xref: /linux/arch/arm64/kernel/ptrace.c (revision 3f374d7972c48bc0824bdabb8f94fe82e54fd07d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/ptrace.c
4  *
5  * By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  * Copyright (C) 2012 ARM Ltd.
9  */
10 
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/elf.h>
31 
32 #include <asm/compat.h>
33 #include <asm/cpufeature.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/fpsimd.h>
36 #include <asm/mte.h>
37 #include <asm/pointer_auth.h>
38 #include <asm/stacktrace.h>
39 #include <asm/syscall.h>
40 #include <asm/traps.h>
41 #include <asm/system_misc.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/syscalls.h>
45 
46 struct pt_regs_offset {
47 	const char *name;
48 	int offset;
49 };
50 
51 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
52 #define REG_OFFSET_END {.name = NULL, .offset = 0}
53 #define GPR_OFFSET_NAME(r) \
54 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
55 
56 static const struct pt_regs_offset regoffset_table[] = {
57 	GPR_OFFSET_NAME(0),
58 	GPR_OFFSET_NAME(1),
59 	GPR_OFFSET_NAME(2),
60 	GPR_OFFSET_NAME(3),
61 	GPR_OFFSET_NAME(4),
62 	GPR_OFFSET_NAME(5),
63 	GPR_OFFSET_NAME(6),
64 	GPR_OFFSET_NAME(7),
65 	GPR_OFFSET_NAME(8),
66 	GPR_OFFSET_NAME(9),
67 	GPR_OFFSET_NAME(10),
68 	GPR_OFFSET_NAME(11),
69 	GPR_OFFSET_NAME(12),
70 	GPR_OFFSET_NAME(13),
71 	GPR_OFFSET_NAME(14),
72 	GPR_OFFSET_NAME(15),
73 	GPR_OFFSET_NAME(16),
74 	GPR_OFFSET_NAME(17),
75 	GPR_OFFSET_NAME(18),
76 	GPR_OFFSET_NAME(19),
77 	GPR_OFFSET_NAME(20),
78 	GPR_OFFSET_NAME(21),
79 	GPR_OFFSET_NAME(22),
80 	GPR_OFFSET_NAME(23),
81 	GPR_OFFSET_NAME(24),
82 	GPR_OFFSET_NAME(25),
83 	GPR_OFFSET_NAME(26),
84 	GPR_OFFSET_NAME(27),
85 	GPR_OFFSET_NAME(28),
86 	GPR_OFFSET_NAME(29),
87 	GPR_OFFSET_NAME(30),
88 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
89 	REG_OFFSET_NAME(sp),
90 	REG_OFFSET_NAME(pc),
91 	REG_OFFSET_NAME(pstate),
92 	REG_OFFSET_END,
93 };
94 
95 /**
96  * regs_query_register_offset() - query register offset from its name
97  * @name:	the name of a register
98  *
99  * regs_query_register_offset() returns the offset of a register in struct
100  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
101  */
102 int regs_query_register_offset(const char *name)
103 {
104 	const struct pt_regs_offset *roff;
105 
106 	for (roff = regoffset_table; roff->name != NULL; roff++)
107 		if (!strcmp(roff->name, name))
108 			return roff->offset;
109 	return -EINVAL;
110 }
111 
112 /**
113  * regs_within_kernel_stack() - check the address in the stack
114  * @regs:      pt_regs which contains kernel stack pointer.
115  * @addr:      address which is checked.
116  *
117  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
118  * If @addr is within the kernel stack, it returns true. If not, returns false.
119  */
120 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
121 {
122 	return ((addr & ~(THREAD_SIZE - 1))  ==
123 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
124 		on_irq_stack(addr, sizeof(unsigned long), NULL);
125 }
126 
127 /**
128  * regs_get_kernel_stack_nth() - get Nth entry of the stack
129  * @regs:	pt_regs which contains kernel stack pointer.
130  * @n:		stack entry number.
131  *
132  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
133  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
134  * this returns 0.
135  */
136 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
137 {
138 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
139 
140 	addr += n;
141 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
142 		return *addr;
143 	else
144 		return 0;
145 }
146 
147 /*
148  * TODO: does not yet catch signals sent when the child dies.
149  * in exit.c or in signal.c.
150  */
151 
152 /*
153  * Called by kernel/ptrace.c when detaching..
154  */
155 void ptrace_disable(struct task_struct *child)
156 {
157 	/*
158 	 * This would be better off in core code, but PTRACE_DETACH has
159 	 * grown its fair share of arch-specific worts and changing it
160 	 * is likely to cause regressions on obscure architectures.
161 	 */
162 	user_disable_single_step(child);
163 }
164 
165 #ifdef CONFIG_HAVE_HW_BREAKPOINT
166 /*
167  * Handle hitting a HW-breakpoint.
168  */
169 static void ptrace_hbptriggered(struct perf_event *bp,
170 				struct perf_sample_data *data,
171 				struct pt_regs *regs)
172 {
173 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
174 	const char *desc = "Hardware breakpoint trap (ptrace)";
175 
176 #ifdef CONFIG_COMPAT
177 	if (is_compat_task()) {
178 		int si_errno = 0;
179 		int i;
180 
181 		for (i = 0; i < ARM_MAX_BRP; ++i) {
182 			if (current->thread.debug.hbp_break[i] == bp) {
183 				si_errno = (i << 1) + 1;
184 				break;
185 			}
186 		}
187 
188 		for (i = 0; i < ARM_MAX_WRP; ++i) {
189 			if (current->thread.debug.hbp_watch[i] == bp) {
190 				si_errno = -((i << 1) + 1);
191 				break;
192 			}
193 		}
194 		arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
195 						  desc);
196 		return;
197 	}
198 #endif
199 	arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
200 }
201 
202 /*
203  * Unregister breakpoints from this task and reset the pointers in
204  * the thread_struct.
205  */
206 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
207 {
208 	int i;
209 	struct thread_struct *t = &tsk->thread;
210 
211 	for (i = 0; i < ARM_MAX_BRP; i++) {
212 		if (t->debug.hbp_break[i]) {
213 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
214 			t->debug.hbp_break[i] = NULL;
215 		}
216 	}
217 
218 	for (i = 0; i < ARM_MAX_WRP; i++) {
219 		if (t->debug.hbp_watch[i]) {
220 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
221 			t->debug.hbp_watch[i] = NULL;
222 		}
223 	}
224 }
225 
226 void ptrace_hw_copy_thread(struct task_struct *tsk)
227 {
228 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
229 }
230 
231 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
232 					       struct task_struct *tsk,
233 					       unsigned long idx)
234 {
235 	struct perf_event *bp = ERR_PTR(-EINVAL);
236 
237 	switch (note_type) {
238 	case NT_ARM_HW_BREAK:
239 		if (idx >= ARM_MAX_BRP)
240 			goto out;
241 		idx = array_index_nospec(idx, ARM_MAX_BRP);
242 		bp = tsk->thread.debug.hbp_break[idx];
243 		break;
244 	case NT_ARM_HW_WATCH:
245 		if (idx >= ARM_MAX_WRP)
246 			goto out;
247 		idx = array_index_nospec(idx, ARM_MAX_WRP);
248 		bp = tsk->thread.debug.hbp_watch[idx];
249 		break;
250 	}
251 
252 out:
253 	return bp;
254 }
255 
256 static int ptrace_hbp_set_event(unsigned int note_type,
257 				struct task_struct *tsk,
258 				unsigned long idx,
259 				struct perf_event *bp)
260 {
261 	int err = -EINVAL;
262 
263 	switch (note_type) {
264 	case NT_ARM_HW_BREAK:
265 		if (idx >= ARM_MAX_BRP)
266 			goto out;
267 		idx = array_index_nospec(idx, ARM_MAX_BRP);
268 		tsk->thread.debug.hbp_break[idx] = bp;
269 		err = 0;
270 		break;
271 	case NT_ARM_HW_WATCH:
272 		if (idx >= ARM_MAX_WRP)
273 			goto out;
274 		idx = array_index_nospec(idx, ARM_MAX_WRP);
275 		tsk->thread.debug.hbp_watch[idx] = bp;
276 		err = 0;
277 		break;
278 	}
279 
280 out:
281 	return err;
282 }
283 
284 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
285 					    struct task_struct *tsk,
286 					    unsigned long idx)
287 {
288 	struct perf_event *bp;
289 	struct perf_event_attr attr;
290 	int err, type;
291 
292 	switch (note_type) {
293 	case NT_ARM_HW_BREAK:
294 		type = HW_BREAKPOINT_X;
295 		break;
296 	case NT_ARM_HW_WATCH:
297 		type = HW_BREAKPOINT_RW;
298 		break;
299 	default:
300 		return ERR_PTR(-EINVAL);
301 	}
302 
303 	ptrace_breakpoint_init(&attr);
304 
305 	/*
306 	 * Initialise fields to sane defaults
307 	 * (i.e. values that will pass validation).
308 	 */
309 	attr.bp_addr	= 0;
310 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
311 	attr.bp_type	= type;
312 	attr.disabled	= 1;
313 
314 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
315 	if (IS_ERR(bp))
316 		return bp;
317 
318 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
319 	if (err)
320 		return ERR_PTR(err);
321 
322 	return bp;
323 }
324 
325 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
326 				     struct arch_hw_breakpoint_ctrl ctrl,
327 				     struct perf_event_attr *attr)
328 {
329 	int err, len, type, offset, disabled = !ctrl.enabled;
330 
331 	attr->disabled = disabled;
332 	if (disabled)
333 		return 0;
334 
335 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
336 	if (err)
337 		return err;
338 
339 	switch (note_type) {
340 	case NT_ARM_HW_BREAK:
341 		if ((type & HW_BREAKPOINT_X) != type)
342 			return -EINVAL;
343 		break;
344 	case NT_ARM_HW_WATCH:
345 		if ((type & HW_BREAKPOINT_RW) != type)
346 			return -EINVAL;
347 		break;
348 	default:
349 		return -EINVAL;
350 	}
351 
352 	attr->bp_len	= len;
353 	attr->bp_type	= type;
354 	attr->bp_addr	+= offset;
355 
356 	return 0;
357 }
358 
359 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
360 {
361 	u8 num;
362 	u32 reg = 0;
363 
364 	switch (note_type) {
365 	case NT_ARM_HW_BREAK:
366 		num = hw_breakpoint_slots(TYPE_INST);
367 		break;
368 	case NT_ARM_HW_WATCH:
369 		num = hw_breakpoint_slots(TYPE_DATA);
370 		break;
371 	default:
372 		return -EINVAL;
373 	}
374 
375 	reg |= debug_monitors_arch();
376 	reg <<= 8;
377 	reg |= num;
378 
379 	*info = reg;
380 	return 0;
381 }
382 
383 static int ptrace_hbp_get_ctrl(unsigned int note_type,
384 			       struct task_struct *tsk,
385 			       unsigned long idx,
386 			       u32 *ctrl)
387 {
388 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
389 
390 	if (IS_ERR(bp))
391 		return PTR_ERR(bp);
392 
393 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
394 	return 0;
395 }
396 
397 static int ptrace_hbp_get_addr(unsigned int note_type,
398 			       struct task_struct *tsk,
399 			       unsigned long idx,
400 			       u64 *addr)
401 {
402 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
403 
404 	if (IS_ERR(bp))
405 		return PTR_ERR(bp);
406 
407 	*addr = bp ? counter_arch_bp(bp)->address : 0;
408 	return 0;
409 }
410 
411 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
412 							struct task_struct *tsk,
413 							unsigned long idx)
414 {
415 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
416 
417 	if (!bp)
418 		bp = ptrace_hbp_create(note_type, tsk, idx);
419 
420 	return bp;
421 }
422 
423 static int ptrace_hbp_set_ctrl(unsigned int note_type,
424 			       struct task_struct *tsk,
425 			       unsigned long idx,
426 			       u32 uctrl)
427 {
428 	int err;
429 	struct perf_event *bp;
430 	struct perf_event_attr attr;
431 	struct arch_hw_breakpoint_ctrl ctrl;
432 
433 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
434 	if (IS_ERR(bp)) {
435 		err = PTR_ERR(bp);
436 		return err;
437 	}
438 
439 	attr = bp->attr;
440 	decode_ctrl_reg(uctrl, &ctrl);
441 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
442 	if (err)
443 		return err;
444 
445 	return modify_user_hw_breakpoint(bp, &attr);
446 }
447 
448 static int ptrace_hbp_set_addr(unsigned int note_type,
449 			       struct task_struct *tsk,
450 			       unsigned long idx,
451 			       u64 addr)
452 {
453 	int err;
454 	struct perf_event *bp;
455 	struct perf_event_attr attr;
456 
457 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
458 	if (IS_ERR(bp)) {
459 		err = PTR_ERR(bp);
460 		return err;
461 	}
462 
463 	attr = bp->attr;
464 	attr.bp_addr = addr;
465 	err = modify_user_hw_breakpoint(bp, &attr);
466 	return err;
467 }
468 
469 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
470 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
471 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
472 
473 static int hw_break_get(struct task_struct *target,
474 			const struct user_regset *regset,
475 			struct membuf to)
476 {
477 	unsigned int note_type = regset->core_note_type;
478 	int ret, idx = 0;
479 	u32 info, ctrl;
480 	u64 addr;
481 
482 	/* Resource info */
483 	ret = ptrace_hbp_get_resource_info(note_type, &info);
484 	if (ret)
485 		return ret;
486 
487 	membuf_write(&to, &info, sizeof(info));
488 	membuf_zero(&to, sizeof(u32));
489 	/* (address, ctrl) registers */
490 	while (to.left) {
491 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
492 		if (ret)
493 			return ret;
494 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
495 		if (ret)
496 			return ret;
497 		membuf_store(&to, addr);
498 		membuf_store(&to, ctrl);
499 		membuf_zero(&to, sizeof(u32));
500 		idx++;
501 	}
502 	return 0;
503 }
504 
505 static int hw_break_set(struct task_struct *target,
506 			const struct user_regset *regset,
507 			unsigned int pos, unsigned int count,
508 			const void *kbuf, const void __user *ubuf)
509 {
510 	unsigned int note_type = regset->core_note_type;
511 	int ret, idx = 0, offset, limit;
512 	u32 ctrl;
513 	u64 addr;
514 
515 	/* Resource info and pad */
516 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
517 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
518 	if (ret)
519 		return ret;
520 
521 	/* (address, ctrl) registers */
522 	limit = regset->n * regset->size;
523 	while (count && offset < limit) {
524 		if (count < PTRACE_HBP_ADDR_SZ)
525 			return -EINVAL;
526 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
527 					 offset, offset + PTRACE_HBP_ADDR_SZ);
528 		if (ret)
529 			return ret;
530 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
531 		if (ret)
532 			return ret;
533 		offset += PTRACE_HBP_ADDR_SZ;
534 
535 		if (!count)
536 			break;
537 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
538 					 offset, offset + PTRACE_HBP_CTRL_SZ);
539 		if (ret)
540 			return ret;
541 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
542 		if (ret)
543 			return ret;
544 		offset += PTRACE_HBP_CTRL_SZ;
545 
546 		ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
547 						offset,
548 						offset + PTRACE_HBP_PAD_SZ);
549 		if (ret)
550 			return ret;
551 		offset += PTRACE_HBP_PAD_SZ;
552 		idx++;
553 	}
554 
555 	return 0;
556 }
557 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
558 
559 static int gpr_get(struct task_struct *target,
560 		   const struct user_regset *regset,
561 		   struct membuf to)
562 {
563 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
564 	return membuf_write(&to, uregs, sizeof(*uregs));
565 }
566 
567 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
568 		   unsigned int pos, unsigned int count,
569 		   const void *kbuf, const void __user *ubuf)
570 {
571 	int ret;
572 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
573 
574 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
575 	if (ret)
576 		return ret;
577 
578 	if (!valid_user_regs(&newregs, target))
579 		return -EINVAL;
580 
581 	task_pt_regs(target)->user_regs = newregs;
582 	return 0;
583 }
584 
585 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
586 {
587 	if (!system_supports_fpsimd())
588 		return -ENODEV;
589 	return regset->n;
590 }
591 
592 /*
593  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
594  */
595 static int __fpr_get(struct task_struct *target,
596 		     const struct user_regset *regset,
597 		     struct membuf to)
598 {
599 	struct user_fpsimd_state *uregs;
600 
601 	sve_sync_to_fpsimd(target);
602 
603 	uregs = &target->thread.uw.fpsimd_state;
604 
605 	return membuf_write(&to, uregs, sizeof(*uregs));
606 }
607 
608 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
609 		   struct membuf to)
610 {
611 	if (!system_supports_fpsimd())
612 		return -EINVAL;
613 
614 	if (target == current)
615 		fpsimd_preserve_current_state();
616 
617 	return __fpr_get(target, regset, to);
618 }
619 
620 static int __fpr_set(struct task_struct *target,
621 		     const struct user_regset *regset,
622 		     unsigned int pos, unsigned int count,
623 		     const void *kbuf, const void __user *ubuf,
624 		     unsigned int start_pos)
625 {
626 	int ret;
627 	struct user_fpsimd_state newstate;
628 
629 	/*
630 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
631 	 * short copyin can't resurrect stale data.
632 	 */
633 	sve_sync_to_fpsimd(target);
634 
635 	newstate = target->thread.uw.fpsimd_state;
636 
637 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
638 				 start_pos, start_pos + sizeof(newstate));
639 	if (ret)
640 		return ret;
641 
642 	target->thread.uw.fpsimd_state = newstate;
643 
644 	return ret;
645 }
646 
647 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
648 		   unsigned int pos, unsigned int count,
649 		   const void *kbuf, const void __user *ubuf)
650 {
651 	int ret;
652 
653 	if (!system_supports_fpsimd())
654 		return -EINVAL;
655 
656 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
657 	if (ret)
658 		return ret;
659 
660 	sve_sync_from_fpsimd_zeropad(target);
661 	fpsimd_flush_task_state(target);
662 
663 	return ret;
664 }
665 
666 static int tls_get(struct task_struct *target, const struct user_regset *regset,
667 		   struct membuf to)
668 {
669 	if (target == current)
670 		tls_preserve_current_state();
671 
672 	return membuf_store(&to, target->thread.uw.tp_value);
673 }
674 
675 static int tls_set(struct task_struct *target, const struct user_regset *regset,
676 		   unsigned int pos, unsigned int count,
677 		   const void *kbuf, const void __user *ubuf)
678 {
679 	int ret;
680 	unsigned long tls = target->thread.uw.tp_value;
681 
682 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
683 	if (ret)
684 		return ret;
685 
686 	target->thread.uw.tp_value = tls;
687 	return ret;
688 }
689 
690 static int system_call_get(struct task_struct *target,
691 			   const struct user_regset *regset,
692 			   struct membuf to)
693 {
694 	return membuf_store(&to, task_pt_regs(target)->syscallno);
695 }
696 
697 static int system_call_set(struct task_struct *target,
698 			   const struct user_regset *regset,
699 			   unsigned int pos, unsigned int count,
700 			   const void *kbuf, const void __user *ubuf)
701 {
702 	int syscallno = task_pt_regs(target)->syscallno;
703 	int ret;
704 
705 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
706 	if (ret)
707 		return ret;
708 
709 	task_pt_regs(target)->syscallno = syscallno;
710 	return ret;
711 }
712 
713 #ifdef CONFIG_ARM64_SVE
714 
715 static void sve_init_header_from_task(struct user_sve_header *header,
716 				      struct task_struct *target,
717 				      enum vec_type type)
718 {
719 	unsigned int vq;
720 	bool active;
721 	bool fpsimd_only;
722 	enum vec_type task_type;
723 
724 	memset(header, 0, sizeof(*header));
725 
726 	/* Check if the requested registers are active for the task */
727 	if (thread_sm_enabled(&target->thread))
728 		task_type = ARM64_VEC_SME;
729 	else
730 		task_type = ARM64_VEC_SVE;
731 	active = (task_type == type);
732 
733 	switch (type) {
734 	case ARM64_VEC_SVE:
735 		if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
736 			header->flags |= SVE_PT_VL_INHERIT;
737 		fpsimd_only = !test_tsk_thread_flag(target, TIF_SVE);
738 		break;
739 	case ARM64_VEC_SME:
740 		if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
741 			header->flags |= SVE_PT_VL_INHERIT;
742 		fpsimd_only = false;
743 		break;
744 	default:
745 		WARN_ON_ONCE(1);
746 		return;
747 	}
748 
749 	if (active) {
750 		if (fpsimd_only) {
751 			header->flags |= SVE_PT_REGS_FPSIMD;
752 		} else {
753 			header->flags |= SVE_PT_REGS_SVE;
754 		}
755 	}
756 
757 	header->vl = task_get_vl(target, type);
758 	vq = sve_vq_from_vl(header->vl);
759 
760 	header->max_vl = vec_max_vl(type);
761 	header->size = SVE_PT_SIZE(vq, header->flags);
762 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
763 				      SVE_PT_REGS_SVE);
764 }
765 
766 static unsigned int sve_size_from_header(struct user_sve_header const *header)
767 {
768 	return ALIGN(header->size, SVE_VQ_BYTES);
769 }
770 
771 static int sve_get_common(struct task_struct *target,
772 			  const struct user_regset *regset,
773 			  struct membuf to,
774 			  enum vec_type type)
775 {
776 	struct user_sve_header header;
777 	unsigned int vq;
778 	unsigned long start, end;
779 
780 	/* Header */
781 	sve_init_header_from_task(&header, target, type);
782 	vq = sve_vq_from_vl(header.vl);
783 
784 	membuf_write(&to, &header, sizeof(header));
785 
786 	if (target == current)
787 		fpsimd_preserve_current_state();
788 
789 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
790 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
791 
792 	switch ((header.flags & SVE_PT_REGS_MASK)) {
793 	case SVE_PT_REGS_FPSIMD:
794 		return __fpr_get(target, regset, to);
795 
796 	case SVE_PT_REGS_SVE:
797 		start = SVE_PT_SVE_OFFSET;
798 		end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
799 		membuf_write(&to, target->thread.sve_state, end - start);
800 
801 		start = end;
802 		end = SVE_PT_SVE_FPSR_OFFSET(vq);
803 		membuf_zero(&to, end - start);
804 
805 		/*
806 		 * Copy fpsr, and fpcr which must follow contiguously in
807 		 * struct fpsimd_state:
808 		 */
809 		start = end;
810 		end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
811 		membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr,
812 			     end - start);
813 
814 		start = end;
815 		end = sve_size_from_header(&header);
816 		return membuf_zero(&to, end - start);
817 
818 	default:
819 		return 0;
820 	}
821 }
822 
823 static int sve_get(struct task_struct *target,
824 		   const struct user_regset *regset,
825 		   struct membuf to)
826 {
827 	if (!system_supports_sve())
828 		return -EINVAL;
829 
830 	return sve_get_common(target, regset, to, ARM64_VEC_SVE);
831 }
832 
833 static int sve_set_common(struct task_struct *target,
834 			  const struct user_regset *regset,
835 			  unsigned int pos, unsigned int count,
836 			  const void *kbuf, const void __user *ubuf,
837 			  enum vec_type type)
838 {
839 	int ret;
840 	struct user_sve_header header;
841 	unsigned int vq;
842 	unsigned long start, end;
843 
844 	/* Header */
845 	if (count < sizeof(header))
846 		return -EINVAL;
847 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
848 				 0, sizeof(header));
849 	if (ret)
850 		goto out;
851 
852 	/*
853 	 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
854 	 * vec_set_vector_length(), which will also validate them for us:
855 	 */
856 	ret = vec_set_vector_length(target, type, header.vl,
857 		((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
858 	if (ret)
859 		goto out;
860 
861 	/* Actual VL set may be less than the user asked for: */
862 	vq = sve_vq_from_vl(task_get_vl(target, type));
863 
864 	/* Enter/exit streaming mode */
865 	if (system_supports_sme()) {
866 		u64 old_svcr = target->thread.svcr;
867 
868 		switch (type) {
869 		case ARM64_VEC_SVE:
870 			target->thread.svcr &= ~SYS_SVCR_EL0_SM_MASK;
871 			break;
872 		case ARM64_VEC_SME:
873 			target->thread.svcr |= SYS_SVCR_EL0_SM_MASK;
874 			break;
875 		default:
876 			WARN_ON_ONCE(1);
877 			return -EINVAL;
878 		}
879 
880 		/*
881 		 * If we switched then invalidate any existing SVE
882 		 * state and ensure there's storage.
883 		 */
884 		if (target->thread.svcr != old_svcr)
885 			sve_alloc(target);
886 	}
887 
888 	/* Registers: FPSIMD-only case */
889 
890 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
891 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
892 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
893 				SVE_PT_FPSIMD_OFFSET);
894 		clear_tsk_thread_flag(target, TIF_SVE);
895 		if (type == ARM64_VEC_SME)
896 			fpsimd_force_sync_to_sve(target);
897 		goto out;
898 	}
899 
900 	/*
901 	 * Otherwise: no registers or full SVE case.  For backwards
902 	 * compatibility reasons we treat empty flags as SVE registers.
903 	 */
904 
905 	/*
906 	 * If setting a different VL from the requested VL and there is
907 	 * register data, the data layout will be wrong: don't even
908 	 * try to set the registers in this case.
909 	 */
910 	if (count && vq != sve_vq_from_vl(header.vl)) {
911 		ret = -EIO;
912 		goto out;
913 	}
914 
915 	sve_alloc(target);
916 	if (!target->thread.sve_state) {
917 		ret = -ENOMEM;
918 		clear_tsk_thread_flag(target, TIF_SVE);
919 		goto out;
920 	}
921 
922 	/*
923 	 * Ensure target->thread.sve_state is up to date with target's
924 	 * FPSIMD regs, so that a short copyin leaves trailing
925 	 * registers unmodified.  Always enable SVE even if going into
926 	 * streaming mode.
927 	 */
928 	fpsimd_sync_to_sve(target);
929 	set_tsk_thread_flag(target, TIF_SVE);
930 
931 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
932 	start = SVE_PT_SVE_OFFSET;
933 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
934 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
935 				 target->thread.sve_state,
936 				 start, end);
937 	if (ret)
938 		goto out;
939 
940 	start = end;
941 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
942 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
943 					start, end);
944 	if (ret)
945 		goto out;
946 
947 	/*
948 	 * Copy fpsr, and fpcr which must follow contiguously in
949 	 * struct fpsimd_state:
950 	 */
951 	start = end;
952 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
953 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
954 				 &target->thread.uw.fpsimd_state.fpsr,
955 				 start, end);
956 
957 out:
958 	fpsimd_flush_task_state(target);
959 	return ret;
960 }
961 
962 static int sve_set(struct task_struct *target,
963 		   const struct user_regset *regset,
964 		   unsigned int pos, unsigned int count,
965 		   const void *kbuf, const void __user *ubuf)
966 {
967 	if (!system_supports_sve())
968 		return -EINVAL;
969 
970 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
971 			      ARM64_VEC_SVE);
972 }
973 
974 #endif /* CONFIG_ARM64_SVE */
975 
976 #ifdef CONFIG_ARM64_SME
977 
978 static int ssve_get(struct task_struct *target,
979 		   const struct user_regset *regset,
980 		   struct membuf to)
981 {
982 	if (!system_supports_sme())
983 		return -EINVAL;
984 
985 	return sve_get_common(target, regset, to, ARM64_VEC_SME);
986 }
987 
988 static int ssve_set(struct task_struct *target,
989 		    const struct user_regset *regset,
990 		    unsigned int pos, unsigned int count,
991 		    const void *kbuf, const void __user *ubuf)
992 {
993 	if (!system_supports_sme())
994 		return -EINVAL;
995 
996 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
997 			      ARM64_VEC_SME);
998 }
999 
1000 static int za_get(struct task_struct *target,
1001 		  const struct user_regset *regset,
1002 		  struct membuf to)
1003 {
1004 	struct user_za_header header;
1005 	unsigned int vq;
1006 	unsigned long start, end;
1007 
1008 	if (!system_supports_sme())
1009 		return -EINVAL;
1010 
1011 	/* Header */
1012 	memset(&header, 0, sizeof(header));
1013 
1014 	if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
1015 		header.flags |= ZA_PT_VL_INHERIT;
1016 
1017 	header.vl = task_get_sme_vl(target);
1018 	vq = sve_vq_from_vl(header.vl);
1019 	header.max_vl = sme_max_vl();
1020 	header.max_size = ZA_PT_SIZE(vq);
1021 
1022 	/* If ZA is not active there is only the header */
1023 	if (thread_za_enabled(&target->thread))
1024 		header.size = ZA_PT_SIZE(vq);
1025 	else
1026 		header.size = ZA_PT_ZA_OFFSET;
1027 
1028 	membuf_write(&to, &header, sizeof(header));
1029 
1030 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1031 	end = ZA_PT_ZA_OFFSET;
1032 
1033 	if (target == current)
1034 		fpsimd_preserve_current_state();
1035 
1036 	/* Any register data to include? */
1037 	if (thread_za_enabled(&target->thread)) {
1038 		start = end;
1039 		end = ZA_PT_SIZE(vq);
1040 		membuf_write(&to, target->thread.za_state, end - start);
1041 	}
1042 
1043 	/* Zero any trailing padding */
1044 	start = end;
1045 	end = ALIGN(header.size, SVE_VQ_BYTES);
1046 	return membuf_zero(&to, end - start);
1047 }
1048 
1049 static int za_set(struct task_struct *target,
1050 		  const struct user_regset *regset,
1051 		  unsigned int pos, unsigned int count,
1052 		  const void *kbuf, const void __user *ubuf)
1053 {
1054 	int ret;
1055 	struct user_za_header header;
1056 	unsigned int vq;
1057 	unsigned long start, end;
1058 
1059 	if (!system_supports_sme())
1060 		return -EINVAL;
1061 
1062 	/* Header */
1063 	if (count < sizeof(header))
1064 		return -EINVAL;
1065 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
1066 				 0, sizeof(header));
1067 	if (ret)
1068 		goto out;
1069 
1070 	/*
1071 	 * All current ZA_PT_* flags are consumed by
1072 	 * vec_set_vector_length(), which will also validate them for
1073 	 * us:
1074 	 */
1075 	ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl,
1076 		((unsigned long)header.flags) << 16);
1077 	if (ret)
1078 		goto out;
1079 
1080 	/* Actual VL set may be less than the user asked for: */
1081 	vq = sve_vq_from_vl(task_get_sme_vl(target));
1082 
1083 	/* Ensure there is some SVE storage for streaming mode */
1084 	if (!target->thread.sve_state) {
1085 		sve_alloc(target);
1086 		if (!target->thread.sve_state) {
1087 			clear_thread_flag(TIF_SME);
1088 			ret = -ENOMEM;
1089 			goto out;
1090 		}
1091 	}
1092 
1093 	/* Allocate/reinit ZA storage */
1094 	sme_alloc(target);
1095 	if (!target->thread.za_state) {
1096 		ret = -ENOMEM;
1097 		clear_tsk_thread_flag(target, TIF_SME);
1098 		goto out;
1099 	}
1100 
1101 	/* If there is no data then disable ZA */
1102 	if (!count) {
1103 		target->thread.svcr &= ~SYS_SVCR_EL0_ZA_MASK;
1104 		goto out;
1105 	}
1106 
1107 	/*
1108 	 * If setting a different VL from the requested VL and there is
1109 	 * register data, the data layout will be wrong: don't even
1110 	 * try to set the registers in this case.
1111 	 */
1112 	if (vq != sve_vq_from_vl(header.vl)) {
1113 		ret = -EIO;
1114 		goto out;
1115 	}
1116 
1117 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1118 	start = ZA_PT_ZA_OFFSET;
1119 	end = ZA_PT_SIZE(vq);
1120 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1121 				 target->thread.za_state,
1122 				 start, end);
1123 	if (ret)
1124 		goto out;
1125 
1126 	/* Mark ZA as active and let userspace use it */
1127 	set_tsk_thread_flag(target, TIF_SME);
1128 	target->thread.svcr |= SYS_SVCR_EL0_ZA_MASK;
1129 
1130 out:
1131 	fpsimd_flush_task_state(target);
1132 	return ret;
1133 }
1134 
1135 #endif /* CONFIG_ARM64_SME */
1136 
1137 #ifdef CONFIG_ARM64_PTR_AUTH
1138 static int pac_mask_get(struct task_struct *target,
1139 			const struct user_regset *regset,
1140 			struct membuf to)
1141 {
1142 	/*
1143 	 * The PAC bits can differ across data and instruction pointers
1144 	 * depending on TCR_EL1.TBID*, which we may make use of in future, so
1145 	 * we expose separate masks.
1146 	 */
1147 	unsigned long mask = ptrauth_user_pac_mask();
1148 	struct user_pac_mask uregs = {
1149 		.data_mask = mask,
1150 		.insn_mask = mask,
1151 	};
1152 
1153 	if (!system_supports_address_auth())
1154 		return -EINVAL;
1155 
1156 	return membuf_write(&to, &uregs, sizeof(uregs));
1157 }
1158 
1159 static int pac_enabled_keys_get(struct task_struct *target,
1160 				const struct user_regset *regset,
1161 				struct membuf to)
1162 {
1163 	long enabled_keys = ptrauth_get_enabled_keys(target);
1164 
1165 	if (IS_ERR_VALUE(enabled_keys))
1166 		return enabled_keys;
1167 
1168 	return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
1169 }
1170 
1171 static int pac_enabled_keys_set(struct task_struct *target,
1172 				const struct user_regset *regset,
1173 				unsigned int pos, unsigned int count,
1174 				const void *kbuf, const void __user *ubuf)
1175 {
1176 	int ret;
1177 	long enabled_keys = ptrauth_get_enabled_keys(target);
1178 
1179 	if (IS_ERR_VALUE(enabled_keys))
1180 		return enabled_keys;
1181 
1182 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
1183 				 sizeof(long));
1184 	if (ret)
1185 		return ret;
1186 
1187 	return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
1188 					enabled_keys);
1189 }
1190 
1191 #ifdef CONFIG_CHECKPOINT_RESTORE
1192 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
1193 {
1194 	return (__uint128_t)key->hi << 64 | key->lo;
1195 }
1196 
1197 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
1198 {
1199 	struct ptrauth_key key = {
1200 		.lo = (unsigned long)ukey,
1201 		.hi = (unsigned long)(ukey >> 64),
1202 	};
1203 
1204 	return key;
1205 }
1206 
1207 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1208 				     const struct ptrauth_keys_user *keys)
1209 {
1210 	ukeys->apiakey = pac_key_to_user(&keys->apia);
1211 	ukeys->apibkey = pac_key_to_user(&keys->apib);
1212 	ukeys->apdakey = pac_key_to_user(&keys->apda);
1213 	ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1214 }
1215 
1216 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
1217 				       const struct user_pac_address_keys *ukeys)
1218 {
1219 	keys->apia = pac_key_from_user(ukeys->apiakey);
1220 	keys->apib = pac_key_from_user(ukeys->apibkey);
1221 	keys->apda = pac_key_from_user(ukeys->apdakey);
1222 	keys->apdb = pac_key_from_user(ukeys->apdbkey);
1223 }
1224 
1225 static int pac_address_keys_get(struct task_struct *target,
1226 				const struct user_regset *regset,
1227 				struct membuf to)
1228 {
1229 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1230 	struct user_pac_address_keys user_keys;
1231 
1232 	if (!system_supports_address_auth())
1233 		return -EINVAL;
1234 
1235 	pac_address_keys_to_user(&user_keys, keys);
1236 
1237 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1238 }
1239 
1240 static int pac_address_keys_set(struct task_struct *target,
1241 				const struct user_regset *regset,
1242 				unsigned int pos, unsigned int count,
1243 				const void *kbuf, const void __user *ubuf)
1244 {
1245 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1246 	struct user_pac_address_keys user_keys;
1247 	int ret;
1248 
1249 	if (!system_supports_address_auth())
1250 		return -EINVAL;
1251 
1252 	pac_address_keys_to_user(&user_keys, keys);
1253 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1254 				 &user_keys, 0, -1);
1255 	if (ret)
1256 		return ret;
1257 	pac_address_keys_from_user(keys, &user_keys);
1258 
1259 	return 0;
1260 }
1261 
1262 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1263 				     const struct ptrauth_keys_user *keys)
1264 {
1265 	ukeys->apgakey = pac_key_to_user(&keys->apga);
1266 }
1267 
1268 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1269 				       const struct user_pac_generic_keys *ukeys)
1270 {
1271 	keys->apga = pac_key_from_user(ukeys->apgakey);
1272 }
1273 
1274 static int pac_generic_keys_get(struct task_struct *target,
1275 				const struct user_regset *regset,
1276 				struct membuf to)
1277 {
1278 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1279 	struct user_pac_generic_keys user_keys;
1280 
1281 	if (!system_supports_generic_auth())
1282 		return -EINVAL;
1283 
1284 	pac_generic_keys_to_user(&user_keys, keys);
1285 
1286 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1287 }
1288 
1289 static int pac_generic_keys_set(struct task_struct *target,
1290 				const struct user_regset *regset,
1291 				unsigned int pos, unsigned int count,
1292 				const void *kbuf, const void __user *ubuf)
1293 {
1294 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1295 	struct user_pac_generic_keys user_keys;
1296 	int ret;
1297 
1298 	if (!system_supports_generic_auth())
1299 		return -EINVAL;
1300 
1301 	pac_generic_keys_to_user(&user_keys, keys);
1302 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1303 				 &user_keys, 0, -1);
1304 	if (ret)
1305 		return ret;
1306 	pac_generic_keys_from_user(keys, &user_keys);
1307 
1308 	return 0;
1309 }
1310 #endif /* CONFIG_CHECKPOINT_RESTORE */
1311 #endif /* CONFIG_ARM64_PTR_AUTH */
1312 
1313 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1314 static int tagged_addr_ctrl_get(struct task_struct *target,
1315 				const struct user_regset *regset,
1316 				struct membuf to)
1317 {
1318 	long ctrl = get_tagged_addr_ctrl(target);
1319 
1320 	if (IS_ERR_VALUE(ctrl))
1321 		return ctrl;
1322 
1323 	return membuf_write(&to, &ctrl, sizeof(ctrl));
1324 }
1325 
1326 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1327 				user_regset *regset, unsigned int pos,
1328 				unsigned int count, const void *kbuf, const
1329 				void __user *ubuf)
1330 {
1331 	int ret;
1332 	long ctrl;
1333 
1334 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1335 	if (ret)
1336 		return ret;
1337 
1338 	return set_tagged_addr_ctrl(target, ctrl);
1339 }
1340 #endif
1341 
1342 enum aarch64_regset {
1343 	REGSET_GPR,
1344 	REGSET_FPR,
1345 	REGSET_TLS,
1346 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1347 	REGSET_HW_BREAK,
1348 	REGSET_HW_WATCH,
1349 #endif
1350 	REGSET_SYSTEM_CALL,
1351 #ifdef CONFIG_ARM64_SVE
1352 	REGSET_SVE,
1353 #endif
1354 #ifdef CONFIG_ARM64_SVE
1355 	REGSET_SSVE,
1356 	REGSET_ZA,
1357 #endif
1358 #ifdef CONFIG_ARM64_PTR_AUTH
1359 	REGSET_PAC_MASK,
1360 	REGSET_PAC_ENABLED_KEYS,
1361 #ifdef CONFIG_CHECKPOINT_RESTORE
1362 	REGSET_PACA_KEYS,
1363 	REGSET_PACG_KEYS,
1364 #endif
1365 #endif
1366 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1367 	REGSET_TAGGED_ADDR_CTRL,
1368 #endif
1369 };
1370 
1371 static const struct user_regset aarch64_regsets[] = {
1372 	[REGSET_GPR] = {
1373 		.core_note_type = NT_PRSTATUS,
1374 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
1375 		.size = sizeof(u64),
1376 		.align = sizeof(u64),
1377 		.regset_get = gpr_get,
1378 		.set = gpr_set
1379 	},
1380 	[REGSET_FPR] = {
1381 		.core_note_type = NT_PRFPREG,
1382 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1383 		/*
1384 		 * We pretend we have 32-bit registers because the fpsr and
1385 		 * fpcr are 32-bits wide.
1386 		 */
1387 		.size = sizeof(u32),
1388 		.align = sizeof(u32),
1389 		.active = fpr_active,
1390 		.regset_get = fpr_get,
1391 		.set = fpr_set
1392 	},
1393 	[REGSET_TLS] = {
1394 		.core_note_type = NT_ARM_TLS,
1395 		.n = 1,
1396 		.size = sizeof(void *),
1397 		.align = sizeof(void *),
1398 		.regset_get = tls_get,
1399 		.set = tls_set,
1400 	},
1401 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1402 	[REGSET_HW_BREAK] = {
1403 		.core_note_type = NT_ARM_HW_BREAK,
1404 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1405 		.size = sizeof(u32),
1406 		.align = sizeof(u32),
1407 		.regset_get = hw_break_get,
1408 		.set = hw_break_set,
1409 	},
1410 	[REGSET_HW_WATCH] = {
1411 		.core_note_type = NT_ARM_HW_WATCH,
1412 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1413 		.size = sizeof(u32),
1414 		.align = sizeof(u32),
1415 		.regset_get = hw_break_get,
1416 		.set = hw_break_set,
1417 	},
1418 #endif
1419 	[REGSET_SYSTEM_CALL] = {
1420 		.core_note_type = NT_ARM_SYSTEM_CALL,
1421 		.n = 1,
1422 		.size = sizeof(int),
1423 		.align = sizeof(int),
1424 		.regset_get = system_call_get,
1425 		.set = system_call_set,
1426 	},
1427 #ifdef CONFIG_ARM64_SVE
1428 	[REGSET_SVE] = { /* Scalable Vector Extension */
1429 		.core_note_type = NT_ARM_SVE,
1430 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1431 				  SVE_VQ_BYTES),
1432 		.size = SVE_VQ_BYTES,
1433 		.align = SVE_VQ_BYTES,
1434 		.regset_get = sve_get,
1435 		.set = sve_set,
1436 	},
1437 #endif
1438 #ifdef CONFIG_ARM64_SME
1439 	[REGSET_SSVE] = { /* Streaming mode SVE */
1440 		.core_note_type = NT_ARM_SSVE,
1441 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1442 				  SVE_VQ_BYTES),
1443 		.size = SVE_VQ_BYTES,
1444 		.align = SVE_VQ_BYTES,
1445 		.regset_get = ssve_get,
1446 		.set = ssve_set,
1447 	},
1448 	[REGSET_ZA] = { /* SME ZA */
1449 		.core_note_type = NT_ARM_ZA,
1450 		.n = DIV_ROUND_UP(ZA_PT_ZA_SIZE(SVE_VQ_MAX), SVE_VQ_BYTES),
1451 		.size = SVE_VQ_BYTES,
1452 		.align = SVE_VQ_BYTES,
1453 		.regset_get = za_get,
1454 		.set = za_set,
1455 	},
1456 #endif
1457 #ifdef CONFIG_ARM64_PTR_AUTH
1458 	[REGSET_PAC_MASK] = {
1459 		.core_note_type = NT_ARM_PAC_MASK,
1460 		.n = sizeof(struct user_pac_mask) / sizeof(u64),
1461 		.size = sizeof(u64),
1462 		.align = sizeof(u64),
1463 		.regset_get = pac_mask_get,
1464 		/* this cannot be set dynamically */
1465 	},
1466 	[REGSET_PAC_ENABLED_KEYS] = {
1467 		.core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1468 		.n = 1,
1469 		.size = sizeof(long),
1470 		.align = sizeof(long),
1471 		.regset_get = pac_enabled_keys_get,
1472 		.set = pac_enabled_keys_set,
1473 	},
1474 #ifdef CONFIG_CHECKPOINT_RESTORE
1475 	[REGSET_PACA_KEYS] = {
1476 		.core_note_type = NT_ARM_PACA_KEYS,
1477 		.n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1478 		.size = sizeof(__uint128_t),
1479 		.align = sizeof(__uint128_t),
1480 		.regset_get = pac_address_keys_get,
1481 		.set = pac_address_keys_set,
1482 	},
1483 	[REGSET_PACG_KEYS] = {
1484 		.core_note_type = NT_ARM_PACG_KEYS,
1485 		.n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1486 		.size = sizeof(__uint128_t),
1487 		.align = sizeof(__uint128_t),
1488 		.regset_get = pac_generic_keys_get,
1489 		.set = pac_generic_keys_set,
1490 	},
1491 #endif
1492 #endif
1493 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1494 	[REGSET_TAGGED_ADDR_CTRL] = {
1495 		.core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1496 		.n = 1,
1497 		.size = sizeof(long),
1498 		.align = sizeof(long),
1499 		.regset_get = tagged_addr_ctrl_get,
1500 		.set = tagged_addr_ctrl_set,
1501 	},
1502 #endif
1503 };
1504 
1505 static const struct user_regset_view user_aarch64_view = {
1506 	.name = "aarch64", .e_machine = EM_AARCH64,
1507 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1508 };
1509 
1510 #ifdef CONFIG_COMPAT
1511 enum compat_regset {
1512 	REGSET_COMPAT_GPR,
1513 	REGSET_COMPAT_VFP,
1514 };
1515 
1516 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1517 {
1518 	struct pt_regs *regs = task_pt_regs(task);
1519 
1520 	switch (idx) {
1521 	case 15:
1522 		return regs->pc;
1523 	case 16:
1524 		return pstate_to_compat_psr(regs->pstate);
1525 	case 17:
1526 		return regs->orig_x0;
1527 	default:
1528 		return regs->regs[idx];
1529 	}
1530 }
1531 
1532 static int compat_gpr_get(struct task_struct *target,
1533 			  const struct user_regset *regset,
1534 			  struct membuf to)
1535 {
1536 	int i = 0;
1537 
1538 	while (to.left)
1539 		membuf_store(&to, compat_get_user_reg(target, i++));
1540 	return 0;
1541 }
1542 
1543 static int compat_gpr_set(struct task_struct *target,
1544 			  const struct user_regset *regset,
1545 			  unsigned int pos, unsigned int count,
1546 			  const void *kbuf, const void __user *ubuf)
1547 {
1548 	struct pt_regs newregs;
1549 	int ret = 0;
1550 	unsigned int i, start, num_regs;
1551 
1552 	/* Calculate the number of AArch32 registers contained in count */
1553 	num_regs = count / regset->size;
1554 
1555 	/* Convert pos into an register number */
1556 	start = pos / regset->size;
1557 
1558 	if (start + num_regs > regset->n)
1559 		return -EIO;
1560 
1561 	newregs = *task_pt_regs(target);
1562 
1563 	for (i = 0; i < num_regs; ++i) {
1564 		unsigned int idx = start + i;
1565 		compat_ulong_t reg;
1566 
1567 		if (kbuf) {
1568 			memcpy(&reg, kbuf, sizeof(reg));
1569 			kbuf += sizeof(reg);
1570 		} else {
1571 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1572 			if (ret) {
1573 				ret = -EFAULT;
1574 				break;
1575 			}
1576 
1577 			ubuf += sizeof(reg);
1578 		}
1579 
1580 		switch (idx) {
1581 		case 15:
1582 			newregs.pc = reg;
1583 			break;
1584 		case 16:
1585 			reg = compat_psr_to_pstate(reg);
1586 			newregs.pstate = reg;
1587 			break;
1588 		case 17:
1589 			newregs.orig_x0 = reg;
1590 			break;
1591 		default:
1592 			newregs.regs[idx] = reg;
1593 		}
1594 
1595 	}
1596 
1597 	if (valid_user_regs(&newregs.user_regs, target))
1598 		*task_pt_regs(target) = newregs;
1599 	else
1600 		ret = -EINVAL;
1601 
1602 	return ret;
1603 }
1604 
1605 static int compat_vfp_get(struct task_struct *target,
1606 			  const struct user_regset *regset,
1607 			  struct membuf to)
1608 {
1609 	struct user_fpsimd_state *uregs;
1610 	compat_ulong_t fpscr;
1611 
1612 	if (!system_supports_fpsimd())
1613 		return -EINVAL;
1614 
1615 	uregs = &target->thread.uw.fpsimd_state;
1616 
1617 	if (target == current)
1618 		fpsimd_preserve_current_state();
1619 
1620 	/*
1621 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1622 	 * nicely together for us. We just need to create the fpscr separately.
1623 	 */
1624 	membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1625 	fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1626 		(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1627 	return membuf_store(&to, fpscr);
1628 }
1629 
1630 static int compat_vfp_set(struct task_struct *target,
1631 			  const struct user_regset *regset,
1632 			  unsigned int pos, unsigned int count,
1633 			  const void *kbuf, const void __user *ubuf)
1634 {
1635 	struct user_fpsimd_state *uregs;
1636 	compat_ulong_t fpscr;
1637 	int ret, vregs_end_pos;
1638 
1639 	if (!system_supports_fpsimd())
1640 		return -EINVAL;
1641 
1642 	uregs = &target->thread.uw.fpsimd_state;
1643 
1644 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1645 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1646 				 vregs_end_pos);
1647 
1648 	if (count && !ret) {
1649 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1650 					 vregs_end_pos, VFP_STATE_SIZE);
1651 		if (!ret) {
1652 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1653 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1654 		}
1655 	}
1656 
1657 	fpsimd_flush_task_state(target);
1658 	return ret;
1659 }
1660 
1661 static int compat_tls_get(struct task_struct *target,
1662 			  const struct user_regset *regset,
1663 			  struct membuf to)
1664 {
1665 	return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1666 }
1667 
1668 static int compat_tls_set(struct task_struct *target,
1669 			  const struct user_regset *regset, unsigned int pos,
1670 			  unsigned int count, const void *kbuf,
1671 			  const void __user *ubuf)
1672 {
1673 	int ret;
1674 	compat_ulong_t tls = target->thread.uw.tp_value;
1675 
1676 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1677 	if (ret)
1678 		return ret;
1679 
1680 	target->thread.uw.tp_value = tls;
1681 	return ret;
1682 }
1683 
1684 static const struct user_regset aarch32_regsets[] = {
1685 	[REGSET_COMPAT_GPR] = {
1686 		.core_note_type = NT_PRSTATUS,
1687 		.n = COMPAT_ELF_NGREG,
1688 		.size = sizeof(compat_elf_greg_t),
1689 		.align = sizeof(compat_elf_greg_t),
1690 		.regset_get = compat_gpr_get,
1691 		.set = compat_gpr_set
1692 	},
1693 	[REGSET_COMPAT_VFP] = {
1694 		.core_note_type = NT_ARM_VFP,
1695 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1696 		.size = sizeof(compat_ulong_t),
1697 		.align = sizeof(compat_ulong_t),
1698 		.active = fpr_active,
1699 		.regset_get = compat_vfp_get,
1700 		.set = compat_vfp_set
1701 	},
1702 };
1703 
1704 static const struct user_regset_view user_aarch32_view = {
1705 	.name = "aarch32", .e_machine = EM_ARM,
1706 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1707 };
1708 
1709 static const struct user_regset aarch32_ptrace_regsets[] = {
1710 	[REGSET_GPR] = {
1711 		.core_note_type = NT_PRSTATUS,
1712 		.n = COMPAT_ELF_NGREG,
1713 		.size = sizeof(compat_elf_greg_t),
1714 		.align = sizeof(compat_elf_greg_t),
1715 		.regset_get = compat_gpr_get,
1716 		.set = compat_gpr_set
1717 	},
1718 	[REGSET_FPR] = {
1719 		.core_note_type = NT_ARM_VFP,
1720 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1721 		.size = sizeof(compat_ulong_t),
1722 		.align = sizeof(compat_ulong_t),
1723 		.regset_get = compat_vfp_get,
1724 		.set = compat_vfp_set
1725 	},
1726 	[REGSET_TLS] = {
1727 		.core_note_type = NT_ARM_TLS,
1728 		.n = 1,
1729 		.size = sizeof(compat_ulong_t),
1730 		.align = sizeof(compat_ulong_t),
1731 		.regset_get = compat_tls_get,
1732 		.set = compat_tls_set,
1733 	},
1734 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1735 	[REGSET_HW_BREAK] = {
1736 		.core_note_type = NT_ARM_HW_BREAK,
1737 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1738 		.size = sizeof(u32),
1739 		.align = sizeof(u32),
1740 		.regset_get = hw_break_get,
1741 		.set = hw_break_set,
1742 	},
1743 	[REGSET_HW_WATCH] = {
1744 		.core_note_type = NT_ARM_HW_WATCH,
1745 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1746 		.size = sizeof(u32),
1747 		.align = sizeof(u32),
1748 		.regset_get = hw_break_get,
1749 		.set = hw_break_set,
1750 	},
1751 #endif
1752 	[REGSET_SYSTEM_CALL] = {
1753 		.core_note_type = NT_ARM_SYSTEM_CALL,
1754 		.n = 1,
1755 		.size = sizeof(int),
1756 		.align = sizeof(int),
1757 		.regset_get = system_call_get,
1758 		.set = system_call_set,
1759 	},
1760 };
1761 
1762 static const struct user_regset_view user_aarch32_ptrace_view = {
1763 	.name = "aarch32", .e_machine = EM_ARM,
1764 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1765 };
1766 
1767 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1768 				   compat_ulong_t __user *ret)
1769 {
1770 	compat_ulong_t tmp;
1771 
1772 	if (off & 3)
1773 		return -EIO;
1774 
1775 	if (off == COMPAT_PT_TEXT_ADDR)
1776 		tmp = tsk->mm->start_code;
1777 	else if (off == COMPAT_PT_DATA_ADDR)
1778 		tmp = tsk->mm->start_data;
1779 	else if (off == COMPAT_PT_TEXT_END_ADDR)
1780 		tmp = tsk->mm->end_code;
1781 	else if (off < sizeof(compat_elf_gregset_t))
1782 		tmp = compat_get_user_reg(tsk, off >> 2);
1783 	else if (off >= COMPAT_USER_SZ)
1784 		return -EIO;
1785 	else
1786 		tmp = 0;
1787 
1788 	return put_user(tmp, ret);
1789 }
1790 
1791 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1792 				    compat_ulong_t val)
1793 {
1794 	struct pt_regs newregs = *task_pt_regs(tsk);
1795 	unsigned int idx = off / 4;
1796 
1797 	if (off & 3 || off >= COMPAT_USER_SZ)
1798 		return -EIO;
1799 
1800 	if (off >= sizeof(compat_elf_gregset_t))
1801 		return 0;
1802 
1803 	switch (idx) {
1804 	case 15:
1805 		newregs.pc = val;
1806 		break;
1807 	case 16:
1808 		newregs.pstate = compat_psr_to_pstate(val);
1809 		break;
1810 	case 17:
1811 		newregs.orig_x0 = val;
1812 		break;
1813 	default:
1814 		newregs.regs[idx] = val;
1815 	}
1816 
1817 	if (!valid_user_regs(&newregs.user_regs, tsk))
1818 		return -EINVAL;
1819 
1820 	*task_pt_regs(tsk) = newregs;
1821 	return 0;
1822 }
1823 
1824 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1825 
1826 /*
1827  * Convert a virtual register number into an index for a thread_info
1828  * breakpoint array. Breakpoints are identified using positive numbers
1829  * whilst watchpoints are negative. The registers are laid out as pairs
1830  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1831  * Register 0 is reserved for describing resource information.
1832  */
1833 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1834 {
1835 	return (abs(num) - 1) >> 1;
1836 }
1837 
1838 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1839 {
1840 	u8 num_brps, num_wrps, debug_arch, wp_len;
1841 	u32 reg = 0;
1842 
1843 	num_brps	= hw_breakpoint_slots(TYPE_INST);
1844 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
1845 
1846 	debug_arch	= debug_monitors_arch();
1847 	wp_len		= 8;
1848 	reg		|= debug_arch;
1849 	reg		<<= 8;
1850 	reg		|= wp_len;
1851 	reg		<<= 8;
1852 	reg		|= num_wrps;
1853 	reg		<<= 8;
1854 	reg		|= num_brps;
1855 
1856 	*kdata = reg;
1857 	return 0;
1858 }
1859 
1860 static int compat_ptrace_hbp_get(unsigned int note_type,
1861 				 struct task_struct *tsk,
1862 				 compat_long_t num,
1863 				 u32 *kdata)
1864 {
1865 	u64 addr = 0;
1866 	u32 ctrl = 0;
1867 
1868 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1869 
1870 	if (num & 1) {
1871 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1872 		*kdata = (u32)addr;
1873 	} else {
1874 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1875 		*kdata = ctrl;
1876 	}
1877 
1878 	return err;
1879 }
1880 
1881 static int compat_ptrace_hbp_set(unsigned int note_type,
1882 				 struct task_struct *tsk,
1883 				 compat_long_t num,
1884 				 u32 *kdata)
1885 {
1886 	u64 addr;
1887 	u32 ctrl;
1888 
1889 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1890 
1891 	if (num & 1) {
1892 		addr = *kdata;
1893 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1894 	} else {
1895 		ctrl = *kdata;
1896 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1897 	}
1898 
1899 	return err;
1900 }
1901 
1902 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1903 				    compat_ulong_t __user *data)
1904 {
1905 	int ret;
1906 	u32 kdata;
1907 
1908 	/* Watchpoint */
1909 	if (num < 0) {
1910 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1911 	/* Resource info */
1912 	} else if (num == 0) {
1913 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
1914 	/* Breakpoint */
1915 	} else {
1916 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1917 	}
1918 
1919 	if (!ret)
1920 		ret = put_user(kdata, data);
1921 
1922 	return ret;
1923 }
1924 
1925 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1926 				    compat_ulong_t __user *data)
1927 {
1928 	int ret;
1929 	u32 kdata = 0;
1930 
1931 	if (num == 0)
1932 		return 0;
1933 
1934 	ret = get_user(kdata, data);
1935 	if (ret)
1936 		return ret;
1937 
1938 	if (num < 0)
1939 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1940 	else
1941 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1942 
1943 	return ret;
1944 }
1945 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
1946 
1947 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1948 			compat_ulong_t caddr, compat_ulong_t cdata)
1949 {
1950 	unsigned long addr = caddr;
1951 	unsigned long data = cdata;
1952 	void __user *datap = compat_ptr(data);
1953 	int ret;
1954 
1955 	switch (request) {
1956 		case PTRACE_PEEKUSR:
1957 			ret = compat_ptrace_read_user(child, addr, datap);
1958 			break;
1959 
1960 		case PTRACE_POKEUSR:
1961 			ret = compat_ptrace_write_user(child, addr, data);
1962 			break;
1963 
1964 		case COMPAT_PTRACE_GETREGS:
1965 			ret = copy_regset_to_user(child,
1966 						  &user_aarch32_view,
1967 						  REGSET_COMPAT_GPR,
1968 						  0, sizeof(compat_elf_gregset_t),
1969 						  datap);
1970 			break;
1971 
1972 		case COMPAT_PTRACE_SETREGS:
1973 			ret = copy_regset_from_user(child,
1974 						    &user_aarch32_view,
1975 						    REGSET_COMPAT_GPR,
1976 						    0, sizeof(compat_elf_gregset_t),
1977 						    datap);
1978 			break;
1979 
1980 		case COMPAT_PTRACE_GET_THREAD_AREA:
1981 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
1982 				       (compat_ulong_t __user *)datap);
1983 			break;
1984 
1985 		case COMPAT_PTRACE_SET_SYSCALL:
1986 			task_pt_regs(child)->syscallno = data;
1987 			ret = 0;
1988 			break;
1989 
1990 		case COMPAT_PTRACE_GETVFPREGS:
1991 			ret = copy_regset_to_user(child,
1992 						  &user_aarch32_view,
1993 						  REGSET_COMPAT_VFP,
1994 						  0, VFP_STATE_SIZE,
1995 						  datap);
1996 			break;
1997 
1998 		case COMPAT_PTRACE_SETVFPREGS:
1999 			ret = copy_regset_from_user(child,
2000 						    &user_aarch32_view,
2001 						    REGSET_COMPAT_VFP,
2002 						    0, VFP_STATE_SIZE,
2003 						    datap);
2004 			break;
2005 
2006 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2007 		case COMPAT_PTRACE_GETHBPREGS:
2008 			ret = compat_ptrace_gethbpregs(child, addr, datap);
2009 			break;
2010 
2011 		case COMPAT_PTRACE_SETHBPREGS:
2012 			ret = compat_ptrace_sethbpregs(child, addr, datap);
2013 			break;
2014 #endif
2015 
2016 		default:
2017 			ret = compat_ptrace_request(child, request, addr,
2018 						    data);
2019 			break;
2020 	}
2021 
2022 	return ret;
2023 }
2024 #endif /* CONFIG_COMPAT */
2025 
2026 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2027 {
2028 #ifdef CONFIG_COMPAT
2029 	/*
2030 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
2031 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
2032 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
2033 	 * access to the TLS register.
2034 	 */
2035 	if (is_compat_task())
2036 		return &user_aarch32_view;
2037 	else if (is_compat_thread(task_thread_info(task)))
2038 		return &user_aarch32_ptrace_view;
2039 #endif
2040 	return &user_aarch64_view;
2041 }
2042 
2043 long arch_ptrace(struct task_struct *child, long request,
2044 		 unsigned long addr, unsigned long data)
2045 {
2046 	switch (request) {
2047 	case PTRACE_PEEKMTETAGS:
2048 	case PTRACE_POKEMTETAGS:
2049 		return mte_ptrace_copy_tags(child, request, addr, data);
2050 	}
2051 
2052 	return ptrace_request(child, request, addr, data);
2053 }
2054 
2055 enum ptrace_syscall_dir {
2056 	PTRACE_SYSCALL_ENTER = 0,
2057 	PTRACE_SYSCALL_EXIT,
2058 };
2059 
2060 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
2061 {
2062 	int regno;
2063 	unsigned long saved_reg;
2064 
2065 	/*
2066 	 * We have some ABI weirdness here in the way that we handle syscall
2067 	 * exit stops because we indicate whether or not the stop has been
2068 	 * signalled from syscall entry or syscall exit by clobbering a general
2069 	 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
2070 	 * and restoring its old value after the stop. This means that:
2071 	 *
2072 	 * - Any writes by the tracer to this register during the stop are
2073 	 *   ignored/discarded.
2074 	 *
2075 	 * - The actual value of the register is not available during the stop,
2076 	 *   so the tracer cannot save it and restore it later.
2077 	 *
2078 	 * - Syscall stops behave differently to seccomp and pseudo-step traps
2079 	 *   (the latter do not nobble any registers).
2080 	 */
2081 	regno = (is_compat_task() ? 12 : 7);
2082 	saved_reg = regs->regs[regno];
2083 	regs->regs[regno] = dir;
2084 
2085 	if (dir == PTRACE_SYSCALL_ENTER) {
2086 		if (ptrace_report_syscall_entry(regs))
2087 			forget_syscall(regs);
2088 		regs->regs[regno] = saved_reg;
2089 	} else if (!test_thread_flag(TIF_SINGLESTEP)) {
2090 		ptrace_report_syscall_exit(regs, 0);
2091 		regs->regs[regno] = saved_reg;
2092 	} else {
2093 		regs->regs[regno] = saved_reg;
2094 
2095 		/*
2096 		 * Signal a pseudo-step exception since we are stepping but
2097 		 * tracer modifications to the registers may have rewound the
2098 		 * state machine.
2099 		 */
2100 		ptrace_report_syscall_exit(regs, 1);
2101 	}
2102 }
2103 
2104 int syscall_trace_enter(struct pt_regs *regs)
2105 {
2106 	unsigned long flags = read_thread_flags();
2107 
2108 	if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
2109 		report_syscall(regs, PTRACE_SYSCALL_ENTER);
2110 		if (flags & _TIF_SYSCALL_EMU)
2111 			return NO_SYSCALL;
2112 	}
2113 
2114 	/* Do the secure computing after ptrace; failures should be fast. */
2115 	if (secure_computing() == -1)
2116 		return NO_SYSCALL;
2117 
2118 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
2119 		trace_sys_enter(regs, regs->syscallno);
2120 
2121 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
2122 			    regs->regs[2], regs->regs[3]);
2123 
2124 	return regs->syscallno;
2125 }
2126 
2127 void syscall_trace_exit(struct pt_regs *regs)
2128 {
2129 	unsigned long flags = read_thread_flags();
2130 
2131 	audit_syscall_exit(regs);
2132 
2133 	if (flags & _TIF_SYSCALL_TRACEPOINT)
2134 		trace_sys_exit(regs, syscall_get_return_value(current, regs));
2135 
2136 	if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
2137 		report_syscall(regs, PTRACE_SYSCALL_EXIT);
2138 
2139 	rseq_syscall(regs);
2140 }
2141 
2142 /*
2143  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
2144  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
2145  * not described in ARM DDI 0487D.a.
2146  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
2147  * be allocated an EL0 meaning in future.
2148  * Userspace cannot use these until they have an architectural meaning.
2149  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
2150  * We also reserve IL for the kernel; SS is handled dynamically.
2151  */
2152 #define SPSR_EL1_AARCH64_RES0_BITS \
2153 	(GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
2154 	 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
2155 #define SPSR_EL1_AARCH32_RES0_BITS \
2156 	(GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
2157 
2158 static int valid_compat_regs(struct user_pt_regs *regs)
2159 {
2160 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
2161 
2162 	if (!system_supports_mixed_endian_el0()) {
2163 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
2164 			regs->pstate |= PSR_AA32_E_BIT;
2165 		else
2166 			regs->pstate &= ~PSR_AA32_E_BIT;
2167 	}
2168 
2169 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
2170 	    (regs->pstate & PSR_AA32_A_BIT) == 0 &&
2171 	    (regs->pstate & PSR_AA32_I_BIT) == 0 &&
2172 	    (regs->pstate & PSR_AA32_F_BIT) == 0) {
2173 		return 1;
2174 	}
2175 
2176 	/*
2177 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
2178 	 * arch/arm.
2179 	 */
2180 	regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
2181 			PSR_AA32_C_BIT | PSR_AA32_V_BIT |
2182 			PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
2183 			PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
2184 			PSR_AA32_T_BIT;
2185 	regs->pstate |= PSR_MODE32_BIT;
2186 
2187 	return 0;
2188 }
2189 
2190 static int valid_native_regs(struct user_pt_regs *regs)
2191 {
2192 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
2193 
2194 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
2195 	    (regs->pstate & PSR_D_BIT) == 0 &&
2196 	    (regs->pstate & PSR_A_BIT) == 0 &&
2197 	    (regs->pstate & PSR_I_BIT) == 0 &&
2198 	    (regs->pstate & PSR_F_BIT) == 0) {
2199 		return 1;
2200 	}
2201 
2202 	/* Force PSR to a valid 64-bit EL0t */
2203 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
2204 
2205 	return 0;
2206 }
2207 
2208 /*
2209  * Are the current registers suitable for user mode? (used to maintain
2210  * security in signal handlers)
2211  */
2212 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
2213 {
2214 	/* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
2215 	user_regs_reset_single_step(regs, task);
2216 
2217 	if (is_compat_thread(task_thread_info(task)))
2218 		return valid_compat_regs(regs);
2219 	else
2220 		return valid_native_regs(regs);
2221 }
2222