCH,
1759 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1760 		.size = sizeof(u32),
1761 		.align = sizeof(u32),
1762 		.regset_get = hw_break_get,
1763 		.set = hw_break_set,
1764 	},
1765 #endif
1766 	[REGSET_SYSTEM_CALL] = {
1767 		.core_note_type = NT_ARM_SYSTEM_CALL,
1768 		.n = 1,
1769 		.size = sizeof(int),
1770 		.align = sizeof(int),
1771 		.regset_get = system_call_get,
1772 		.set = system_call_set,
1773 	},
1774 };
1775 
1776 static const struct user_regset_view user_aarch32_ptrace_view = {
1777 	.name = "aarch32", .e_machine = EM_ARM,
1778 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1779 };
1780 
1781 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1782 				   compat_ulong_t __user *ret)
1783 {
1784 	compat_ulong_t tmp;
1785 
1786 	if (off & 3)
1787 		return -EIO;
1788 
1789 	if (off == COMPAT_PT_TEXT_ADDR)
1790 		tmp = tsk->mm->start_code;
1791 	else if (off == COMPAT_PT_DATA_ADDR)
1792 		tmp = tsk->mm->start_data;
1793 	else if (off == COMPAT_PT_TEXT_END_ADDR)
1794 		tmp = tsk->mm->end_code;
1795 	else if (off < sizeof(compat_elf_gregset_t))
1796 		tmp = compat_get_user_reg(tsk, off >> 2);
1797 	else if (off >= COMPAT_USER_SZ)
1798 		return -EIO;
1799 	else
1800 		tmp = 0;
1801 
1802 	return put_user(tmp, ret);
1803 }
1804 
1805 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1806 				    compat_ulong_t val)
1807 {
1808 	struct pt_regs newregs = *task_pt_regs(tsk);
1809 	unsigned int idx = off / 4;
1810 
1811 	if (off & 3 || off >= COMPAT_USER_SZ)
1812 		return -EIO;
1813 
1814 	if (off >= sizeof(compat_elf_gregset_t))
1815 		return 0;
1816 
1817 	switch (idx) {
1818 	case 15:
1819 		newregs.pc = val;
1820 		break;
1821 	case 16:
1822 		newregs.pstate = compat_psr_to_pstate(val);
1823 		break;
1824 	case 17:
1825 		newregs.orig_x0 = val;
1826 		break;
1827 	default:
1828 		newregs.regs[idx] = val;
1829 	}
1830 
1831 	if (!valid_user_regs(&newregs.user_regs, tsk))
1832 		return -EINVAL;
1833 
1834 	*task_pt_regs(tsk) = newregs;
1835 	return 0;
1836 }
1837 
1838 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1839 
1840 /*
1841  * Convert a virtual register number into an index for a thread_info
1842  * breakpoint array. Breakpoints are identified using positive numbers
1843  * whilst watchpoints are negative. The registers are laid out as pairs
1844  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1845  * Register 0 is reserved for describing resource information.
1846  */
1847 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1848 {
1849 	return (abs(num) - 1) >> 1;
1850 }
1851 
1852 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1853 {
1854 	u8 num_brps, num_wrps, debug_arch, wp_len;
1855 	u32 reg = 0;
1856 
1857 	num_brps	= hw_breakpoint_slots(TYPE_INST);
1858 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
1859 
1860 	debug_arch	= debug_monitors_arch();
1861 	wp_len		= 8;
1862 	reg		|= debug_arch;
1863 	reg		<<= 8;
1864 	reg		|= wp_len;
1865 	reg		<<= 8;
1866 	reg		|= num_wrps;
1867 	reg		<<= 8;
1868 	reg		|= num_brps;
1869 
1870 	*kdata = reg;
1871 	return 0;
1872 }
1873 
1874 static int compat_ptrace_hbp_get(unsigned int note_type,
1875 				 struct task_struct *tsk,
1876 				 compat_long_t num,
1877 				 u32 *kdata)
1878 {
1879 	u64 addr = 0;
1880 	u32 ctrl = 0;
1881 
1882 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1883 
1884 	if (num & 1) {
1885 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1886 		*kdata = (u32)addr;
1887 	} else {
1888 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1889 		*kdata = ctrl;
1890 	}
1891 
1892 	return err;
1893 }
1894 
1895 static int compat_ptrace_hbp_set(unsigned int note_type,
1896 				 struct task_struct *tsk,
1897 				 compat_long_t num,
1898 				 u32 *kdata)
1899 {
1900 	u64 addr;
1901 	u32 ctrl;
1902 
1903 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1904 
1905 	if (num & 1) {
1906 		addr = *kdata;
1907 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1908 	} else {
1909 		ctrl = *kdata;
1910 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1911 	}
1912 
1913 	return err;
1914 }
1915 
1916 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1917 				    compat_ulong_t __user *data)
1918 {
1919 	int ret;
1920 	u32 kdata;
1921 
1922 	/* Watchpoint */
1923 	if (num < 0) {
1924 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1925 	/* Resource info */
1926 	} else if (num == 0) {
1927 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
1928 	/* Breakpoint */
1929 	} else {
1930 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1931 	}
1932 
1933 	if (!ret)
1934 		ret = put_user(kdata, data);
1935 
1936 	return ret;
1937 }
1938 
1939 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1940 				    compat_ulong_t __user *data)
1941 {
1942 	int ret;
1943 	u32 kdata = 0;
1944 
1945 	if (num == 0)
1946 		return 0;
1947 
1948 	ret = get_user(kdata, data);
1949 	if (ret)
1950 		return ret;
1951 
1952 	if (num < 0)
1953 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1954 	else
1955 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1956 
1957 	return ret;
1958 }
1959 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
1960 
1961 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1962 			compat_ulong_t caddr, compat_ulong_t cdata)
1963 {
1964 	unsigned long addr = caddr;
1965 	unsigned long data = cdata;
1966 	void __user *datap = compat_ptr(data);
1967 	int ret;
1968 
1969 	switch (request) {
1970 		case PTRACE_PEEKUSR:
1971 			ret = compat_ptrace_read_user(child, addr, datap);
1972 			break;
1973 
1974 		case PTRACE_POKEUSR:
1975 			ret = compat_ptrace_write_user(child, addr, data);
1976 			break;
1977 
1978 		case COMPAT_PTRACE_GETREGS:
1979 			ret = copy_regset_to_user(child,
1980 						  &user_aarch32_view,
1981 						  REGSET_COMPAT_GPR,
1982 						  0, sizeof(compat_elf_gregset_t),
1983 						  datap);
1984 			break;
1985 
1986 		case COMPAT_PTRACE_SETREGS:
1987 			ret = copy_regset_from_user(child,
1988 						    &user_aarch32_view,
1989 						    REGSET_COMPAT_GPR,
1990 						    0, sizeof(compat_elf_gregset_t),
1991 						    datap);
1992 			break;
1993 
1994 		case COMPAT_PTRACE_GET_THREAD_AREA:
1995 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
1996 				       (compat_ulong_t __user *)datap);
1997 			break;
1998 
1999 		case COMPAT_PTRACE_SET_SYSCALL:
2000 			task_pt_regs(child)->syscallno = data;
2001 			ret = 0;
2002 			break;
2003 
2004 		case COMPAT_PTRACE_GETVFPREGS:
2005 			ret = copy_regset_to_user(child,
2006 						  &user_aarch32_view,
2007 						  REGSET_COMPAT_VFP,
2008 						  0, VFP_STATE_SIZE,
2009 						  datap);
2010 			break;
2011 
2012 		case COMPAT_PTRACE_SETVFPREGS:
2013 			ret = copy_regset_from_user(child,
2014 						    &user_aarch32_view,
2015 						    REGSET_COMPAT_VFP,
2016 						    0, VFP_STATE_SIZE,
2017 						    datap);
2018 			break;
2019 
2020 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2021 		case COMPAT_PTRACE_GETHBPREGS:
2022 			ret = compat_ptrace_gethbpregs(child, addr, datap);
2023 			break;
2024 
2025 		case COMPAT_PTRACE_SETHBPREGS:
2026 			ret = compat_ptrace_sethbpregs(child, addr, datap);
2027 			break;
2028 #endif
2029 
2030 		default:
2031 			ret = compat_ptrace_request(child, request, addr,
2032 						    data);
2033 			break;
2034 	}
2035 
2036 	return ret;
2037 }
2038 #endif /* CONFIG_COMPAT */
2039 
2040 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2041 {
2042 #ifdef CONFIG_COMPAT
2043 	/*
2044 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
2045 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
2046 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
2047 	 * access to the TLS register.
2048 	 */
2049 	if (is_compat_task())
2050 		return &user_aarch32_view;
2051 	else if (is_compat_thread(task_thread_info(task)))
2052 		return &user_aarch32_ptrace_view;
2053 #endif
2054 	return &user_aarch64_view;
2055 }
2056 
2057 long arch_ptrace(struct task_struct *child, long request,
2058 		 unsigned long addr, unsigned long data)
2059 {
2060 	switch (request) {
2061 	case PTRACE_PEEKMTETAGS:
2062 	case PTRACE_POKEMTETAGS:
2063 		return mte_ptrace_copy_tags(child, request, addr, data);
2064 	}
2065 
2066 	return ptrace_request(child, request, addr, data);
2067 }
2068 
2069 enum ptrace_syscall_dir {
2070 	PTRACE_SYSCALL_ENTER = 0,
2071 	PTRACE_SYSCALL_EXIT,
2072 };
2073 
2074 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
2075 {
2076 	int regno;
2077 	unsigned long saved_reg;
2078 
2079 	/*
2080 	 * We have some ABI weirdness here in the way that we handle syscall
2081 	 * exit stops because we indicate whether or not the stop has been
2082 	 * signalled from syscall entry or syscall exit by clobbering a general
2083 	 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
2084 	 * and restoring its old value after the stop. This means that:
2085 	 *
2086 	 * - Any writes by the tracer to this register during the stop are
2087 	 *   ignored/discarded.
2088 	 *
2089 	 * - The actual value of the register is not available during the stop,
2090 	 *   so the tracer cannot save it and restore it later.
2091 	 *
2092 	 * - Syscall stops behave differently to seccomp and pseudo-step traps
2093 	 *   (the latter do not nobble any registers).
2094 	 */
2095 	regno = (is_compat_task() ? 12 : 7);
2096 	saved_reg = regs->regs[regno];
2097 	regs->regs[regno] = dir;
2098 
2099 	if (dir == PTRACE_SYSCALL_ENTER) {
2100 		if (ptrace_report_syscall_entry(regs))
2101 			forget_syscall(regs);
2102 		regs->regs[regno] = saved_reg;
2103 	} else if (!test_thread_flag(TIF_SINGLESTEP)) {
2104 		ptrace_report_syscall_exit(regs, 0);
2105 		regs->regs[regno] = saved_reg;
2106 	} else {
2107 		regs->regs[regno] = saved_reg;
2108 
2109 		/*
2110 		 * Signal a pseudo-step exception since we are stepping but
2111 		 * tracer modifications to the registers may have rewound the
2112 		 * state machine.
2113 		 */
2114 		ptrace_report_syscall_exit(regs, 1);
2115 	}
2116 }
2117 
2118 int syscall_trace_enter(struct pt_regs *regs)
2119 {
2120 	unsigned long flags = read_thread_flags();
2121 
2122 	if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
2123 		report_syscall(regs, PTRACE_SYSCALL_ENTER);
2124 		if (flags & _TIF_SYSCALL_EMU)
2125 			return NO_SYSCALL;
2126 	}
2127 
2128 	/* Do the secure computing after ptrace; failures should be fast. */
2129 	if (secure_computing() == -1)
2130 		return NO_SYSCALL;
2131 
2132 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
2133 		trace_sys_enter(regs, regs->syscallno);
2134 
2135 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
2136 			    regs->regs[2], regs->regs[3]);
2137 
2138 	return regs->syscallno;
2139 }
2140 
2141 void syscall_trace_exit(struct pt_regs *regs)
2142 {
2143 	unsigned long flags = read_thread_flags();
2144 
2145 	audit_syscall_exit(regs);
2146 
2147 	if (flags & _TIF_SYSCALL_TRACEPOINT)
2148 		trace_sys_exit(regs, syscall_get_return_value(current, regs));
2149 
2150 	if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
2151 		report_syscall(regs, PTRACE_SYSCALL_EXIT);
2152 
2153 	rseq_syscall(regs);
2154 }
2155 
2156 /*
2157  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
2158  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
2159  * not described in ARM DDI 0487D.a.
2160  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
2161  * be allocated an EL0 meaning in future.
2162  * Userspace cannot use these until they have an architectural meaning.
2163  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
2164  * We also reserve IL for the kernel; SS is handled dynamically.
2165  */
2166 #define SPSR_EL1_AARCH64_RES0_BITS \
2167 	(GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
2168 	 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
2169 #define SPSR_EL1_AARCH32_RES0_BITS \
2170 	(GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
2171 
2172 static int valid_compat_regs(struct user_pt_regs *regs)
2173 {
2174 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
2175 
2176 	if (!system_supports_mixed_endian_el0()) {
2177 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
2178 			regs->pstate |= PSR_AA32_E_BIT;
2179 		else
2180 			regs->pstate &= ~PSR_AA32_E_BIT;
2181 	}
2182 
2183 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
2184 	    (regs->pstate & PSR_AA32_A_BIT) == 0 &&
2185 	    (regs->pstate & PSR_AA32_I_BIT) == 0 &&
2186 	    (regs->pstate & PSR_AA32_F_BIT) == 0) {
2187 		return 1;
2188 	}
2189 
2190 	/*
2191 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
2192 	 * arch/arm.
2193 	 */
2194 	regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
2195 			PSR_AA32_C_BIT | PSR_AA32_V_BIT |
2196 			PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
2197 			PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
2198 			PSR_AA32_T_BIT;
2199 	regs->pstate |= PSR_MODE32_BIT;
2200 
2201 	return 0;
2202 }
2203 
2204 static int valid_native_regs(struct user_pt_regs *regs)
2205 {
2206 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
2207 
2208 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
2209 	    (regs->pstate & PSR_D_BIT) == 0 &&
2210 	    (regs->pstate & PSR_A_BIT) == 0 &&
2211 	    (regs->pstate & PSR_I_BIT) == 0 &&
2212 	    (regs->pstate & PSR_F_BIT) == 0) {
2213 		return 1;
2214 	}
2215 
2216 	/* Force PSR to a valid 64-bit EL0t */
2217 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
2218 
2219 	return 0;
2220 }
2221 
2222 /*
2223  * Are the current registers suitable for user mode? (used to maintain
2224  * security in signal handlers)
2225  */
2226 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
2227 {
2228 	/* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
2229 	user_regs_reset_single_step(regs, task);
2230 
2231 	if (is_compat_thread(task_thread_info(task)))
2232 		return valid_compat_regs(regs);
2233 	else
2234 		return valid_native_regs(regs);
2235 }
2236