xref: /linux/arch/arm64/kernel/ptrace.c (revision 320fefa9e2edc67011e235ea1d50f0d00ddfe004)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/ptrace.c
4  *
5  * By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  * Copyright (C) 2012 ARM Ltd.
9  */
10 
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/elf.h>
31 
32 #include <asm/compat.h>
33 #include <asm/cpufeature.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/fpsimd.h>
36 #include <asm/mte.h>
37 #include <asm/pointer_auth.h>
38 #include <asm/stacktrace.h>
39 #include <asm/syscall.h>
40 #include <asm/traps.h>
41 #include <asm/system_misc.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/syscalls.h>
45 
46 struct pt_regs_offset {
47 	const char *name;
48 	int offset;
49 };
50 
51 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
52 #define REG_OFFSET_END {.name = NULL, .offset = 0}
53 #define GPR_OFFSET_NAME(r) \
54 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
55 
56 static const struct pt_regs_offset regoffset_table[] = {
57 	GPR_OFFSET_NAME(0),
58 	GPR_OFFSET_NAME(1),
59 	GPR_OFFSET_NAME(2),
60 	GPR_OFFSET_NAME(3),
61 	GPR_OFFSET_NAME(4),
62 	GPR_OFFSET_NAME(5),
63 	GPR_OFFSET_NAME(6),
64 	GPR_OFFSET_NAME(7),
65 	GPR_OFFSET_NAME(8),
66 	GPR_OFFSET_NAME(9),
67 	GPR_OFFSET_NAME(10),
68 	GPR_OFFSET_NAME(11),
69 	GPR_OFFSET_NAME(12),
70 	GPR_OFFSET_NAME(13),
71 	GPR_OFFSET_NAME(14),
72 	GPR_OFFSET_NAME(15),
73 	GPR_OFFSET_NAME(16),
74 	GPR_OFFSET_NAME(17),
75 	GPR_OFFSET_NAME(18),
76 	GPR_OFFSET_NAME(19),
77 	GPR_OFFSET_NAME(20),
78 	GPR_OFFSET_NAME(21),
79 	GPR_OFFSET_NAME(22),
80 	GPR_OFFSET_NAME(23),
81 	GPR_OFFSET_NAME(24),
82 	GPR_OFFSET_NAME(25),
83 	GPR_OFFSET_NAME(26),
84 	GPR_OFFSET_NAME(27),
85 	GPR_OFFSET_NAME(28),
86 	GPR_OFFSET_NAME(29),
87 	GPR_OFFSET_NAME(30),
88 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
89 	REG_OFFSET_NAME(sp),
90 	REG_OFFSET_NAME(pc),
91 	REG_OFFSET_NAME(pstate),
92 	REG_OFFSET_END,
93 };
94 
95 /**
96  * regs_query_register_offset() - query register offset from its name
97  * @name:	the name of a register
98  *
99  * regs_query_register_offset() returns the offset of a register in struct
100  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
101  */
102 int regs_query_register_offset(const char *name)
103 {
104 	const struct pt_regs_offset *roff;
105 
106 	for (roff = regoffset_table; roff->name != NULL; roff++)
107 		if (!strcmp(roff->name, name))
108 			return roff->offset;
109 	return -EINVAL;
110 }
111 
112 /**
113  * regs_within_kernel_stack() - check the address in the stack
114  * @regs:      pt_regs which contains kernel stack pointer.
115  * @addr:      address which is checked.
116  *
117  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
118  * If @addr is within the kernel stack, it returns true. If not, returns false.
119  */
120 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
121 {
122 	return ((addr & ~(THREAD_SIZE - 1))  ==
123 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
124 		on_irq_stack(addr, sizeof(unsigned long));
125 }
126 
127 /**
128  * regs_get_kernel_stack_nth() - get Nth entry of the stack
129  * @regs:	pt_regs which contains kernel stack pointer.
130  * @n:		stack entry number.
131  *
132  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
133  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
134  * this returns 0.
135  */
136 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
137 {
138 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
139 
140 	addr += n;
141 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
142 		return *addr;
143 	else
144 		return 0;
145 }
146 
147 /*
148  * TODO: does not yet catch signals sent when the child dies.
149  * in exit.c or in signal.c.
150  */
151 
152 /*
153  * Called by kernel/ptrace.c when detaching..
154  */
155 void ptrace_disable(struct task_struct *child)
156 {
157 	/*
158 	 * This would be better off in core code, but PTRACE_DETACH has
159 	 * grown its fair share of arch-specific worts and changing it
160 	 * is likely to cause regressions on obscure architectures.
161 	 */
162 	user_disable_single_step(child);
163 }
164 
165 #ifdef CONFIG_HAVE_HW_BREAKPOINT
166 /*
167  * Handle hitting a HW-breakpoint.
168  */
169 static void ptrace_hbptriggered(struct perf_event *bp,
170 				struct perf_sample_data *data,
171 				struct pt_regs *regs)
172 {
173 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
174 	const char *desc = "Hardware breakpoint trap (ptrace)";
175 
176 #ifdef CONFIG_COMPAT
177 	if (is_compat_task()) {
178 		int si_errno = 0;
179 		int i;
180 
181 		for (i = 0; i < ARM_MAX_BRP; ++i) {
182 			if (current->thread.debug.hbp_break[i] == bp) {
183 				si_errno = (i << 1) + 1;
184 				break;
185 			}
186 		}
187 
188 		for (i = 0; i < ARM_MAX_WRP; ++i) {
189 			if (current->thread.debug.hbp_watch[i] == bp) {
190 				si_errno = -((i << 1) + 1);
191 				break;
192 			}
193 		}
194 		arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
195 						  desc);
196 		return;
197 	}
198 #endif
199 	arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
200 }
201 
202 /*
203  * Unregister breakpoints from this task and reset the pointers in
204  * the thread_struct.
205  */
206 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
207 {
208 	int i;
209 	struct thread_struct *t = &tsk->thread;
210 
211 	for (i = 0; i < ARM_MAX_BRP; i++) {
212 		if (t->debug.hbp_break[i]) {
213 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
214 			t->debug.hbp_break[i] = NULL;
215 		}
216 	}
217 
218 	for (i = 0; i < ARM_MAX_WRP; i++) {
219 		if (t->debug.hbp_watch[i]) {
220 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
221 			t->debug.hbp_watch[i] = NULL;
222 		}
223 	}
224 }
225 
226 void ptrace_hw_copy_thread(struct task_struct *tsk)
227 {
228 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
229 }
230 
231 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
232 					       struct task_struct *tsk,
233 					       unsigned long idx)
234 {
235 	struct perf_event *bp = ERR_PTR(-EINVAL);
236 
237 	switch (note_type) {
238 	case NT_ARM_HW_BREAK:
239 		if (idx >= ARM_MAX_BRP)
240 			goto out;
241 		idx = array_index_nospec(idx, ARM_MAX_BRP);
242 		bp = tsk->thread.debug.hbp_break[idx];
243 		break;
244 	case NT_ARM_HW_WATCH:
245 		if (idx >= ARM_MAX_WRP)
246 			goto out;
247 		idx = array_index_nospec(idx, ARM_MAX_WRP);
248 		bp = tsk->thread.debug.hbp_watch[idx];
249 		break;
250 	}
251 
252 out:
253 	return bp;
254 }
255 
256 static int ptrace_hbp_set_event(unsigned int note_type,
257 				struct task_struct *tsk,
258 				unsigned long idx,
259 				struct perf_event *bp)
260 {
261 	int err = -EINVAL;
262 
263 	switch (note_type) {
264 	case NT_ARM_HW_BREAK:
265 		if (idx >= ARM_MAX_BRP)
266 			goto out;
267 		idx = array_index_nospec(idx, ARM_MAX_BRP);
268 		tsk->thread.debug.hbp_break[idx] = bp;
269 		err = 0;
270 		break;
271 	case NT_ARM_HW_WATCH:
272 		if (idx >= ARM_MAX_WRP)
273 			goto out;
274 		idx = array_index_nospec(idx, ARM_MAX_WRP);
275 		tsk->thread.debug.hbp_watch[idx] = bp;
276 		err = 0;
277 		break;
278 	}
279 
280 out:
281 	return err;
282 }
283 
284 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
285 					    struct task_struct *tsk,
286 					    unsigned long idx)
287 {
288 	struct perf_event *bp;
289 	struct perf_event_attr attr;
290 	int err, type;
291 
292 	switch (note_type) {
293 	case NT_ARM_HW_BREAK:
294 		type = HW_BREAKPOINT_X;
295 		break;
296 	case NT_ARM_HW_WATCH:
297 		type = HW_BREAKPOINT_RW;
298 		break;
299 	default:
300 		return ERR_PTR(-EINVAL);
301 	}
302 
303 	ptrace_breakpoint_init(&attr);
304 
305 	/*
306 	 * Initialise fields to sane defaults
307 	 * (i.e. values that will pass validation).
308 	 */
309 	attr.bp_addr	= 0;
310 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
311 	attr.bp_type	= type;
312 	attr.disabled	= 1;
313 
314 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
315 	if (IS_ERR(bp))
316 		return bp;
317 
318 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
319 	if (err)
320 		return ERR_PTR(err);
321 
322 	return bp;
323 }
324 
325 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
326 				     struct arch_hw_breakpoint_ctrl ctrl,
327 				     struct perf_event_attr *attr)
328 {
329 	int err, len, type, offset, disabled = !ctrl.enabled;
330 
331 	attr->disabled = disabled;
332 	if (disabled)
333 		return 0;
334 
335 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
336 	if (err)
337 		return err;
338 
339 	switch (note_type) {
340 	case NT_ARM_HW_BREAK:
341 		if ((type & HW_BREAKPOINT_X) != type)
342 			return -EINVAL;
343 		break;
344 	case NT_ARM_HW_WATCH:
345 		if ((type & HW_BREAKPOINT_RW) != type)
346 			return -EINVAL;
347 		break;
348 	default:
349 		return -EINVAL;
350 	}
351 
352 	attr->bp_len	= len;
353 	attr->bp_type	= type;
354 	attr->bp_addr	+= offset;
355 
356 	return 0;
357 }
358 
359 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
360 {
361 	u8 num;
362 	u32 reg = 0;
363 
364 	switch (note_type) {
365 	case NT_ARM_HW_BREAK:
366 		num = hw_breakpoint_slots(TYPE_INST);
367 		break;
368 	case NT_ARM_HW_WATCH:
369 		num = hw_breakpoint_slots(TYPE_DATA);
370 		break;
371 	default:
372 		return -EINVAL;
373 	}
374 
375 	reg |= debug_monitors_arch();
376 	reg <<= 8;
377 	reg |= num;
378 
379 	*info = reg;
380 	return 0;
381 }
382 
383 static int ptrace_hbp_get_ctrl(unsigned int note_type,
384 			       struct task_struct *tsk,
385 			       unsigned long idx,
386 			       u32 *ctrl)
387 {
388 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
389 
390 	if (IS_ERR(bp))
391 		return PTR_ERR(bp);
392 
393 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
394 	return 0;
395 }
396 
397 static int ptrace_hbp_get_addr(unsigned int note_type,
398 			       struct task_struct *tsk,
399 			       unsigned long idx,
400 			       u64 *addr)
401 {
402 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
403 
404 	if (IS_ERR(bp))
405 		return PTR_ERR(bp);
406 
407 	*addr = bp ? counter_arch_bp(bp)->address : 0;
408 	return 0;
409 }
410 
411 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
412 							struct task_struct *tsk,
413 							unsigned long idx)
414 {
415 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
416 
417 	if (!bp)
418 		bp = ptrace_hbp_create(note_type, tsk, idx);
419 
420 	return bp;
421 }
422 
423 static int ptrace_hbp_set_ctrl(unsigned int note_type,
424 			       struct task_struct *tsk,
425 			       unsigned long idx,
426 			       u32 uctrl)
427 {
428 	int err;
429 	struct perf_event *bp;
430 	struct perf_event_attr attr;
431 	struct arch_hw_breakpoint_ctrl ctrl;
432 
433 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
434 	if (IS_ERR(bp)) {
435 		err = PTR_ERR(bp);
436 		return err;
437 	}
438 
439 	attr = bp->attr;
440 	decode_ctrl_reg(uctrl, &ctrl);
441 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
442 	if (err)
443 		return err;
444 
445 	return modify_user_hw_breakpoint(bp, &attr);
446 }
447 
448 static int ptrace_hbp_set_addr(unsigned int note_type,
449 			       struct task_struct *tsk,
450 			       unsigned long idx,
451 			       u64 addr)
452 {
453 	int err;
454 	struct perf_event *bp;
455 	struct perf_event_attr attr;
456 
457 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
458 	if (IS_ERR(bp)) {
459 		err = PTR_ERR(bp);
460 		return err;
461 	}
462 
463 	attr = bp->attr;
464 	attr.bp_addr = addr;
465 	err = modify_user_hw_breakpoint(bp, &attr);
466 	return err;
467 }
468 
469 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
470 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
471 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
472 
473 static int hw_break_get(struct task_struct *target,
474 			const struct user_regset *regset,
475 			struct membuf to)
476 {
477 	unsigned int note_type = regset->core_note_type;
478 	int ret, idx = 0;
479 	u32 info, ctrl;
480 	u64 addr;
481 
482 	/* Resource info */
483 	ret = ptrace_hbp_get_resource_info(note_type, &info);
484 	if (ret)
485 		return ret;
486 
487 	membuf_write(&to, &info, sizeof(info));
488 	membuf_zero(&to, sizeof(u32));
489 	/* (address, ctrl) registers */
490 	while (to.left) {
491 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
492 		if (ret)
493 			return ret;
494 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
495 		if (ret)
496 			return ret;
497 		membuf_store(&to, addr);
498 		membuf_store(&to, ctrl);
499 		membuf_zero(&to, sizeof(u32));
500 		idx++;
501 	}
502 	return 0;
503 }
504 
505 static int hw_break_set(struct task_struct *target,
506 			const struct user_regset *regset,
507 			unsigned int pos, unsigned int count,
508 			const void *kbuf, const void __user *ubuf)
509 {
510 	unsigned int note_type = regset->core_note_type;
511 	int ret, idx = 0, offset, limit;
512 	u32 ctrl;
513 	u64 addr;
514 
515 	/* Resource info and pad */
516 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
517 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
518 	if (ret)
519 		return ret;
520 
521 	/* (address, ctrl) registers */
522 	limit = regset->n * regset->size;
523 	while (count && offset < limit) {
524 		if (count < PTRACE_HBP_ADDR_SZ)
525 			return -EINVAL;
526 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
527 					 offset, offset + PTRACE_HBP_ADDR_SZ);
528 		if (ret)
529 			return ret;
530 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
531 		if (ret)
532 			return ret;
533 		offset += PTRACE_HBP_ADDR_SZ;
534 
535 		if (!count)
536 			break;
537 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
538 					 offset, offset + PTRACE_HBP_CTRL_SZ);
539 		if (ret)
540 			return ret;
541 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
542 		if (ret)
543 			return ret;
544 		offset += PTRACE_HBP_CTRL_SZ;
545 
546 		ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
547 						offset,
548 						offset + PTRACE_HBP_PAD_SZ);
549 		if (ret)
550 			return ret;
551 		offset += PTRACE_HBP_PAD_SZ;
552 		idx++;
553 	}
554 
555 	return 0;
556 }
557 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
558 
559 static int gpr_get(struct task_struct *target,
560 		   const struct user_regset *regset,
561 		   struct membuf to)
562 {
563 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
564 	return membuf_write(&to, uregs, sizeof(*uregs));
565 }
566 
567 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
568 		   unsigned int pos, unsigned int count,
569 		   const void *kbuf, const void __user *ubuf)
570 {
571 	int ret;
572 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
573 
574 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
575 	if (ret)
576 		return ret;
577 
578 	if (!valid_user_regs(&newregs, target))
579 		return -EINVAL;
580 
581 	task_pt_regs(target)->user_regs = newregs;
582 	return 0;
583 }
584 
585 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
586 {
587 	if (!system_supports_fpsimd())
588 		return -ENODEV;
589 	return regset->n;
590 }
591 
592 /*
593  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
594  */
595 static int __fpr_get(struct task_struct *target,
596 		     const struct user_regset *regset,
597 		     struct membuf to)
598 {
599 	struct user_fpsimd_state *uregs;
600 
601 	sve_sync_to_fpsimd(target);
602 
603 	uregs = &target->thread.uw.fpsimd_state;
604 
605 	return membuf_write(&to, uregs, sizeof(*uregs));
606 }
607 
608 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
609 		   struct membuf to)
610 {
611 	if (!system_supports_fpsimd())
612 		return -EINVAL;
613 
614 	if (target == current)
615 		fpsimd_preserve_current_state();
616 
617 	return __fpr_get(target, regset, to);
618 }
619 
620 static int __fpr_set(struct task_struct *target,
621 		     const struct user_regset *regset,
622 		     unsigned int pos, unsigned int count,
623 		     const void *kbuf, const void __user *ubuf,
624 		     unsigned int start_pos)
625 {
626 	int ret;
627 	struct user_fpsimd_state newstate;
628 
629 	/*
630 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
631 	 * short copyin can't resurrect stale data.
632 	 */
633 	sve_sync_to_fpsimd(target);
634 
635 	newstate = target->thread.uw.fpsimd_state;
636 
637 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
638 				 start_pos, start_pos + sizeof(newstate));
639 	if (ret)
640 		return ret;
641 
642 	target->thread.uw.fpsimd_state = newstate;
643 
644 	return ret;
645 }
646 
647 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
648 		   unsigned int pos, unsigned int count,
649 		   const void *kbuf, const void __user *ubuf)
650 {
651 	int ret;
652 
653 	if (!system_supports_fpsimd())
654 		return -EINVAL;
655 
656 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
657 	if (ret)
658 		return ret;
659 
660 	sve_sync_from_fpsimd_zeropad(target);
661 	fpsimd_flush_task_state(target);
662 
663 	return ret;
664 }
665 
666 static int tls_get(struct task_struct *target, const struct user_regset *regset,
667 		   struct membuf to)
668 {
669 	int ret;
670 
671 	if (target == current)
672 		tls_preserve_current_state();
673 
674 	ret = membuf_store(&to, target->thread.uw.tp_value);
675 	if (system_supports_tpidr2())
676 		ret = membuf_store(&to, target->thread.tpidr2_el0);
677 	else
678 		ret = membuf_zero(&to, sizeof(u64));
679 
680 	return ret;
681 }
682 
683 static int tls_set(struct task_struct *target, const struct user_regset *regset,
684 		   unsigned int pos, unsigned int count,
685 		   const void *kbuf, const void __user *ubuf)
686 {
687 	int ret;
688 	unsigned long tls[2];
689 
690 	tls[0] = target->thread.uw.tp_value;
691 	if (system_supports_sme())
692 		tls[1] = target->thread.tpidr2_el0;
693 
694 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, tls, 0, count);
695 	if (ret)
696 		return ret;
697 
698 	target->thread.uw.tp_value = tls[0];
699 	if (system_supports_sme())
700 		target->thread.tpidr2_el0 = tls[1];
701 
702 	return ret;
703 }
704 
705 static int system_call_get(struct task_struct *target,
706 			   const struct user_regset *regset,
707 			   struct membuf to)
708 {
709 	return membuf_store(&to, task_pt_regs(target)->syscallno);
710 }
711 
712 static int system_call_set(struct task_struct *target,
713 			   const struct user_regset *regset,
714 			   unsigned int pos, unsigned int count,
715 			   const void *kbuf, const void __user *ubuf)
716 {
717 	int syscallno = task_pt_regs(target)->syscallno;
718 	int ret;
719 
720 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
721 	if (ret)
722 		return ret;
723 
724 	task_pt_regs(target)->syscallno = syscallno;
725 	return ret;
726 }
727 
728 #ifdef CONFIG_ARM64_SVE
729 
730 static void sve_init_header_from_task(struct user_sve_header *header,
731 				      struct task_struct *target,
732 				      enum vec_type type)
733 {
734 	unsigned int vq;
735 	bool active;
736 	bool fpsimd_only;
737 	enum vec_type task_type;
738 
739 	memset(header, 0, sizeof(*header));
740 
741 	/* Check if the requested registers are active for the task */
742 	if (thread_sm_enabled(&target->thread))
743 		task_type = ARM64_VEC_SME;
744 	else
745 		task_type = ARM64_VEC_SVE;
746 	active = (task_type == type);
747 
748 	switch (type) {
749 	case ARM64_VEC_SVE:
750 		if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
751 			header->flags |= SVE_PT_VL_INHERIT;
752 		fpsimd_only = !test_tsk_thread_flag(target, TIF_SVE);
753 		break;
754 	case ARM64_VEC_SME:
755 		if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
756 			header->flags |= SVE_PT_VL_INHERIT;
757 		fpsimd_only = false;
758 		break;
759 	default:
760 		WARN_ON_ONCE(1);
761 		return;
762 	}
763 
764 	if (active) {
765 		if (fpsimd_only) {
766 			header->flags |= SVE_PT_REGS_FPSIMD;
767 		} else {
768 			header->flags |= SVE_PT_REGS_SVE;
769 		}
770 	}
771 
772 	header->vl = task_get_vl(target, type);
773 	vq = sve_vq_from_vl(header->vl);
774 
775 	header->max_vl = vec_max_vl(type);
776 	header->size = SVE_PT_SIZE(vq, header->flags);
777 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
778 				      SVE_PT_REGS_SVE);
779 }
780 
781 static unsigned int sve_size_from_header(struct user_sve_header const *header)
782 {
783 	return ALIGN(header->size, SVE_VQ_BYTES);
784 }
785 
786 static int sve_get_common(struct task_struct *target,
787 			  const struct user_regset *regset,
788 			  struct membuf to,
789 			  enum vec_type type)
790 {
791 	struct user_sve_header header;
792 	unsigned int vq;
793 	unsigned long start, end;
794 
795 	/* Header */
796 	sve_init_header_from_task(&header, target, type);
797 	vq = sve_vq_from_vl(header.vl);
798 
799 	membuf_write(&to, &header, sizeof(header));
800 
801 	if (target == current)
802 		fpsimd_preserve_current_state();
803 
804 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
805 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
806 
807 	switch ((header.flags & SVE_PT_REGS_MASK)) {
808 	case SVE_PT_REGS_FPSIMD:
809 		return __fpr_get(target, regset, to);
810 
811 	case SVE_PT_REGS_SVE:
812 		start = SVE_PT_SVE_OFFSET;
813 		end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
814 		membuf_write(&to, target->thread.sve_state, end - start);
815 
816 		start = end;
817 		end = SVE_PT_SVE_FPSR_OFFSET(vq);
818 		membuf_zero(&to, end - start);
819 
820 		/*
821 		 * Copy fpsr, and fpcr which must follow contiguously in
822 		 * struct fpsimd_state:
823 		 */
824 		start = end;
825 		end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
826 		membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr,
827 			     end - start);
828 
829 		start = end;
830 		end = sve_size_from_header(&header);
831 		return membuf_zero(&to, end - start);
832 
833 	default:
834 		return 0;
835 	}
836 }
837 
838 static int sve_get(struct task_struct *target,
839 		   const struct user_regset *regset,
840 		   struct membuf to)
841 {
842 	if (!system_supports_sve())
843 		return -EINVAL;
844 
845 	return sve_get_common(target, regset, to, ARM64_VEC_SVE);
846 }
847 
848 static int sve_set_common(struct task_struct *target,
849 			  const struct user_regset *regset,
850 			  unsigned int pos, unsigned int count,
851 			  const void *kbuf, const void __user *ubuf,
852 			  enum vec_type type)
853 {
854 	int ret;
855 	struct user_sve_header header;
856 	unsigned int vq;
857 	unsigned long start, end;
858 
859 	/* Header */
860 	if (count < sizeof(header))
861 		return -EINVAL;
862 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
863 				 0, sizeof(header));
864 	if (ret)
865 		goto out;
866 
867 	/*
868 	 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
869 	 * vec_set_vector_length(), which will also validate them for us:
870 	 */
871 	ret = vec_set_vector_length(target, type, header.vl,
872 		((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
873 	if (ret)
874 		goto out;
875 
876 	/* Actual VL set may be less than the user asked for: */
877 	vq = sve_vq_from_vl(task_get_vl(target, type));
878 
879 	/* Enter/exit streaming mode */
880 	if (system_supports_sme()) {
881 		u64 old_svcr = target->thread.svcr;
882 
883 		switch (type) {
884 		case ARM64_VEC_SVE:
885 			target->thread.svcr &= ~SVCR_SM_MASK;
886 			break;
887 		case ARM64_VEC_SME:
888 			target->thread.svcr |= SVCR_SM_MASK;
889 			break;
890 		default:
891 			WARN_ON_ONCE(1);
892 			return -EINVAL;
893 		}
894 
895 		/*
896 		 * If we switched then invalidate any existing SVE
897 		 * state and ensure there's storage.
898 		 */
899 		if (target->thread.svcr != old_svcr)
900 			sve_alloc(target, true);
901 	}
902 
903 	/* Registers: FPSIMD-only case */
904 
905 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
906 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
907 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
908 				SVE_PT_FPSIMD_OFFSET);
909 		clear_tsk_thread_flag(target, TIF_SVE);
910 		if (type == ARM64_VEC_SME)
911 			fpsimd_force_sync_to_sve(target);
912 		goto out;
913 	}
914 
915 	/*
916 	 * Otherwise: no registers or full SVE case.  For backwards
917 	 * compatibility reasons we treat empty flags as SVE registers.
918 	 */
919 
920 	/*
921 	 * If setting a different VL from the requested VL and there is
922 	 * register data, the data layout will be wrong: don't even
923 	 * try to set the registers in this case.
924 	 */
925 	if (count && vq != sve_vq_from_vl(header.vl)) {
926 		ret = -EIO;
927 		goto out;
928 	}
929 
930 	sve_alloc(target, true);
931 	if (!target->thread.sve_state) {
932 		ret = -ENOMEM;
933 		clear_tsk_thread_flag(target, TIF_SVE);
934 		goto out;
935 	}
936 
937 	/*
938 	 * Ensure target->thread.sve_state is up to date with target's
939 	 * FPSIMD regs, so that a short copyin leaves trailing
940 	 * registers unmodified.  Always enable SVE even if going into
941 	 * streaming mode.
942 	 */
943 	fpsimd_sync_to_sve(target);
944 	set_tsk_thread_flag(target, TIF_SVE);
945 
946 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
947 	start = SVE_PT_SVE_OFFSET;
948 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
949 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
950 				 target->thread.sve_state,
951 				 start, end);
952 	if (ret)
953 		goto out;
954 
955 	start = end;
956 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
957 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
958 					start, end);
959 	if (ret)
960 		goto out;
961 
962 	/*
963 	 * Copy fpsr, and fpcr which must follow contiguously in
964 	 * struct fpsimd_state:
965 	 */
966 	start = end;
967 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
968 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
969 				 &target->thread.uw.fpsimd_state.fpsr,
970 				 start, end);
971 
972 out:
973 	fpsimd_flush_task_state(target);
974 	return ret;
975 }
976 
977 static int sve_set(struct task_struct *target,
978 		   const struct user_regset *regset,
979 		   unsigned int pos, unsigned int count,
980 		   const void *kbuf, const void __user *ubuf)
981 {
982 	if (!system_supports_sve())
983 		return -EINVAL;
984 
985 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
986 			      ARM64_VEC_SVE);
987 }
988 
989 #endif /* CONFIG_ARM64_SVE */
990 
991 #ifdef CONFIG_ARM64_SME
992 
993 static int ssve_get(struct task_struct *target,
994 		   const struct user_regset *regset,
995 		   struct membuf to)
996 {
997 	if (!system_supports_sme())
998 		return -EINVAL;
999 
1000 	return sve_get_common(target, regset, to, ARM64_VEC_SME);
1001 }
1002 
1003 static int ssve_set(struct task_struct *target,
1004 		    const struct user_regset *regset,
1005 		    unsigned int pos, unsigned int count,
1006 		    const void *kbuf, const void __user *ubuf)
1007 {
1008 	if (!system_supports_sme())
1009 		return -EINVAL;
1010 
1011 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1012 			      ARM64_VEC_SME);
1013 }
1014 
1015 static int za_get(struct task_struct *target,
1016 		  const struct user_regset *regset,
1017 		  struct membuf to)
1018 {
1019 	struct user_za_header header;
1020 	unsigned int vq;
1021 	unsigned long start, end;
1022 
1023 	if (!system_supports_sme())
1024 		return -EINVAL;
1025 
1026 	/* Header */
1027 	memset(&header, 0, sizeof(header));
1028 
1029 	if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
1030 		header.flags |= ZA_PT_VL_INHERIT;
1031 
1032 	header.vl = task_get_sme_vl(target);
1033 	vq = sve_vq_from_vl(header.vl);
1034 	header.max_vl = sme_max_vl();
1035 	header.max_size = ZA_PT_SIZE(vq);
1036 
1037 	/* If ZA is not active there is only the header */
1038 	if (thread_za_enabled(&target->thread))
1039 		header.size = ZA_PT_SIZE(vq);
1040 	else
1041 		header.size = ZA_PT_ZA_OFFSET;
1042 
1043 	membuf_write(&to, &header, sizeof(header));
1044 
1045 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1046 	end = ZA_PT_ZA_OFFSET;
1047 
1048 	if (target == current)
1049 		fpsimd_preserve_current_state();
1050 
1051 	/* Any register data to include? */
1052 	if (thread_za_enabled(&target->thread)) {
1053 		start = end;
1054 		end = ZA_PT_SIZE(vq);
1055 		membuf_write(&to, target->thread.za_state, end - start);
1056 	}
1057 
1058 	/* Zero any trailing padding */
1059 	start = end;
1060 	end = ALIGN(header.size, SVE_VQ_BYTES);
1061 	return membuf_zero(&to, end - start);
1062 }
1063 
1064 static int za_set(struct task_struct *target,
1065 		  const struct user_regset *regset,
1066 		  unsigned int pos, unsigned int count,
1067 		  const void *kbuf, const void __user *ubuf)
1068 {
1069 	int ret;
1070 	struct user_za_header header;
1071 	unsigned int vq;
1072 	unsigned long start, end;
1073 
1074 	if (!system_supports_sme())
1075 		return -EINVAL;
1076 
1077 	/* Header */
1078 	if (count < sizeof(header))
1079 		return -EINVAL;
1080 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
1081 				 0, sizeof(header));
1082 	if (ret)
1083 		goto out;
1084 
1085 	/*
1086 	 * All current ZA_PT_* flags are consumed by
1087 	 * vec_set_vector_length(), which will also validate them for
1088 	 * us:
1089 	 */
1090 	ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl,
1091 		((unsigned long)header.flags) << 16);
1092 	if (ret)
1093 		goto out;
1094 
1095 	/* Actual VL set may be less than the user asked for: */
1096 	vq = sve_vq_from_vl(task_get_sme_vl(target));
1097 
1098 	/* Ensure there is some SVE storage for streaming mode */
1099 	if (!target->thread.sve_state) {
1100 		sve_alloc(target, false);
1101 		if (!target->thread.sve_state) {
1102 			ret = -ENOMEM;
1103 			goto out;
1104 		}
1105 	}
1106 
1107 	/* Allocate/reinit ZA storage */
1108 	sme_alloc(target);
1109 	if (!target->thread.za_state) {
1110 		ret = -ENOMEM;
1111 		goto out;
1112 	}
1113 
1114 	/* If there is no data then disable ZA */
1115 	if (!count) {
1116 		target->thread.svcr &= ~SVCR_ZA_MASK;
1117 		goto out;
1118 	}
1119 
1120 	/*
1121 	 * If setting a different VL from the requested VL and there is
1122 	 * register data, the data layout will be wrong: don't even
1123 	 * try to set the registers in this case.
1124 	 */
1125 	if (vq != sve_vq_from_vl(header.vl)) {
1126 		ret = -EIO;
1127 		goto out;
1128 	}
1129 
1130 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1131 	start = ZA_PT_ZA_OFFSET;
1132 	end = ZA_PT_SIZE(vq);
1133 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1134 				 target->thread.za_state,
1135 				 start, end);
1136 	if (ret)
1137 		goto out;
1138 
1139 	/* Mark ZA as active and let userspace use it */
1140 	set_tsk_thread_flag(target, TIF_SME);
1141 	target->thread.svcr |= SVCR_ZA_MASK;
1142 
1143 out:
1144 	fpsimd_flush_task_state(target);
1145 	return ret;
1146 }
1147 
1148 #endif /* CONFIG_ARM64_SME */
1149 
1150 #ifdef CONFIG_ARM64_PTR_AUTH
1151 static int pac_mask_get(struct task_struct *target,
1152 			const struct user_regset *regset,
1153 			struct membuf to)
1154 {
1155 	/*
1156 	 * The PAC bits can differ across data and instruction pointers
1157 	 * depending on TCR_EL1.TBID*, which we may make use of in future, so
1158 	 * we expose separate masks.
1159 	 */
1160 	unsigned long mask = ptrauth_user_pac_mask();
1161 	struct user_pac_mask uregs = {
1162 		.data_mask = mask,
1163 		.insn_mask = mask,
1164 	};
1165 
1166 	if (!system_supports_address_auth())
1167 		return -EINVAL;
1168 
1169 	return membuf_write(&to, &uregs, sizeof(uregs));
1170 }
1171 
1172 static int pac_enabled_keys_get(struct task_struct *target,
1173 				const struct user_regset *regset,
1174 				struct membuf to)
1175 {
1176 	long enabled_keys = ptrauth_get_enabled_keys(target);
1177 
1178 	if (IS_ERR_VALUE(enabled_keys))
1179 		return enabled_keys;
1180 
1181 	return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
1182 }
1183 
1184 static int pac_enabled_keys_set(struct task_struct *target,
1185 				const struct user_regset *regset,
1186 				unsigned int pos, unsigned int count,
1187 				const void *kbuf, const void __user *ubuf)
1188 {
1189 	int ret;
1190 	long enabled_keys = ptrauth_get_enabled_keys(target);
1191 
1192 	if (IS_ERR_VALUE(enabled_keys))
1193 		return enabled_keys;
1194 
1195 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
1196 				 sizeof(long));
1197 	if (ret)
1198 		return ret;
1199 
1200 	return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
1201 					enabled_keys);
1202 }
1203 
1204 #ifdef CONFIG_CHECKPOINT_RESTORE
1205 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
1206 {
1207 	return (__uint128_t)key->hi << 64 | key->lo;
1208 }
1209 
1210 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
1211 {
1212 	struct ptrauth_key key = {
1213 		.lo = (unsigned long)ukey,
1214 		.hi = (unsigned long)(ukey >> 64),
1215 	};
1216 
1217 	return key;
1218 }
1219 
1220 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1221 				     const struct ptrauth_keys_user *keys)
1222 {
1223 	ukeys->apiakey = pac_key_to_user(&keys->apia);
1224 	ukeys->apibkey = pac_key_to_user(&keys->apib);
1225 	ukeys->apdakey = pac_key_to_user(&keys->apda);
1226 	ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1227 }
1228 
1229 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
1230 				       const struct user_pac_address_keys *ukeys)
1231 {
1232 	keys->apia = pac_key_from_user(ukeys->apiakey);
1233 	keys->apib = pac_key_from_user(ukeys->apibkey);
1234 	keys->apda = pac_key_from_user(ukeys->apdakey);
1235 	keys->apdb = pac_key_from_user(ukeys->apdbkey);
1236 }
1237 
1238 static int pac_address_keys_get(struct task_struct *target,
1239 				const struct user_regset *regset,
1240 				struct membuf to)
1241 {
1242 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1243 	struct user_pac_address_keys user_keys;
1244 
1245 	if (!system_supports_address_auth())
1246 		return -EINVAL;
1247 
1248 	pac_address_keys_to_user(&user_keys, keys);
1249 
1250 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1251 }
1252 
1253 static int pac_address_keys_set(struct task_struct *target,
1254 				const struct user_regset *regset,
1255 				unsigned int pos, unsigned int count,
1256 				const void *kbuf, const void __user *ubuf)
1257 {
1258 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1259 	struct user_pac_address_keys user_keys;
1260 	int ret;
1261 
1262 	if (!system_supports_address_auth())
1263 		return -EINVAL;
1264 
1265 	pac_address_keys_to_user(&user_keys, keys);
1266 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1267 				 &user_keys, 0, -1);
1268 	if (ret)
1269 		return ret;
1270 	pac_address_keys_from_user(keys, &user_keys);
1271 
1272 	return 0;
1273 }
1274 
1275 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1276 				     const struct ptrauth_keys_user *keys)
1277 {
1278 	ukeys->apgakey = pac_key_to_user(&keys->apga);
1279 }
1280 
1281 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1282 				       const struct user_pac_generic_keys *ukeys)
1283 {
1284 	keys->apga = pac_key_from_user(ukeys->apgakey);
1285 }
1286 
1287 static int pac_generic_keys_get(struct task_struct *target,
1288 				const struct user_regset *regset,
1289 				struct membuf to)
1290 {
1291 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1292 	struct user_pac_generic_keys user_keys;
1293 
1294 	if (!system_supports_generic_auth())
1295 		return -EINVAL;
1296 
1297 	pac_generic_keys_to_user(&user_keys, keys);
1298 
1299 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1300 }
1301 
1302 static int pac_generic_keys_set(struct task_struct *target,
1303 				const struct user_regset *regset,
1304 				unsigned int pos, unsigned int count,
1305 				const void *kbuf, const void __user *ubuf)
1306 {
1307 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1308 	struct user_pac_generic_keys user_keys;
1309 	int ret;
1310 
1311 	if (!system_supports_generic_auth())
1312 		return -EINVAL;
1313 
1314 	pac_generic_keys_to_user(&user_keys, keys);
1315 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1316 				 &user_keys, 0, -1);
1317 	if (ret)
1318 		return ret;
1319 	pac_generic_keys_from_user(keys, &user_keys);
1320 
1321 	return 0;
1322 }
1323 #endif /* CONFIG_CHECKPOINT_RESTORE */
1324 #endif /* CONFIG_ARM64_PTR_AUTH */
1325 
1326 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1327 static int tagged_addr_ctrl_get(struct task_struct *target,
1328 				const struct user_regset *regset,
1329 				struct membuf to)
1330 {
1331 	long ctrl = get_tagged_addr_ctrl(target);
1332 
1333 	if (IS_ERR_VALUE(ctrl))
1334 		return ctrl;
1335 
1336 	return membuf_write(&to, &ctrl, sizeof(ctrl));
1337 }
1338 
1339 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1340 				user_regset *regset, unsigned int pos,
1341 				unsigned int count, const void *kbuf, const
1342 				void __user *ubuf)
1343 {
1344 	int ret;
1345 	long ctrl;
1346 
1347 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1348 	if (ret)
1349 		return ret;
1350 
1351 	return set_tagged_addr_ctrl(target, ctrl);
1352 }
1353 #endif
1354 
1355 enum aarch64_regset {
1356 	REGSET_GPR,
1357 	REGSET_FPR,
1358 	REGSET_TLS,
1359 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1360 	REGSET_HW_BREAK,
1361 	REGSET_HW_WATCH,
1362 #endif
1363 	REGSET_SYSTEM_CALL,
1364 #ifdef CONFIG_ARM64_SVE
1365 	REGSET_SVE,
1366 #endif
1367 #ifdef CONFIG_ARM64_SVE
1368 	REGSET_SSVE,
1369 	REGSET_ZA,
1370 #endif
1371 #ifdef CONFIG_ARM64_PTR_AUTH
1372 	REGSET_PAC_MASK,
1373 	REGSET_PAC_ENABLED_KEYS,
1374 #ifdef CONFIG_CHECKPOINT_RESTORE
1375 	REGSET_PACA_KEYS,
1376 	REGSET_PACG_KEYS,
1377 #endif
1378 #endif
1379 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1380 	REGSET_TAGGED_ADDR_CTRL,
1381 #endif
1382 };
1383 
1384 static const struct user_regset aarch64_regsets[] = {
1385 	[REGSET_GPR] = {
1386 		.core_note_type = NT_PRSTATUS,
1387 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
1388 		.size = sizeof(u64),
1389 		.align = sizeof(u64),
1390 		.regset_get = gpr_get,
1391 		.set = gpr_set
1392 	},
1393 	[REGSET_FPR] = {
1394 		.core_note_type = NT_PRFPREG,
1395 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1396 		/*
1397 		 * We pretend we have 32-bit registers because the fpsr and
1398 		 * fpcr are 32-bits wide.
1399 		 */
1400 		.size = sizeof(u32),
1401 		.align = sizeof(u32),
1402 		.active = fpr_active,
1403 		.regset_get = fpr_get,
1404 		.set = fpr_set
1405 	},
1406 	[REGSET_TLS] = {
1407 		.core_note_type = NT_ARM_TLS,
1408 		.n = 2,
1409 		.size = sizeof(void *),
1410 		.align = sizeof(void *),
1411 		.regset_get = tls_get,
1412 		.set = tls_set,
1413 	},
1414 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1415 	[REGSET_HW_BREAK] = {
1416 		.core_note_type = NT_ARM_HW_BREAK,
1417 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1418 		.size = sizeof(u32),
1419 		.align = sizeof(u32),
1420 		.regset_get = hw_break_get,
1421 		.set = hw_break_set,
1422 	},
1423 	[REGSET_HW_WATCH] = {
1424 		.core_note_type = NT_ARM_HW_WATCH,
1425 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1426 		.size = sizeof(u32),
1427 		.align = sizeof(u32),
1428 		.regset_get = hw_break_get,
1429 		.set = hw_break_set,
1430 	},
1431 #endif
1432 	[REGSET_SYSTEM_CALL] = {
1433 		.core_note_type = NT_ARM_SYSTEM_CALL,
1434 		.n = 1,
1435 		.size = sizeof(int),
1436 		.align = sizeof(int),
1437 		.regset_get = system_call_get,
1438 		.set = system_call_set,
1439 	},
1440 #ifdef CONFIG_ARM64_SVE
1441 	[REGSET_SVE] = { /* Scalable Vector Extension */
1442 		.core_note_type = NT_ARM_SVE,
1443 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1444 				  SVE_VQ_BYTES),
1445 		.size = SVE_VQ_BYTES,
1446 		.align = SVE_VQ_BYTES,
1447 		.regset_get = sve_get,
1448 		.set = sve_set,
1449 	},
1450 #endif
1451 #ifdef CONFIG_ARM64_SME
1452 	[REGSET_SSVE] = { /* Streaming mode SVE */
1453 		.core_note_type = NT_ARM_SSVE,
1454 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE),
1455 				  SVE_VQ_BYTES),
1456 		.size = SVE_VQ_BYTES,
1457 		.align = SVE_VQ_BYTES,
1458 		.regset_get = ssve_get,
1459 		.set = ssve_set,
1460 	},
1461 	[REGSET_ZA] = { /* SME ZA */
1462 		.core_note_type = NT_ARM_ZA,
1463 		/*
1464 		 * ZA is a single register but it's variably sized and
1465 		 * the ptrace core requires that the size of any data
1466 		 * be an exact multiple of the configured register
1467 		 * size so report as though we had SVE_VQ_BYTES
1468 		 * registers. These values aren't exposed to
1469 		 * userspace.
1470 		 */
1471 		.n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES),
1472 		.size = SVE_VQ_BYTES,
1473 		.align = SVE_VQ_BYTES,
1474 		.regset_get = za_get,
1475 		.set = za_set,
1476 	},
1477 #endif
1478 #ifdef CONFIG_ARM64_PTR_AUTH
1479 	[REGSET_PAC_MASK] = {
1480 		.core_note_type = NT_ARM_PAC_MASK,
1481 		.n = sizeof(struct user_pac_mask) / sizeof(u64),
1482 		.size = sizeof(u64),
1483 		.align = sizeof(u64),
1484 		.regset_get = pac_mask_get,
1485 		/* this cannot be set dynamically */
1486 	},
1487 	[REGSET_PAC_ENABLED_KEYS] = {
1488 		.core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1489 		.n = 1,
1490 		.size = sizeof(long),
1491 		.align = sizeof(long),
1492 		.regset_get = pac_enabled_keys_get,
1493 		.set = pac_enabled_keys_set,
1494 	},
1495 #ifdef CONFIG_CHECKPOINT_RESTORE
1496 	[REGSET_PACA_KEYS] = {
1497 		.core_note_type = NT_ARM_PACA_KEYS,
1498 		.n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1499 		.size = sizeof(__uint128_t),
1500 		.align = sizeof(__uint128_t),
1501 		.regset_get = pac_address_keys_get,
1502 		.set = pac_address_keys_set,
1503 	},
1504 	[REGSET_PACG_KEYS] = {
1505 		.core_note_type = NT_ARM_PACG_KEYS,
1506 		.n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1507 		.size = sizeof(__uint128_t),
1508 		.align = sizeof(__uint128_t),
1509 		.regset_get = pac_generic_keys_get,
1510 		.set = pac_generic_keys_set,
1511 	},
1512 #endif
1513 #endif
1514 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1515 	[REGSET_TAGGED_ADDR_CTRL] = {
1516 		.core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1517 		.n = 1,
1518 		.size = sizeof(long),
1519 		.align = sizeof(long),
1520 		.regset_get = tagged_addr_ctrl_get,
1521 		.set = tagged_addr_ctrl_set,
1522 	},
1523 #endif
1524 };
1525 
1526 static const struct user_regset_view user_aarch64_view = {
1527 	.name = "aarch64", .e_machine = EM_AARCH64,
1528 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1529 };
1530 
1531 #ifdef CONFIG_COMPAT
1532 enum compat_regset {
1533 	REGSET_COMPAT_GPR,
1534 	REGSET_COMPAT_VFP,
1535 };
1536 
1537 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1538 {
1539 	struct pt_regs *regs = task_pt_regs(task);
1540 
1541 	switch (idx) {
1542 	case 15:
1543 		return regs->pc;
1544 	case 16:
1545 		return pstate_to_compat_psr(regs->pstate);
1546 	case 17:
1547 		return regs->orig_x0;
1548 	default:
1549 		return regs->regs[idx];
1550 	}
1551 }
1552 
1553 static int compat_gpr_get(struct task_struct *target,
1554 			  const struct user_regset *regset,
1555 			  struct membuf to)
1556 {
1557 	int i = 0;
1558 
1559 	while (to.left)
1560 		membuf_store(&to, compat_get_user_reg(target, i++));
1561 	return 0;
1562 }
1563 
1564 static int compat_gpr_set(struct task_struct *target,
1565 			  const struct user_regset *regset,
1566 			  unsigned int pos, unsigned int count,
1567 			  const void *kbuf, const void __user *ubuf)
1568 {
1569 	struct pt_regs newregs;
1570 	int ret = 0;
1571 	unsigned int i, start, num_regs;
1572 
1573 	/* Calculate the number of AArch32 registers contained in count */
1574 	num_regs = count / regset->size;
1575 
1576 	/* Convert pos into an register number */
1577 	start = pos / regset->size;
1578 
1579 	if (start + num_regs > regset->n)
1580 		return -EIO;
1581 
1582 	newregs = *task_pt_regs(target);
1583 
1584 	for (i = 0; i < num_regs; ++i) {
1585 		unsigned int idx = start + i;
1586 		compat_ulong_t reg;
1587 
1588 		if (kbuf) {
1589 			memcpy(&reg, kbuf, sizeof(reg));
1590 			kbuf += sizeof(reg);
1591 		} else {
1592 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1593 			if (ret) {
1594 				ret = -EFAULT;
1595 				break;
1596 			}
1597 
1598 			ubuf += sizeof(reg);
1599 		}
1600 
1601 		switch (idx) {
1602 		case 15:
1603 			newregs.pc = reg;
1604 			break;
1605 		case 16:
1606 			reg = compat_psr_to_pstate(reg);
1607 			newregs.pstate = reg;
1608 			break;
1609 		case 17:
1610 			newregs.orig_x0 = reg;
1611 			break;
1612 		default:
1613 			newregs.regs[idx] = reg;
1614 		}
1615 
1616 	}
1617 
1618 	if (valid_user_regs(&newregs.user_regs, target))
1619 		*task_pt_regs(target) = newregs;
1620 	else
1621 		ret = -EINVAL;
1622 
1623 	return ret;
1624 }
1625 
1626 static int compat_vfp_get(struct task_struct *target,
1627 			  const struct user_regset *regset,
1628 			  struct membuf to)
1629 {
1630 	struct user_fpsimd_state *uregs;
1631 	compat_ulong_t fpscr;
1632 
1633 	if (!system_supports_fpsimd())
1634 		return -EINVAL;
1635 
1636 	uregs = &target->thread.uw.fpsimd_state;
1637 
1638 	if (target == current)
1639 		fpsimd_preserve_current_state();
1640 
1641 	/*
1642 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1643 	 * nicely together for us. We just need to create the fpscr separately.
1644 	 */
1645 	membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1646 	fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1647 		(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1648 	return membuf_store(&to, fpscr);
1649 }
1650 
1651 static int compat_vfp_set(struct task_struct *target,
1652 			  const struct user_regset *regset,
1653 			  unsigned int pos, unsigned int count,
1654 			  const void *kbuf, const void __user *ubuf)
1655 {
1656 	struct user_fpsimd_state *uregs;
1657 	compat_ulong_t fpscr;
1658 	int ret, vregs_end_pos;
1659 
1660 	if (!system_supports_fpsimd())
1661 		return -EINVAL;
1662 
1663 	uregs = &target->thread.uw.fpsimd_state;
1664 
1665 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1666 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1667 				 vregs_end_pos);
1668 
1669 	if (count && !ret) {
1670 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1671 					 vregs_end_pos, VFP_STATE_SIZE);
1672 		if (!ret) {
1673 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1674 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1675 		}
1676 	}
1677 
1678 	fpsimd_flush_task_state(target);
1679 	return ret;
1680 }
1681 
1682 static int compat_tls_get(struct task_struct *target,
1683 			  const struct user_regset *regset,
1684 			  struct membuf to)
1685 {
1686 	return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1687 }
1688 
1689 static int compat_tls_set(struct task_struct *target,
1690 			  const struct user_regset *regset, unsigned int pos,
1691 			  unsigned int count, const void *kbuf,
1692 			  const void __user *ubuf)
1693 {
1694 	int ret;
1695 	compat_ulong_t tls = target->thread.uw.tp_value;
1696 
1697 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1698 	if (ret)
1699 		return ret;
1700 
1701 	target->thread.uw.tp_value = tls;
1702 	return ret;
1703 }
1704 
1705 static const struct user_regset aarch32_regsets[] = {
1706 	[REGSET_COMPAT_GPR] = {
1707 		.core_note_type = NT_PRSTATUS,
1708 		.n = COMPAT_ELF_NGREG,
1709 		.size = sizeof(compat_elf_greg_t),
1710 		.align = sizeof(compat_elf_greg_t),
1711 		.regset_get = compat_gpr_get,
1712 		.set = compat_gpr_set
1713 	},
1714 	[REGSET_COMPAT_VFP] = {
1715 		.core_note_type = NT_ARM_VFP,
1716 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1717 		.size = sizeof(compat_ulong_t),
1718 		.align = sizeof(compat_ulong_t),
1719 		.active = fpr_active,
1720 		.regset_get = compat_vfp_get,
1721 		.set = compat_vfp_set
1722 	},
1723 };
1724 
1725 static const struct user_regset_view user_aarch32_view = {
1726 	.name = "aarch32", .e_machine = EM_ARM,
1727 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1728 };
1729 
1730 static const struct user_regset aarch32_ptrace_regsets[] = {
1731 	[REGSET_GPR] = {
1732 		.core_note_type = NT_PRSTATUS,
1733 		.n = COMPAT_ELF_NGREG,
1734 		.size = sizeof(compat_elf_greg_t),
1735 		.align = sizeof(compat_elf_greg_t),
1736 		.regset_get = compat_gpr_get,
1737 		.set = compat_gpr_set
1738 	},
1739 	[REGSET_FPR] = {
1740 		.core_note_type = NT_ARM_VFP,
1741 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1742 		.size = sizeof(compat_ulong_t),
1743 		.align = sizeof(compat_ulong_t),
1744 		.regset_get = compat_vfp_get,
1745 		.set = compat_vfp_set
1746 	},
1747 	[REGSET_TLS] = {
1748 		.core_note_type = NT_ARM_TLS,
1749 		.n = 1,
1750 		.size = sizeof(compat_ulong_t),
1751 		.align = sizeof(compat_ulong_t),
1752 		.regset_get = compat_tls_get,
1753 		.set = compat_tls_set,
1754 	},
1755 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1756 	[REGSET_HW_BREAK] = {
1757 		.core_note_type = NT_ARM_HW_BREAK,
1758 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1759 		.size = sizeof(u32),
1760 		.align = sizeof(u32),
1761 		.regset_get = hw_break_get,
1762 		.set = hw_break_set,
1763 	},
1764 	[REGSET_HW_WATCH] = {
1765 		.core_note_type = NT_ARM_HW_WATCH,
1766 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1767 		.size = sizeof(u32),
1768 		.align = sizeof(u32),
1769 		.regset_get = hw_break_get,
1770 		.set = hw_break_set,
1771 	},
1772 #endif
1773 	[REGSET_SYSTEM_CALL] = {
1774 		.core_note_type = NT_ARM_SYSTEM_CALL,
1775 		.n = 1,
1776 		.size = sizeof(int),
1777 		.align = sizeof(int),
1778 		.regset_get = system_call_get,
1779 		.set = system_call_set,
1780 	},
1781 };
1782 
1783 static const struct user_regset_view user_aarch32_ptrace_view = {
1784 	.name = "aarch32", .e_machine = EM_ARM,
1785 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1786 };
1787 
1788 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1789 				   compat_ulong_t __user *ret)
1790 {
1791 	compat_ulong_t tmp;
1792 
1793 	if (off & 3)
1794 		return -EIO;
1795 
1796 	if (off == COMPAT_PT_TEXT_ADDR)
1797 		tmp = tsk->mm->start_code;
1798 	else if (off == COMPAT_PT_DATA_ADDR)
1799 		tmp = tsk->mm->start_data;
1800 	else if (off == COMPAT_PT_TEXT_END_ADDR)
1801 		tmp = tsk->mm->end_code;
1802 	else if (off < sizeof(compat_elf_gregset_t))
1803 		tmp = compat_get_user_reg(tsk, off >> 2);
1804 	else if (off >= COMPAT_USER_SZ)
1805 		return -EIO;
1806 	else
1807 		tmp = 0;
1808 
1809 	return put_user(tmp, ret);
1810 }
1811 
1812 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1813 				    compat_ulong_t val)
1814 {
1815 	struct pt_regs newregs = *task_pt_regs(tsk);
1816 	unsigned int idx = off / 4;
1817 
1818 	if (off & 3 || off >= COMPAT_USER_SZ)
1819 		return -EIO;
1820 
1821 	if (off >= sizeof(compat_elf_gregset_t))
1822 		return 0;
1823 
1824 	switch (idx) {
1825 	case 15:
1826 		newregs.pc = val;
1827 		break;
1828 	case 16:
1829 		newregs.pstate = compat_psr_to_pstate(val);
1830 		break;
1831 	case 17:
1832 		newregs.orig_x0 = val;
1833 		break;
1834 	default:
1835 		newregs.regs[idx] = val;
1836 	}
1837 
1838 	if (!valid_user_regs(&newregs.user_regs, tsk))
1839 		return -EINVAL;
1840 
1841 	*task_pt_regs(tsk) = newregs;
1842 	return 0;
1843 }
1844 
1845 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1846 
1847 /*
1848  * Convert a virtual register number into an index for a thread_info
1849  * breakpoint array. Breakpoints are identified using positive numbers
1850  * whilst watchpoints are negative. The registers are laid out as pairs
1851  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1852  * Register 0 is reserved for describing resource information.
1853  */
1854 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1855 {
1856 	return (abs(num) - 1) >> 1;
1857 }
1858 
1859 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1860 {
1861 	u8 num_brps, num_wrps, debug_arch, wp_len;
1862 	u32 reg = 0;
1863 
1864 	num_brps	= hw_breakpoint_slots(TYPE_INST);
1865 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
1866 
1867 	debug_arch	= debug_monitors_arch();
1868 	wp_len		= 8;
1869 	reg		|= debug_arch;
1870 	reg		<<= 8;
1871 	reg		|= wp_len;
1872 	reg		<<= 8;
1873 	reg		|= num_wrps;
1874 	reg		<<= 8;
1875 	reg		|= num_brps;
1876 
1877 	*kdata = reg;
1878 	return 0;
1879 }
1880 
1881 static int compat_ptrace_hbp_get(unsigned int note_type,
1882 				 struct task_struct *tsk,
1883 				 compat_long_t num,
1884 				 u32 *kdata)
1885 {
1886 	u64 addr = 0;
1887 	u32 ctrl = 0;
1888 
1889 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1890 
1891 	if (num & 1) {
1892 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1893 		*kdata = (u32)addr;
1894 	} else {
1895 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1896 		*kdata = ctrl;
1897 	}
1898 
1899 	return err;
1900 }
1901 
1902 static int compat_ptrace_hbp_set(unsigned int note_type,
1903 				 struct task_struct *tsk,
1904 				 compat_long_t num,
1905 				 u32 *kdata)
1906 {
1907 	u64 addr;
1908 	u32 ctrl;
1909 
1910 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1911 
1912 	if (num & 1) {
1913 		addr = *kdata;
1914 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1915 	} else {
1916 		ctrl = *kdata;
1917 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1918 	}
1919 
1920 	return err;
1921 }
1922 
1923 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1924 				    compat_ulong_t __user *data)
1925 {
1926 	int ret;
1927 	u32 kdata;
1928 
1929 	/* Watchpoint */
1930 	if (num < 0) {
1931 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1932 	/* Resource info */
1933 	} else if (num == 0) {
1934 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
1935 	/* Breakpoint */
1936 	} else {
1937 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1938 	}
1939 
1940 	if (!ret)
1941 		ret = put_user(kdata, data);
1942 
1943 	return ret;
1944 }
1945 
1946 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1947 				    compat_ulong_t __user *data)
1948 {
1949 	int ret;
1950 	u32 kdata = 0;
1951 
1952 	if (num == 0)
1953 		return 0;
1954 
1955 	ret = get_user(kdata, data);
1956 	if (ret)
1957 		return ret;
1958 
1959 	if (num < 0)
1960 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1961 	else
1962 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1963 
1964 	return ret;
1965 }
1966 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
1967 
1968 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1969 			compat_ulong_t caddr, compat_ulong_t cdata)
1970 {
1971 	unsigned long addr = caddr;
1972 	unsigned long data = cdata;
1973 	void __user *datap = compat_ptr(data);
1974 	int ret;
1975 
1976 	switch (request) {
1977 		case PTRACE_PEEKUSR:
1978 			ret = compat_ptrace_read_user(child, addr, datap);
1979 			break;
1980 
1981 		case PTRACE_POKEUSR:
1982 			ret = compat_ptrace_write_user(child, addr, data);
1983 			break;
1984 
1985 		case COMPAT_PTRACE_GETREGS:
1986 			ret = copy_regset_to_user(child,
1987 						  &user_aarch32_view,
1988 						  REGSET_COMPAT_GPR,
1989 						  0, sizeof(compat_elf_gregset_t),
1990 						  datap);
1991 			break;
1992 
1993 		case COMPAT_PTRACE_SETREGS:
1994 			ret = copy_regset_from_user(child,
1995 						    &user_aarch32_view,
1996 						    REGSET_COMPAT_GPR,
1997 						    0, sizeof(compat_elf_gregset_t),
1998 						    datap);
1999 			break;
2000 
2001 		case COMPAT_PTRACE_GET_THREAD_AREA:
2002 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
2003 				       (compat_ulong_t __user *)datap);
2004 			break;
2005 
2006 		case COMPAT_PTRACE_SET_SYSCALL:
2007 			task_pt_regs(child)->syscallno = data;
2008 			ret = 0;
2009 			break;
2010 
2011 		case COMPAT_PTRACE_GETVFPREGS:
2012 			ret = copy_regset_to_user(child,
2013 						  &user_aarch32_view,
2014 						  REGSET_COMPAT_VFP,
2015 						  0, VFP_STATE_SIZE,
2016 						  datap);
2017 			break;
2018 
2019 		case COMPAT_PTRACE_SETVFPREGS:
2020 			ret = copy_regset_from_user(child,
2021 						    &user_aarch32_view,
2022 						    REGSET_COMPAT_VFP,
2023 						    0, VFP_STATE_SIZE,
2024 						    datap);
2025 			break;
2026 
2027 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2028 		case COMPAT_PTRACE_GETHBPREGS:
2029 			ret = compat_ptrace_gethbpregs(child, addr, datap);
2030 			break;
2031 
2032 		case COMPAT_PTRACE_SETHBPREGS:
2033 			ret = compat_ptrace_sethbpregs(child, addr, datap);
2034 			break;
2035 #endif
2036 
2037 		default:
2038 			ret = compat_ptrace_request(child, request, addr,
2039 						    data);
2040 			break;
2041 	}
2042 
2043 	return ret;
2044 }
2045 #endif /* CONFIG_COMPAT */
2046 
2047 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2048 {
2049 #ifdef CONFIG_COMPAT
2050 	/*
2051 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
2052 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
2053 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
2054 	 * access to the TLS register.
2055 	 */
2056 	if (is_compat_task())
2057 		return &user_aarch32_view;
2058 	else if (is_compat_thread(task_thread_info(task)))
2059 		return &user_aarch32_ptrace_view;
2060 #endif
2061 	return &user_aarch64_view;
2062 }
2063 
2064 long arch_ptrace(struct task_struct *child, long request,
2065 		 unsigned long addr, unsigned long data)
2066 {
2067 	switch (request) {
2068 	case PTRACE_PEEKMTETAGS:
2069 	case PTRACE_POKEMTETAGS:
2070 		return mte_ptrace_copy_tags(child, request, addr, data);
2071 	}
2072 
2073 	return ptrace_request(child, request, addr, data);
2074 }
2075 
2076 enum ptrace_syscall_dir {
2077 	PTRACE_SYSCALL_ENTER = 0,
2078 	PTRACE_SYSCALL_EXIT,
2079 };
2080 
2081 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
2082 {
2083 	int regno;
2084 	unsigned long saved_reg;
2085 
2086 	/*
2087 	 * We have some ABI weirdness here in the way that we handle syscall
2088 	 * exit stops because we indicate whether or not the stop has been
2089 	 * signalled from syscall entry or syscall exit by clobbering a general
2090 	 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
2091 	 * and restoring its old value after the stop. This means that:
2092 	 *
2093 	 * - Any writes by the tracer to this register during the stop are
2094 	 *   ignored/discarded.
2095 	 *
2096 	 * - The actual value of the register is not available during the stop,
2097 	 *   so the tracer cannot save it and restore it later.
2098 	 *
2099 	 * - Syscall stops behave differently to seccomp and pseudo-step traps
2100 	 *   (the latter do not nobble any registers).
2101 	 */
2102 	regno = (is_compat_task() ? 12 : 7);
2103 	saved_reg = regs->regs[regno];
2104 	regs->regs[regno] = dir;
2105 
2106 	if (dir == PTRACE_SYSCALL_ENTER) {
2107 		if (ptrace_report_syscall_entry(regs))
2108 			forget_syscall(regs);
2109 		regs->regs[regno] = saved_reg;
2110 	} else if (!test_thread_flag(TIF_SINGLESTEP)) {
2111 		ptrace_report_syscall_exit(regs, 0);
2112 		regs->regs[regno] = saved_reg;
2113 	} else {
2114 		regs->regs[regno] = saved_reg;
2115 
2116 		/*
2117 		 * Signal a pseudo-step exception since we are stepping but
2118 		 * tracer modifications to the registers may have rewound the
2119 		 * state machine.
2120 		 */
2121 		ptrace_report_syscall_exit(regs, 1);
2122 	}
2123 }
2124 
2125 int syscall_trace_enter(struct pt_regs *regs)
2126 {
2127 	unsigned long flags = read_thread_flags();
2128 
2129 	if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
2130 		report_syscall(regs, PTRACE_SYSCALL_ENTER);
2131 		if (flags & _TIF_SYSCALL_EMU)
2132 			return NO_SYSCALL;
2133 	}
2134 
2135 	/* Do the secure computing after ptrace; failures should be fast. */
2136 	if (secure_computing() == -1)
2137 		return NO_SYSCALL;
2138 
2139 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
2140 		trace_sys_enter(regs, regs->syscallno);
2141 
2142 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
2143 			    regs->regs[2], regs->regs[3]);
2144 
2145 	return regs->syscallno;
2146 }
2147 
2148 void syscall_trace_exit(struct pt_regs *regs)
2149 {
2150 	unsigned long flags = read_thread_flags();
2151 
2152 	audit_syscall_exit(regs);
2153 
2154 	if (flags & _TIF_SYSCALL_TRACEPOINT)
2155 		trace_sys_exit(regs, syscall_get_return_value(current, regs));
2156 
2157 	if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
2158 		report_syscall(regs, PTRACE_SYSCALL_EXIT);
2159 
2160 	rseq_syscall(regs);
2161 }
2162 
2163 /*
2164  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
2165  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
2166  * not described in ARM DDI 0487D.a.
2167  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
2168  * be allocated an EL0 meaning in future.
2169  * Userspace cannot use these until they have an architectural meaning.
2170  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
2171  * We also reserve IL for the kernel; SS is handled dynamically.
2172  */
2173 #define SPSR_EL1_AARCH64_RES0_BITS \
2174 	(GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
2175 	 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
2176 #define SPSR_EL1_AARCH32_RES0_BITS \
2177 	(GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
2178 
2179 static int valid_compat_regs(struct user_pt_regs *regs)
2180 {
2181 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
2182 
2183 	if (!system_supports_mixed_endian_el0()) {
2184 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
2185 			regs->pstate |= PSR_AA32_E_BIT;
2186 		else
2187 			regs->pstate &= ~PSR_AA32_E_BIT;
2188 	}
2189 
2190 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
2191 	    (regs->pstate & PSR_AA32_A_BIT) == 0 &&
2192 	    (regs->pstate & PSR_AA32_I_BIT) == 0 &&
2193 	    (regs->pstate & PSR_AA32_F_BIT) == 0) {
2194 		return 1;
2195 	}
2196 
2197 	/*
2198 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
2199 	 * arch/arm.
2200 	 */
2201 	regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
2202 			PSR_AA32_C_BIT | PSR_AA32_V_BIT |
2203 			PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
2204 			PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
2205 			PSR_AA32_T_BIT;
2206 	regs->pstate |= PSR_MODE32_BIT;
2207 
2208 	return 0;
2209 }
2210 
2211 static int valid_native_regs(struct user_pt_regs *regs)
2212 {
2213 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
2214 
2215 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
2216 	    (regs->pstate & PSR_D_BIT) == 0 &&
2217 	    (regs->pstate & PSR_A_BIT) == 0 &&
2218 	    (regs->pstate & PSR_I_BIT) == 0 &&
2219 	    (regs->pstate & PSR_F_BIT) == 0) {
2220 		return 1;
2221 	}
2222 
2223 	/* Force PSR to a valid 64-bit EL0t */
2224 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
2225 
2226 	return 0;
2227 }
2228 
2229 /*
2230  * Are the current registers suitable for user mode? (used to maintain
2231  * security in signal handlers)
2232  */
2233 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
2234 {
2235 	/* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
2236 	user_regs_reset_single_step(regs, task);
2237 
2238 	if (is_compat_thread(task_thread_info(task)))
2239 		return valid_compat_regs(regs);
2240 	else
2241 		return valid_native_regs(regs);
2242 }
2243