xref: /linux/arch/arm64/kernel/ptrace.c (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/ptrace.c
4  *
5  * By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  * Copyright (C) 2012 ARM Ltd.
9  */
10 
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/tracehook.h>
31 #include <linux/elf.h>
32 
33 #include <asm/compat.h>
34 #include <asm/cpufeature.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/fpsimd.h>
37 #include <asm/mte.h>
38 #include <asm/pointer_auth.h>
39 #include <asm/stacktrace.h>
40 #include <asm/syscall.h>
41 #include <asm/traps.h>
42 #include <asm/system_misc.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/syscalls.h>
46 
47 struct pt_regs_offset {
48 	const char *name;
49 	int offset;
50 };
51 
52 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
53 #define REG_OFFSET_END {.name = NULL, .offset = 0}
54 #define GPR_OFFSET_NAME(r) \
55 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
56 
57 static const struct pt_regs_offset regoffset_table[] = {
58 	GPR_OFFSET_NAME(0),
59 	GPR_OFFSET_NAME(1),
60 	GPR_OFFSET_NAME(2),
61 	GPR_OFFSET_NAME(3),
62 	GPR_OFFSET_NAME(4),
63 	GPR_OFFSET_NAME(5),
64 	GPR_OFFSET_NAME(6),
65 	GPR_OFFSET_NAME(7),
66 	GPR_OFFSET_NAME(8),
67 	GPR_OFFSET_NAME(9),
68 	GPR_OFFSET_NAME(10),
69 	GPR_OFFSET_NAME(11),
70 	GPR_OFFSET_NAME(12),
71 	GPR_OFFSET_NAME(13),
72 	GPR_OFFSET_NAME(14),
73 	GPR_OFFSET_NAME(15),
74 	GPR_OFFSET_NAME(16),
75 	GPR_OFFSET_NAME(17),
76 	GPR_OFFSET_NAME(18),
77 	GPR_OFFSET_NAME(19),
78 	GPR_OFFSET_NAME(20),
79 	GPR_OFFSET_NAME(21),
80 	GPR_OFFSET_NAME(22),
81 	GPR_OFFSET_NAME(23),
82 	GPR_OFFSET_NAME(24),
83 	GPR_OFFSET_NAME(25),
84 	GPR_OFFSET_NAME(26),
85 	GPR_OFFSET_NAME(27),
86 	GPR_OFFSET_NAME(28),
87 	GPR_OFFSET_NAME(29),
88 	GPR_OFFSET_NAME(30),
89 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
90 	REG_OFFSET_NAME(sp),
91 	REG_OFFSET_NAME(pc),
92 	REG_OFFSET_NAME(pstate),
93 	REG_OFFSET_END,
94 };
95 
96 /**
97  * regs_query_register_offset() - query register offset from its name
98  * @name:	the name of a register
99  *
100  * regs_query_register_offset() returns the offset of a register in struct
101  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
102  */
103 int regs_query_register_offset(const char *name)
104 {
105 	const struct pt_regs_offset *roff;
106 
107 	for (roff = regoffset_table; roff->name != NULL; roff++)
108 		if (!strcmp(roff->name, name))
109 			return roff->offset;
110 	return -EINVAL;
111 }
112 
113 /**
114  * regs_within_kernel_stack() - check the address in the stack
115  * @regs:      pt_regs which contains kernel stack pointer.
116  * @addr:      address which is checked.
117  *
118  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
119  * If @addr is within the kernel stack, it returns true. If not, returns false.
120  */
121 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
122 {
123 	return ((addr & ~(THREAD_SIZE - 1))  ==
124 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
125 		on_irq_stack(addr, NULL);
126 }
127 
128 /**
129  * regs_get_kernel_stack_nth() - get Nth entry of the stack
130  * @regs:	pt_regs which contains kernel stack pointer.
131  * @n:		stack entry number.
132  *
133  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
134  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
135  * this returns 0.
136  */
137 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
138 {
139 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
140 
141 	addr += n;
142 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
143 		return *addr;
144 	else
145 		return 0;
146 }
147 
148 /*
149  * TODO: does not yet catch signals sent when the child dies.
150  * in exit.c or in signal.c.
151  */
152 
153 /*
154  * Called by kernel/ptrace.c when detaching..
155  */
156 void ptrace_disable(struct task_struct *child)
157 {
158 	/*
159 	 * This would be better off in core code, but PTRACE_DETACH has
160 	 * grown its fair share of arch-specific worts and changing it
161 	 * is likely to cause regressions on obscure architectures.
162 	 */
163 	user_disable_single_step(child);
164 }
165 
166 #ifdef CONFIG_HAVE_HW_BREAKPOINT
167 /*
168  * Handle hitting a HW-breakpoint.
169  */
170 static void ptrace_hbptriggered(struct perf_event *bp,
171 				struct perf_sample_data *data,
172 				struct pt_regs *regs)
173 {
174 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
175 	const char *desc = "Hardware breakpoint trap (ptrace)";
176 
177 #ifdef CONFIG_COMPAT
178 	if (is_compat_task()) {
179 		int si_errno = 0;
180 		int i;
181 
182 		for (i = 0; i < ARM_MAX_BRP; ++i) {
183 			if (current->thread.debug.hbp_break[i] == bp) {
184 				si_errno = (i << 1) + 1;
185 				break;
186 			}
187 		}
188 
189 		for (i = 0; i < ARM_MAX_WRP; ++i) {
190 			if (current->thread.debug.hbp_watch[i] == bp) {
191 				si_errno = -((i << 1) + 1);
192 				break;
193 			}
194 		}
195 		arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
196 						  desc);
197 	}
198 #endif
199 	arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
200 }
201 
202 /*
203  * Unregister breakpoints from this task and reset the pointers in
204  * the thread_struct.
205  */
206 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
207 {
208 	int i;
209 	struct thread_struct *t = &tsk->thread;
210 
211 	for (i = 0; i < ARM_MAX_BRP; i++) {
212 		if (t->debug.hbp_break[i]) {
213 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
214 			t->debug.hbp_break[i] = NULL;
215 		}
216 	}
217 
218 	for (i = 0; i < ARM_MAX_WRP; i++) {
219 		if (t->debug.hbp_watch[i]) {
220 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
221 			t->debug.hbp_watch[i] = NULL;
222 		}
223 	}
224 }
225 
226 void ptrace_hw_copy_thread(struct task_struct *tsk)
227 {
228 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
229 }
230 
231 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
232 					       struct task_struct *tsk,
233 					       unsigned long idx)
234 {
235 	struct perf_event *bp = ERR_PTR(-EINVAL);
236 
237 	switch (note_type) {
238 	case NT_ARM_HW_BREAK:
239 		if (idx >= ARM_MAX_BRP)
240 			goto out;
241 		idx = array_index_nospec(idx, ARM_MAX_BRP);
242 		bp = tsk->thread.debug.hbp_break[idx];
243 		break;
244 	case NT_ARM_HW_WATCH:
245 		if (idx >= ARM_MAX_WRP)
246 			goto out;
247 		idx = array_index_nospec(idx, ARM_MAX_WRP);
248 		bp = tsk->thread.debug.hbp_watch[idx];
249 		break;
250 	}
251 
252 out:
253 	return bp;
254 }
255 
256 static int ptrace_hbp_set_event(unsigned int note_type,
257 				struct task_struct *tsk,
258 				unsigned long idx,
259 				struct perf_event *bp)
260 {
261 	int err = -EINVAL;
262 
263 	switch (note_type) {
264 	case NT_ARM_HW_BREAK:
265 		if (idx >= ARM_MAX_BRP)
266 			goto out;
267 		idx = array_index_nospec(idx, ARM_MAX_BRP);
268 		tsk->thread.debug.hbp_break[idx] = bp;
269 		err = 0;
270 		break;
271 	case NT_ARM_HW_WATCH:
272 		if (idx >= ARM_MAX_WRP)
273 			goto out;
274 		idx = array_index_nospec(idx, ARM_MAX_WRP);
275 		tsk->thread.debug.hbp_watch[idx] = bp;
276 		err = 0;
277 		break;
278 	}
279 
280 out:
281 	return err;
282 }
283 
284 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
285 					    struct task_struct *tsk,
286 					    unsigned long idx)
287 {
288 	struct perf_event *bp;
289 	struct perf_event_attr attr;
290 	int err, type;
291 
292 	switch (note_type) {
293 	case NT_ARM_HW_BREAK:
294 		type = HW_BREAKPOINT_X;
295 		break;
296 	case NT_ARM_HW_WATCH:
297 		type = HW_BREAKPOINT_RW;
298 		break;
299 	default:
300 		return ERR_PTR(-EINVAL);
301 	}
302 
303 	ptrace_breakpoint_init(&attr);
304 
305 	/*
306 	 * Initialise fields to sane defaults
307 	 * (i.e. values that will pass validation).
308 	 */
309 	attr.bp_addr	= 0;
310 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
311 	attr.bp_type	= type;
312 	attr.disabled	= 1;
313 
314 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
315 	if (IS_ERR(bp))
316 		return bp;
317 
318 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
319 	if (err)
320 		return ERR_PTR(err);
321 
322 	return bp;
323 }
324 
325 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
326 				     struct arch_hw_breakpoint_ctrl ctrl,
327 				     struct perf_event_attr *attr)
328 {
329 	int err, len, type, offset, disabled = !ctrl.enabled;
330 
331 	attr->disabled = disabled;
332 	if (disabled)
333 		return 0;
334 
335 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
336 	if (err)
337 		return err;
338 
339 	switch (note_type) {
340 	case NT_ARM_HW_BREAK:
341 		if ((type & HW_BREAKPOINT_X) != type)
342 			return -EINVAL;
343 		break;
344 	case NT_ARM_HW_WATCH:
345 		if ((type & HW_BREAKPOINT_RW) != type)
346 			return -EINVAL;
347 		break;
348 	default:
349 		return -EINVAL;
350 	}
351 
352 	attr->bp_len	= len;
353 	attr->bp_type	= type;
354 	attr->bp_addr	+= offset;
355 
356 	return 0;
357 }
358 
359 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
360 {
361 	u8 num;
362 	u32 reg = 0;
363 
364 	switch (note_type) {
365 	case NT_ARM_HW_BREAK:
366 		num = hw_breakpoint_slots(TYPE_INST);
367 		break;
368 	case NT_ARM_HW_WATCH:
369 		num = hw_breakpoint_slots(TYPE_DATA);
370 		break;
371 	default:
372 		return -EINVAL;
373 	}
374 
375 	reg |= debug_monitors_arch();
376 	reg <<= 8;
377 	reg |= num;
378 
379 	*info = reg;
380 	return 0;
381 }
382 
383 static int ptrace_hbp_get_ctrl(unsigned int note_type,
384 			       struct task_struct *tsk,
385 			       unsigned long idx,
386 			       u32 *ctrl)
387 {
388 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
389 
390 	if (IS_ERR(bp))
391 		return PTR_ERR(bp);
392 
393 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
394 	return 0;
395 }
396 
397 static int ptrace_hbp_get_addr(unsigned int note_type,
398 			       struct task_struct *tsk,
399 			       unsigned long idx,
400 			       u64 *addr)
401 {
402 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
403 
404 	if (IS_ERR(bp))
405 		return PTR_ERR(bp);
406 
407 	*addr = bp ? counter_arch_bp(bp)->address : 0;
408 	return 0;
409 }
410 
411 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
412 							struct task_struct *tsk,
413 							unsigned long idx)
414 {
415 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
416 
417 	if (!bp)
418 		bp = ptrace_hbp_create(note_type, tsk, idx);
419 
420 	return bp;
421 }
422 
423 static int ptrace_hbp_set_ctrl(unsigned int note_type,
424 			       struct task_struct *tsk,
425 			       unsigned long idx,
426 			       u32 uctrl)
427 {
428 	int err;
429 	struct perf_event *bp;
430 	struct perf_event_attr attr;
431 	struct arch_hw_breakpoint_ctrl ctrl;
432 
433 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
434 	if (IS_ERR(bp)) {
435 		err = PTR_ERR(bp);
436 		return err;
437 	}
438 
439 	attr = bp->attr;
440 	decode_ctrl_reg(uctrl, &ctrl);
441 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
442 	if (err)
443 		return err;
444 
445 	return modify_user_hw_breakpoint(bp, &attr);
446 }
447 
448 static int ptrace_hbp_set_addr(unsigned int note_type,
449 			       struct task_struct *tsk,
450 			       unsigned long idx,
451 			       u64 addr)
452 {
453 	int err;
454 	struct perf_event *bp;
455 	struct perf_event_attr attr;
456 
457 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
458 	if (IS_ERR(bp)) {
459 		err = PTR_ERR(bp);
460 		return err;
461 	}
462 
463 	attr = bp->attr;
464 	attr.bp_addr = addr;
465 	err = modify_user_hw_breakpoint(bp, &attr);
466 	return err;
467 }
468 
469 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
470 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
471 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
472 
473 static int hw_break_get(struct task_struct *target,
474 			const struct user_regset *regset,
475 			struct membuf to)
476 {
477 	unsigned int note_type = regset->core_note_type;
478 	int ret, idx = 0;
479 	u32 info, ctrl;
480 	u64 addr;
481 
482 	/* Resource info */
483 	ret = ptrace_hbp_get_resource_info(note_type, &info);
484 	if (ret)
485 		return ret;
486 
487 	membuf_write(&to, &info, sizeof(info));
488 	membuf_zero(&to, sizeof(u32));
489 	/* (address, ctrl) registers */
490 	while (to.left) {
491 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
492 		if (ret)
493 			return ret;
494 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
495 		if (ret)
496 			return ret;
497 		membuf_store(&to, addr);
498 		membuf_store(&to, ctrl);
499 		membuf_zero(&to, sizeof(u32));
500 		idx++;
501 	}
502 	return 0;
503 }
504 
505 static int hw_break_set(struct task_struct *target,
506 			const struct user_regset *regset,
507 			unsigned int pos, unsigned int count,
508 			const void *kbuf, const void __user *ubuf)
509 {
510 	unsigned int note_type = regset->core_note_type;
511 	int ret, idx = 0, offset, limit;
512 	u32 ctrl;
513 	u64 addr;
514 
515 	/* Resource info and pad */
516 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
517 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
518 	if (ret)
519 		return ret;
520 
521 	/* (address, ctrl) registers */
522 	limit = regset->n * regset->size;
523 	while (count && offset < limit) {
524 		if (count < PTRACE_HBP_ADDR_SZ)
525 			return -EINVAL;
526 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
527 					 offset, offset + PTRACE_HBP_ADDR_SZ);
528 		if (ret)
529 			return ret;
530 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
531 		if (ret)
532 			return ret;
533 		offset += PTRACE_HBP_ADDR_SZ;
534 
535 		if (!count)
536 			break;
537 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
538 					 offset, offset + PTRACE_HBP_CTRL_SZ);
539 		if (ret)
540 			return ret;
541 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
542 		if (ret)
543 			return ret;
544 		offset += PTRACE_HBP_CTRL_SZ;
545 
546 		ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
547 						offset,
548 						offset + PTRACE_HBP_PAD_SZ);
549 		if (ret)
550 			return ret;
551 		offset += PTRACE_HBP_PAD_SZ;
552 		idx++;
553 	}
554 
555 	return 0;
556 }
557 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
558 
559 static int gpr_get(struct task_struct *target,
560 		   const struct user_regset *regset,
561 		   struct membuf to)
562 {
563 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
564 	return membuf_write(&to, uregs, sizeof(*uregs));
565 }
566 
567 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
568 		   unsigned int pos, unsigned int count,
569 		   const void *kbuf, const void __user *ubuf)
570 {
571 	int ret;
572 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
573 
574 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
575 	if (ret)
576 		return ret;
577 
578 	if (!valid_user_regs(&newregs, target))
579 		return -EINVAL;
580 
581 	task_pt_regs(target)->user_regs = newregs;
582 	return 0;
583 }
584 
585 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
586 {
587 	if (!system_supports_fpsimd())
588 		return -ENODEV;
589 	return regset->n;
590 }
591 
592 /*
593  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
594  */
595 static int __fpr_get(struct task_struct *target,
596 		     const struct user_regset *regset,
597 		     struct membuf to)
598 {
599 	struct user_fpsimd_state *uregs;
600 
601 	sve_sync_to_fpsimd(target);
602 
603 	uregs = &target->thread.uw.fpsimd_state;
604 
605 	return membuf_write(&to, uregs, sizeof(*uregs));
606 }
607 
608 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
609 		   struct membuf to)
610 {
611 	if (!system_supports_fpsimd())
612 		return -EINVAL;
613 
614 	if (target == current)
615 		fpsimd_preserve_current_state();
616 
617 	return __fpr_get(target, regset, to);
618 }
619 
620 static int __fpr_set(struct task_struct *target,
621 		     const struct user_regset *regset,
622 		     unsigned int pos, unsigned int count,
623 		     const void *kbuf, const void __user *ubuf,
624 		     unsigned int start_pos)
625 {
626 	int ret;
627 	struct user_fpsimd_state newstate;
628 
629 	/*
630 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
631 	 * short copyin can't resurrect stale data.
632 	 */
633 	sve_sync_to_fpsimd(target);
634 
635 	newstate = target->thread.uw.fpsimd_state;
636 
637 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
638 				 start_pos, start_pos + sizeof(newstate));
639 	if (ret)
640 		return ret;
641 
642 	target->thread.uw.fpsimd_state = newstate;
643 
644 	return ret;
645 }
646 
647 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
648 		   unsigned int pos, unsigned int count,
649 		   const void *kbuf, const void __user *ubuf)
650 {
651 	int ret;
652 
653 	if (!system_supports_fpsimd())
654 		return -EINVAL;
655 
656 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
657 	if (ret)
658 		return ret;
659 
660 	sve_sync_from_fpsimd_zeropad(target);
661 	fpsimd_flush_task_state(target);
662 
663 	return ret;
664 }
665 
666 static int tls_get(struct task_struct *target, const struct user_regset *regset,
667 		   struct membuf to)
668 {
669 	if (target == current)
670 		tls_preserve_current_state();
671 
672 	return membuf_store(&to, target->thread.uw.tp_value);
673 }
674 
675 static int tls_set(struct task_struct *target, const struct user_regset *regset,
676 		   unsigned int pos, unsigned int count,
677 		   const void *kbuf, const void __user *ubuf)
678 {
679 	int ret;
680 	unsigned long tls = target->thread.uw.tp_value;
681 
682 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
683 	if (ret)
684 		return ret;
685 
686 	target->thread.uw.tp_value = tls;
687 	return ret;
688 }
689 
690 static int system_call_get(struct task_struct *target,
691 			   const struct user_regset *regset,
692 			   struct membuf to)
693 {
694 	return membuf_store(&to, task_pt_regs(target)->syscallno);
695 }
696 
697 static int system_call_set(struct task_struct *target,
698 			   const struct user_regset *regset,
699 			   unsigned int pos, unsigned int count,
700 			   const void *kbuf, const void __user *ubuf)
701 {
702 	int syscallno = task_pt_regs(target)->syscallno;
703 	int ret;
704 
705 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
706 	if (ret)
707 		return ret;
708 
709 	task_pt_regs(target)->syscallno = syscallno;
710 	return ret;
711 }
712 
713 #ifdef CONFIG_ARM64_SVE
714 
715 static void sve_init_header_from_task(struct user_sve_header *header,
716 				      struct task_struct *target)
717 {
718 	unsigned int vq;
719 
720 	memset(header, 0, sizeof(*header));
721 
722 	header->flags = test_tsk_thread_flag(target, TIF_SVE) ?
723 		SVE_PT_REGS_SVE : SVE_PT_REGS_FPSIMD;
724 	if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
725 		header->flags |= SVE_PT_VL_INHERIT;
726 
727 	header->vl = target->thread.sve_vl;
728 	vq = sve_vq_from_vl(header->vl);
729 
730 	header->max_vl = sve_max_vl;
731 	header->size = SVE_PT_SIZE(vq, header->flags);
732 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
733 				      SVE_PT_REGS_SVE);
734 }
735 
736 static unsigned int sve_size_from_header(struct user_sve_header const *header)
737 {
738 	return ALIGN(header->size, SVE_VQ_BYTES);
739 }
740 
741 static int sve_get(struct task_struct *target,
742 		   const struct user_regset *regset,
743 		   struct membuf to)
744 {
745 	struct user_sve_header header;
746 	unsigned int vq;
747 	unsigned long start, end;
748 
749 	if (!system_supports_sve())
750 		return -EINVAL;
751 
752 	/* Header */
753 	sve_init_header_from_task(&header, target);
754 	vq = sve_vq_from_vl(header.vl);
755 
756 	membuf_write(&to, &header, sizeof(header));
757 
758 	if (target == current)
759 		fpsimd_preserve_current_state();
760 
761 	/* Registers: FPSIMD-only case */
762 
763 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
764 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD)
765 		return __fpr_get(target, regset, to);
766 
767 	/* Otherwise: full SVE case */
768 
769 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
770 	start = SVE_PT_SVE_OFFSET;
771 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
772 	membuf_write(&to, target->thread.sve_state, end - start);
773 
774 	start = end;
775 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
776 	membuf_zero(&to, end - start);
777 
778 	/*
779 	 * Copy fpsr, and fpcr which must follow contiguously in
780 	 * struct fpsimd_state:
781 	 */
782 	start = end;
783 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
784 	membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr, end - start);
785 
786 	start = end;
787 	end = sve_size_from_header(&header);
788 	return membuf_zero(&to, end - start);
789 }
790 
791 static int sve_set(struct task_struct *target,
792 		   const struct user_regset *regset,
793 		   unsigned int pos, unsigned int count,
794 		   const void *kbuf, const void __user *ubuf)
795 {
796 	int ret;
797 	struct user_sve_header header;
798 	unsigned int vq;
799 	unsigned long start, end;
800 
801 	if (!system_supports_sve())
802 		return -EINVAL;
803 
804 	/* Header */
805 	if (count < sizeof(header))
806 		return -EINVAL;
807 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
808 				 0, sizeof(header));
809 	if (ret)
810 		goto out;
811 
812 	/*
813 	 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
814 	 * sve_set_vector_length(), which will also validate them for us:
815 	 */
816 	ret = sve_set_vector_length(target, header.vl,
817 		((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
818 	if (ret)
819 		goto out;
820 
821 	/* Actual VL set may be less than the user asked for: */
822 	vq = sve_vq_from_vl(target->thread.sve_vl);
823 
824 	/* Registers: FPSIMD-only case */
825 
826 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
827 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
828 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
829 				SVE_PT_FPSIMD_OFFSET);
830 		clear_tsk_thread_flag(target, TIF_SVE);
831 		goto out;
832 	}
833 
834 	/* Otherwise: full SVE case */
835 
836 	/*
837 	 * If setting a different VL from the requested VL and there is
838 	 * register data, the data layout will be wrong: don't even
839 	 * try to set the registers in this case.
840 	 */
841 	if (count && vq != sve_vq_from_vl(header.vl)) {
842 		ret = -EIO;
843 		goto out;
844 	}
845 
846 	sve_alloc(target);
847 
848 	/*
849 	 * Ensure target->thread.sve_state is up to date with target's
850 	 * FPSIMD regs, so that a short copyin leaves trailing registers
851 	 * unmodified.
852 	 */
853 	fpsimd_sync_to_sve(target);
854 	set_tsk_thread_flag(target, TIF_SVE);
855 
856 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
857 	start = SVE_PT_SVE_OFFSET;
858 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
859 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
860 				 target->thread.sve_state,
861 				 start, end);
862 	if (ret)
863 		goto out;
864 
865 	start = end;
866 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
867 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
868 					start, end);
869 	if (ret)
870 		goto out;
871 
872 	/*
873 	 * Copy fpsr, and fpcr which must follow contiguously in
874 	 * struct fpsimd_state:
875 	 */
876 	start = end;
877 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
878 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
879 				 &target->thread.uw.fpsimd_state.fpsr,
880 				 start, end);
881 
882 out:
883 	fpsimd_flush_task_state(target);
884 	return ret;
885 }
886 
887 #endif /* CONFIG_ARM64_SVE */
888 
889 #ifdef CONFIG_ARM64_PTR_AUTH
890 static int pac_mask_get(struct task_struct *target,
891 			const struct user_regset *regset,
892 			struct membuf to)
893 {
894 	/*
895 	 * The PAC bits can differ across data and instruction pointers
896 	 * depending on TCR_EL1.TBID*, which we may make use of in future, so
897 	 * we expose separate masks.
898 	 */
899 	unsigned long mask = ptrauth_user_pac_mask();
900 	struct user_pac_mask uregs = {
901 		.data_mask = mask,
902 		.insn_mask = mask,
903 	};
904 
905 	if (!system_supports_address_auth())
906 		return -EINVAL;
907 
908 	return membuf_write(&to, &uregs, sizeof(uregs));
909 }
910 
911 #ifdef CONFIG_CHECKPOINT_RESTORE
912 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
913 {
914 	return (__uint128_t)key->hi << 64 | key->lo;
915 }
916 
917 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
918 {
919 	struct ptrauth_key key = {
920 		.lo = (unsigned long)ukey,
921 		.hi = (unsigned long)(ukey >> 64),
922 	};
923 
924 	return key;
925 }
926 
927 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
928 				     const struct ptrauth_keys_user *keys)
929 {
930 	ukeys->apiakey = pac_key_to_user(&keys->apia);
931 	ukeys->apibkey = pac_key_to_user(&keys->apib);
932 	ukeys->apdakey = pac_key_to_user(&keys->apda);
933 	ukeys->apdbkey = pac_key_to_user(&keys->apdb);
934 }
935 
936 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
937 				       const struct user_pac_address_keys *ukeys)
938 {
939 	keys->apia = pac_key_from_user(ukeys->apiakey);
940 	keys->apib = pac_key_from_user(ukeys->apibkey);
941 	keys->apda = pac_key_from_user(ukeys->apdakey);
942 	keys->apdb = pac_key_from_user(ukeys->apdbkey);
943 }
944 
945 static int pac_address_keys_get(struct task_struct *target,
946 				const struct user_regset *regset,
947 				struct membuf to)
948 {
949 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
950 	struct user_pac_address_keys user_keys;
951 
952 	if (!system_supports_address_auth())
953 		return -EINVAL;
954 
955 	pac_address_keys_to_user(&user_keys, keys);
956 
957 	return membuf_write(&to, &user_keys, sizeof(user_keys));
958 }
959 
960 static int pac_address_keys_set(struct task_struct *target,
961 				const struct user_regset *regset,
962 				unsigned int pos, unsigned int count,
963 				const void *kbuf, const void __user *ubuf)
964 {
965 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
966 	struct user_pac_address_keys user_keys;
967 	int ret;
968 
969 	if (!system_supports_address_auth())
970 		return -EINVAL;
971 
972 	pac_address_keys_to_user(&user_keys, keys);
973 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
974 				 &user_keys, 0, -1);
975 	if (ret)
976 		return ret;
977 	pac_address_keys_from_user(keys, &user_keys);
978 
979 	return 0;
980 }
981 
982 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
983 				     const struct ptrauth_keys_user *keys)
984 {
985 	ukeys->apgakey = pac_key_to_user(&keys->apga);
986 }
987 
988 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
989 				       const struct user_pac_generic_keys *ukeys)
990 {
991 	keys->apga = pac_key_from_user(ukeys->apgakey);
992 }
993 
994 static int pac_generic_keys_get(struct task_struct *target,
995 				const struct user_regset *regset,
996 				struct membuf to)
997 {
998 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
999 	struct user_pac_generic_keys user_keys;
1000 
1001 	if (!system_supports_generic_auth())
1002 		return -EINVAL;
1003 
1004 	pac_generic_keys_to_user(&user_keys, keys);
1005 
1006 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1007 }
1008 
1009 static int pac_generic_keys_set(struct task_struct *target,
1010 				const struct user_regset *regset,
1011 				unsigned int pos, unsigned int count,
1012 				const void *kbuf, const void __user *ubuf)
1013 {
1014 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1015 	struct user_pac_generic_keys user_keys;
1016 	int ret;
1017 
1018 	if (!system_supports_generic_auth())
1019 		return -EINVAL;
1020 
1021 	pac_generic_keys_to_user(&user_keys, keys);
1022 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1023 				 &user_keys, 0, -1);
1024 	if (ret)
1025 		return ret;
1026 	pac_generic_keys_from_user(keys, &user_keys);
1027 
1028 	return 0;
1029 }
1030 #endif /* CONFIG_CHECKPOINT_RESTORE */
1031 #endif /* CONFIG_ARM64_PTR_AUTH */
1032 
1033 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1034 static int tagged_addr_ctrl_get(struct task_struct *target,
1035 				const struct user_regset *regset,
1036 				struct membuf to)
1037 {
1038 	long ctrl = get_tagged_addr_ctrl(target);
1039 
1040 	if (IS_ERR_VALUE(ctrl))
1041 		return ctrl;
1042 
1043 	return membuf_write(&to, &ctrl, sizeof(ctrl));
1044 }
1045 
1046 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1047 				user_regset *regset, unsigned int pos,
1048 				unsigned int count, const void *kbuf, const
1049 				void __user *ubuf)
1050 {
1051 	int ret;
1052 	long ctrl;
1053 
1054 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1055 	if (ret)
1056 		return ret;
1057 
1058 	return set_tagged_addr_ctrl(target, ctrl);
1059 }
1060 #endif
1061 
1062 enum aarch64_regset {
1063 	REGSET_GPR,
1064 	REGSET_FPR,
1065 	REGSET_TLS,
1066 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1067 	REGSET_HW_BREAK,
1068 	REGSET_HW_WATCH,
1069 #endif
1070 	REGSET_SYSTEM_CALL,
1071 #ifdef CONFIG_ARM64_SVE
1072 	REGSET_SVE,
1073 #endif
1074 #ifdef CONFIG_ARM64_PTR_AUTH
1075 	REGSET_PAC_MASK,
1076 #ifdef CONFIG_CHECKPOINT_RESTORE
1077 	REGSET_PACA_KEYS,
1078 	REGSET_PACG_KEYS,
1079 #endif
1080 #endif
1081 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1082 	REGSET_TAGGED_ADDR_CTRL,
1083 #endif
1084 };
1085 
1086 static const struct user_regset aarch64_regsets[] = {
1087 	[REGSET_GPR] = {
1088 		.core_note_type = NT_PRSTATUS,
1089 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
1090 		.size = sizeof(u64),
1091 		.align = sizeof(u64),
1092 		.regset_get = gpr_get,
1093 		.set = gpr_set
1094 	},
1095 	[REGSET_FPR] = {
1096 		.core_note_type = NT_PRFPREG,
1097 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1098 		/*
1099 		 * We pretend we have 32-bit registers because the fpsr and
1100 		 * fpcr are 32-bits wide.
1101 		 */
1102 		.size = sizeof(u32),
1103 		.align = sizeof(u32),
1104 		.active = fpr_active,
1105 		.regset_get = fpr_get,
1106 		.set = fpr_set
1107 	},
1108 	[REGSET_TLS] = {
1109 		.core_note_type = NT_ARM_TLS,
1110 		.n = 1,
1111 		.size = sizeof(void *),
1112 		.align = sizeof(void *),
1113 		.regset_get = tls_get,
1114 		.set = tls_set,
1115 	},
1116 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1117 	[REGSET_HW_BREAK] = {
1118 		.core_note_type = NT_ARM_HW_BREAK,
1119 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1120 		.size = sizeof(u32),
1121 		.align = sizeof(u32),
1122 		.regset_get = hw_break_get,
1123 		.set = hw_break_set,
1124 	},
1125 	[REGSET_HW_WATCH] = {
1126 		.core_note_type = NT_ARM_HW_WATCH,
1127 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1128 		.size = sizeof(u32),
1129 		.align = sizeof(u32),
1130 		.regset_get = hw_break_get,
1131 		.set = hw_break_set,
1132 	},
1133 #endif
1134 	[REGSET_SYSTEM_CALL] = {
1135 		.core_note_type = NT_ARM_SYSTEM_CALL,
1136 		.n = 1,
1137 		.size = sizeof(int),
1138 		.align = sizeof(int),
1139 		.regset_get = system_call_get,
1140 		.set = system_call_set,
1141 	},
1142 #ifdef CONFIG_ARM64_SVE
1143 	[REGSET_SVE] = { /* Scalable Vector Extension */
1144 		.core_note_type = NT_ARM_SVE,
1145 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1146 				  SVE_VQ_BYTES),
1147 		.size = SVE_VQ_BYTES,
1148 		.align = SVE_VQ_BYTES,
1149 		.regset_get = sve_get,
1150 		.set = sve_set,
1151 	},
1152 #endif
1153 #ifdef CONFIG_ARM64_PTR_AUTH
1154 	[REGSET_PAC_MASK] = {
1155 		.core_note_type = NT_ARM_PAC_MASK,
1156 		.n = sizeof(struct user_pac_mask) / sizeof(u64),
1157 		.size = sizeof(u64),
1158 		.align = sizeof(u64),
1159 		.regset_get = pac_mask_get,
1160 		/* this cannot be set dynamically */
1161 	},
1162 #ifdef CONFIG_CHECKPOINT_RESTORE
1163 	[REGSET_PACA_KEYS] = {
1164 		.core_note_type = NT_ARM_PACA_KEYS,
1165 		.n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1166 		.size = sizeof(__uint128_t),
1167 		.align = sizeof(__uint128_t),
1168 		.regset_get = pac_address_keys_get,
1169 		.set = pac_address_keys_set,
1170 	},
1171 	[REGSET_PACG_KEYS] = {
1172 		.core_note_type = NT_ARM_PACG_KEYS,
1173 		.n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1174 		.size = sizeof(__uint128_t),
1175 		.align = sizeof(__uint128_t),
1176 		.regset_get = pac_generic_keys_get,
1177 		.set = pac_generic_keys_set,
1178 	},
1179 #endif
1180 #endif
1181 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1182 	[REGSET_TAGGED_ADDR_CTRL] = {
1183 		.core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1184 		.n = 1,
1185 		.size = sizeof(long),
1186 		.align = sizeof(long),
1187 		.regset_get = tagged_addr_ctrl_get,
1188 		.set = tagged_addr_ctrl_set,
1189 	},
1190 #endif
1191 };
1192 
1193 static const struct user_regset_view user_aarch64_view = {
1194 	.name = "aarch64", .e_machine = EM_AARCH64,
1195 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1196 };
1197 
1198 #ifdef CONFIG_COMPAT
1199 enum compat_regset {
1200 	REGSET_COMPAT_GPR,
1201 	REGSET_COMPAT_VFP,
1202 };
1203 
1204 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1205 {
1206 	struct pt_regs *regs = task_pt_regs(task);
1207 
1208 	switch (idx) {
1209 	case 15:
1210 		return regs->pc;
1211 	case 16:
1212 		return pstate_to_compat_psr(regs->pstate);
1213 	case 17:
1214 		return regs->orig_x0;
1215 	default:
1216 		return regs->regs[idx];
1217 	}
1218 }
1219 
1220 static int compat_gpr_get(struct task_struct *target,
1221 			  const struct user_regset *regset,
1222 			  struct membuf to)
1223 {
1224 	int i = 0;
1225 
1226 	while (to.left)
1227 		membuf_store(&to, compat_get_user_reg(target, i++));
1228 	return 0;
1229 }
1230 
1231 static int compat_gpr_set(struct task_struct *target,
1232 			  const struct user_regset *regset,
1233 			  unsigned int pos, unsigned int count,
1234 			  const void *kbuf, const void __user *ubuf)
1235 {
1236 	struct pt_regs newregs;
1237 	int ret = 0;
1238 	unsigned int i, start, num_regs;
1239 
1240 	/* Calculate the number of AArch32 registers contained in count */
1241 	num_regs = count / regset->size;
1242 
1243 	/* Convert pos into an register number */
1244 	start = pos / regset->size;
1245 
1246 	if (start + num_regs > regset->n)
1247 		return -EIO;
1248 
1249 	newregs = *task_pt_regs(target);
1250 
1251 	for (i = 0; i < num_regs; ++i) {
1252 		unsigned int idx = start + i;
1253 		compat_ulong_t reg;
1254 
1255 		if (kbuf) {
1256 			memcpy(&reg, kbuf, sizeof(reg));
1257 			kbuf += sizeof(reg);
1258 		} else {
1259 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1260 			if (ret) {
1261 				ret = -EFAULT;
1262 				break;
1263 			}
1264 
1265 			ubuf += sizeof(reg);
1266 		}
1267 
1268 		switch (idx) {
1269 		case 15:
1270 			newregs.pc = reg;
1271 			break;
1272 		case 16:
1273 			reg = compat_psr_to_pstate(reg);
1274 			newregs.pstate = reg;
1275 			break;
1276 		case 17:
1277 			newregs.orig_x0 = reg;
1278 			break;
1279 		default:
1280 			newregs.regs[idx] = reg;
1281 		}
1282 
1283 	}
1284 
1285 	if (valid_user_regs(&newregs.user_regs, target))
1286 		*task_pt_regs(target) = newregs;
1287 	else
1288 		ret = -EINVAL;
1289 
1290 	return ret;
1291 }
1292 
1293 static int compat_vfp_get(struct task_struct *target,
1294 			  const struct user_regset *regset,
1295 			  struct membuf to)
1296 {
1297 	struct user_fpsimd_state *uregs;
1298 	compat_ulong_t fpscr;
1299 
1300 	if (!system_supports_fpsimd())
1301 		return -EINVAL;
1302 
1303 	uregs = &target->thread.uw.fpsimd_state;
1304 
1305 	if (target == current)
1306 		fpsimd_preserve_current_state();
1307 
1308 	/*
1309 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1310 	 * nicely together for us. We just need to create the fpscr separately.
1311 	 */
1312 	membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1313 	fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1314 		(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1315 	return membuf_store(&to, fpscr);
1316 }
1317 
1318 static int compat_vfp_set(struct task_struct *target,
1319 			  const struct user_regset *regset,
1320 			  unsigned int pos, unsigned int count,
1321 			  const void *kbuf, const void __user *ubuf)
1322 {
1323 	struct user_fpsimd_state *uregs;
1324 	compat_ulong_t fpscr;
1325 	int ret, vregs_end_pos;
1326 
1327 	if (!system_supports_fpsimd())
1328 		return -EINVAL;
1329 
1330 	uregs = &target->thread.uw.fpsimd_state;
1331 
1332 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1333 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1334 				 vregs_end_pos);
1335 
1336 	if (count && !ret) {
1337 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1338 					 vregs_end_pos, VFP_STATE_SIZE);
1339 		if (!ret) {
1340 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1341 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1342 		}
1343 	}
1344 
1345 	fpsimd_flush_task_state(target);
1346 	return ret;
1347 }
1348 
1349 static int compat_tls_get(struct task_struct *target,
1350 			  const struct user_regset *regset,
1351 			  struct membuf to)
1352 {
1353 	return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1354 }
1355 
1356 static int compat_tls_set(struct task_struct *target,
1357 			  const struct user_regset *regset, unsigned int pos,
1358 			  unsigned int count, const void *kbuf,
1359 			  const void __user *ubuf)
1360 {
1361 	int ret;
1362 	compat_ulong_t tls = target->thread.uw.tp_value;
1363 
1364 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1365 	if (ret)
1366 		return ret;
1367 
1368 	target->thread.uw.tp_value = tls;
1369 	return ret;
1370 }
1371 
1372 static const struct user_regset aarch32_regsets[] = {
1373 	[REGSET_COMPAT_GPR] = {
1374 		.core_note_type = NT_PRSTATUS,
1375 		.n = COMPAT_ELF_NGREG,
1376 		.size = sizeof(compat_elf_greg_t),
1377 		.align = sizeof(compat_elf_greg_t),
1378 		.regset_get = compat_gpr_get,
1379 		.set = compat_gpr_set
1380 	},
1381 	[REGSET_COMPAT_VFP] = {
1382 		.core_note_type = NT_ARM_VFP,
1383 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1384 		.size = sizeof(compat_ulong_t),
1385 		.align = sizeof(compat_ulong_t),
1386 		.active = fpr_active,
1387 		.regset_get = compat_vfp_get,
1388 		.set = compat_vfp_set
1389 	},
1390 };
1391 
1392 static const struct user_regset_view user_aarch32_view = {
1393 	.name = "aarch32", .e_machine = EM_ARM,
1394 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1395 };
1396 
1397 static const struct user_regset aarch32_ptrace_regsets[] = {
1398 	[REGSET_GPR] = {
1399 		.core_note_type = NT_PRSTATUS,
1400 		.n = COMPAT_ELF_NGREG,
1401 		.size = sizeof(compat_elf_greg_t),
1402 		.align = sizeof(compat_elf_greg_t),
1403 		.regset_get = compat_gpr_get,
1404 		.set = compat_gpr_set
1405 	},
1406 	[REGSET_FPR] = {
1407 		.core_note_type = NT_ARM_VFP,
1408 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1409 		.size = sizeof(compat_ulong_t),
1410 		.align = sizeof(compat_ulong_t),
1411 		.regset_get = compat_vfp_get,
1412 		.set = compat_vfp_set
1413 	},
1414 	[REGSET_TLS] = {
1415 		.core_note_type = NT_ARM_TLS,
1416 		.n = 1,
1417 		.size = sizeof(compat_ulong_t),
1418 		.align = sizeof(compat_ulong_t),
1419 		.regset_get = compat_tls_get,
1420 		.set = compat_tls_set,
1421 	},
1422 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1423 	[REGSET_HW_BREAK] = {
1424 		.core_note_type = NT_ARM_HW_BREAK,
1425 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1426 		.size = sizeof(u32),
1427 		.align = sizeof(u32),
1428 		.regset_get = hw_break_get,
1429 		.set = hw_break_set,
1430 	},
1431 	[REGSET_HW_WATCH] = {
1432 		.core_note_type = NT_ARM_HW_WATCH,
1433 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1434 		.size = sizeof(u32),
1435 		.align = sizeof(u32),
1436 		.regset_get = hw_break_get,
1437 		.set = hw_break_set,
1438 	},
1439 #endif
1440 	[REGSET_SYSTEM_CALL] = {
1441 		.core_note_type = NT_ARM_SYSTEM_CALL,
1442 		.n = 1,
1443 		.size = sizeof(int),
1444 		.align = sizeof(int),
1445 		.regset_get = system_call_get,
1446 		.set = system_call_set,
1447 	},
1448 };
1449 
1450 static const struct user_regset_view user_aarch32_ptrace_view = {
1451 	.name = "aarch32", .e_machine = EM_ARM,
1452 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1453 };
1454 
1455 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1456 				   compat_ulong_t __user *ret)
1457 {
1458 	compat_ulong_t tmp;
1459 
1460 	if (off & 3)
1461 		return -EIO;
1462 
1463 	if (off == COMPAT_PT_TEXT_ADDR)
1464 		tmp = tsk->mm->start_code;
1465 	else if (off == COMPAT_PT_DATA_ADDR)
1466 		tmp = tsk->mm->start_data;
1467 	else if (off == COMPAT_PT_TEXT_END_ADDR)
1468 		tmp = tsk->mm->end_code;
1469 	else if (off < sizeof(compat_elf_gregset_t))
1470 		tmp = compat_get_user_reg(tsk, off >> 2);
1471 	else if (off >= COMPAT_USER_SZ)
1472 		return -EIO;
1473 	else
1474 		tmp = 0;
1475 
1476 	return put_user(tmp, ret);
1477 }
1478 
1479 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1480 				    compat_ulong_t val)
1481 {
1482 	struct pt_regs newregs = *task_pt_regs(tsk);
1483 	unsigned int idx = off / 4;
1484 
1485 	if (off & 3 || off >= COMPAT_USER_SZ)
1486 		return -EIO;
1487 
1488 	if (off >= sizeof(compat_elf_gregset_t))
1489 		return 0;
1490 
1491 	switch (idx) {
1492 	case 15:
1493 		newregs.pc = val;
1494 		break;
1495 	case 16:
1496 		newregs.pstate = compat_psr_to_pstate(val);
1497 		break;
1498 	case 17:
1499 		newregs.orig_x0 = val;
1500 		break;
1501 	default:
1502 		newregs.regs[idx] = val;
1503 	}
1504 
1505 	if (!valid_user_regs(&newregs.user_regs, tsk))
1506 		return -EINVAL;
1507 
1508 	*task_pt_regs(tsk) = newregs;
1509 	return 0;
1510 }
1511 
1512 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1513 
1514 /*
1515  * Convert a virtual register number into an index for a thread_info
1516  * breakpoint array. Breakpoints are identified using positive numbers
1517  * whilst watchpoints are negative. The registers are laid out as pairs
1518  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1519  * Register 0 is reserved for describing resource information.
1520  */
1521 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1522 {
1523 	return (abs(num) - 1) >> 1;
1524 }
1525 
1526 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1527 {
1528 	u8 num_brps, num_wrps, debug_arch, wp_len;
1529 	u32 reg = 0;
1530 
1531 	num_brps	= hw_breakpoint_slots(TYPE_INST);
1532 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
1533 
1534 	debug_arch	= debug_monitors_arch();
1535 	wp_len		= 8;
1536 	reg		|= debug_arch;
1537 	reg		<<= 8;
1538 	reg		|= wp_len;
1539 	reg		<<= 8;
1540 	reg		|= num_wrps;
1541 	reg		<<= 8;
1542 	reg		|= num_brps;
1543 
1544 	*kdata = reg;
1545 	return 0;
1546 }
1547 
1548 static int compat_ptrace_hbp_get(unsigned int note_type,
1549 				 struct task_struct *tsk,
1550 				 compat_long_t num,
1551 				 u32 *kdata)
1552 {
1553 	u64 addr = 0;
1554 	u32 ctrl = 0;
1555 
1556 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1557 
1558 	if (num & 1) {
1559 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1560 		*kdata = (u32)addr;
1561 	} else {
1562 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1563 		*kdata = ctrl;
1564 	}
1565 
1566 	return err;
1567 }
1568 
1569 static int compat_ptrace_hbp_set(unsigned int note_type,
1570 				 struct task_struct *tsk,
1571 				 compat_long_t num,
1572 				 u32 *kdata)
1573 {
1574 	u64 addr;
1575 	u32 ctrl;
1576 
1577 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1578 
1579 	if (num & 1) {
1580 		addr = *kdata;
1581 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1582 	} else {
1583 		ctrl = *kdata;
1584 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1585 	}
1586 
1587 	return err;
1588 }
1589 
1590 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1591 				    compat_ulong_t __user *data)
1592 {
1593 	int ret;
1594 	u32 kdata;
1595 
1596 	/* Watchpoint */
1597 	if (num < 0) {
1598 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1599 	/* Resource info */
1600 	} else if (num == 0) {
1601 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
1602 	/* Breakpoint */
1603 	} else {
1604 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1605 	}
1606 
1607 	if (!ret)
1608 		ret = put_user(kdata, data);
1609 
1610 	return ret;
1611 }
1612 
1613 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1614 				    compat_ulong_t __user *data)
1615 {
1616 	int ret;
1617 	u32 kdata = 0;
1618 
1619 	if (num == 0)
1620 		return 0;
1621 
1622 	ret = get_user(kdata, data);
1623 	if (ret)
1624 		return ret;
1625 
1626 	if (num < 0)
1627 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1628 	else
1629 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1630 
1631 	return ret;
1632 }
1633 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
1634 
1635 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1636 			compat_ulong_t caddr, compat_ulong_t cdata)
1637 {
1638 	unsigned long addr = caddr;
1639 	unsigned long data = cdata;
1640 	void __user *datap = compat_ptr(data);
1641 	int ret;
1642 
1643 	switch (request) {
1644 		case PTRACE_PEEKUSR:
1645 			ret = compat_ptrace_read_user(child, addr, datap);
1646 			break;
1647 
1648 		case PTRACE_POKEUSR:
1649 			ret = compat_ptrace_write_user(child, addr, data);
1650 			break;
1651 
1652 		case COMPAT_PTRACE_GETREGS:
1653 			ret = copy_regset_to_user(child,
1654 						  &user_aarch32_view,
1655 						  REGSET_COMPAT_GPR,
1656 						  0, sizeof(compat_elf_gregset_t),
1657 						  datap);
1658 			break;
1659 
1660 		case COMPAT_PTRACE_SETREGS:
1661 			ret = copy_regset_from_user(child,
1662 						    &user_aarch32_view,
1663 						    REGSET_COMPAT_GPR,
1664 						    0, sizeof(compat_elf_gregset_t),
1665 						    datap);
1666 			break;
1667 
1668 		case COMPAT_PTRACE_GET_THREAD_AREA:
1669 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
1670 				       (compat_ulong_t __user *)datap);
1671 			break;
1672 
1673 		case COMPAT_PTRACE_SET_SYSCALL:
1674 			task_pt_regs(child)->syscallno = data;
1675 			ret = 0;
1676 			break;
1677 
1678 		case COMPAT_PTRACE_GETVFPREGS:
1679 			ret = copy_regset_to_user(child,
1680 						  &user_aarch32_view,
1681 						  REGSET_COMPAT_VFP,
1682 						  0, VFP_STATE_SIZE,
1683 						  datap);
1684 			break;
1685 
1686 		case COMPAT_PTRACE_SETVFPREGS:
1687 			ret = copy_regset_from_user(child,
1688 						    &user_aarch32_view,
1689 						    REGSET_COMPAT_VFP,
1690 						    0, VFP_STATE_SIZE,
1691 						    datap);
1692 			break;
1693 
1694 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1695 		case COMPAT_PTRACE_GETHBPREGS:
1696 			ret = compat_ptrace_gethbpregs(child, addr, datap);
1697 			break;
1698 
1699 		case COMPAT_PTRACE_SETHBPREGS:
1700 			ret = compat_ptrace_sethbpregs(child, addr, datap);
1701 			break;
1702 #endif
1703 
1704 		default:
1705 			ret = compat_ptrace_request(child, request, addr,
1706 						    data);
1707 			break;
1708 	}
1709 
1710 	return ret;
1711 }
1712 #endif /* CONFIG_COMPAT */
1713 
1714 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1715 {
1716 #ifdef CONFIG_COMPAT
1717 	/*
1718 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
1719 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
1720 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
1721 	 * access to the TLS register.
1722 	 */
1723 	if (is_compat_task())
1724 		return &user_aarch32_view;
1725 	else if (is_compat_thread(task_thread_info(task)))
1726 		return &user_aarch32_ptrace_view;
1727 #endif
1728 	return &user_aarch64_view;
1729 }
1730 
1731 long arch_ptrace(struct task_struct *child, long request,
1732 		 unsigned long addr, unsigned long data)
1733 {
1734 	switch (request) {
1735 	case PTRACE_PEEKMTETAGS:
1736 	case PTRACE_POKEMTETAGS:
1737 		return mte_ptrace_copy_tags(child, request, addr, data);
1738 	}
1739 
1740 	return ptrace_request(child, request, addr, data);
1741 }
1742 
1743 enum ptrace_syscall_dir {
1744 	PTRACE_SYSCALL_ENTER = 0,
1745 	PTRACE_SYSCALL_EXIT,
1746 };
1747 
1748 static void tracehook_report_syscall(struct pt_regs *regs,
1749 				     enum ptrace_syscall_dir dir)
1750 {
1751 	int regno;
1752 	unsigned long saved_reg;
1753 
1754 	/*
1755 	 * We have some ABI weirdness here in the way that we handle syscall
1756 	 * exit stops because we indicate whether or not the stop has been
1757 	 * signalled from syscall entry or syscall exit by clobbering a general
1758 	 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
1759 	 * and restoring its old value after the stop. This means that:
1760 	 *
1761 	 * - Any writes by the tracer to this register during the stop are
1762 	 *   ignored/discarded.
1763 	 *
1764 	 * - The actual value of the register is not available during the stop,
1765 	 *   so the tracer cannot save it and restore it later.
1766 	 *
1767 	 * - Syscall stops behave differently to seccomp and pseudo-step traps
1768 	 *   (the latter do not nobble any registers).
1769 	 */
1770 	regno = (is_compat_task() ? 12 : 7);
1771 	saved_reg = regs->regs[regno];
1772 	regs->regs[regno] = dir;
1773 
1774 	if (dir == PTRACE_SYSCALL_ENTER) {
1775 		if (tracehook_report_syscall_entry(regs))
1776 			forget_syscall(regs);
1777 		regs->regs[regno] = saved_reg;
1778 	} else if (!test_thread_flag(TIF_SINGLESTEP)) {
1779 		tracehook_report_syscall_exit(regs, 0);
1780 		regs->regs[regno] = saved_reg;
1781 	} else {
1782 		regs->regs[regno] = saved_reg;
1783 
1784 		/*
1785 		 * Signal a pseudo-step exception since we are stepping but
1786 		 * tracer modifications to the registers may have rewound the
1787 		 * state machine.
1788 		 */
1789 		tracehook_report_syscall_exit(regs, 1);
1790 	}
1791 }
1792 
1793 int syscall_trace_enter(struct pt_regs *regs)
1794 {
1795 	unsigned long flags = READ_ONCE(current_thread_info()->flags);
1796 
1797 	if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
1798 		tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
1799 		if (!in_syscall(regs) || (flags & _TIF_SYSCALL_EMU))
1800 			return NO_SYSCALL;
1801 	}
1802 
1803 	/* Do the secure computing after ptrace; failures should be fast. */
1804 	if (secure_computing() == -1)
1805 		return NO_SYSCALL;
1806 
1807 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
1808 		trace_sys_enter(regs, regs->syscallno);
1809 
1810 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
1811 			    regs->regs[2], regs->regs[3]);
1812 
1813 	return regs->syscallno;
1814 }
1815 
1816 void syscall_trace_exit(struct pt_regs *regs)
1817 {
1818 	unsigned long flags = READ_ONCE(current_thread_info()->flags);
1819 
1820 	audit_syscall_exit(regs);
1821 
1822 	if (flags & _TIF_SYSCALL_TRACEPOINT)
1823 		trace_sys_exit(regs, regs_return_value(regs));
1824 
1825 	if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
1826 		tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
1827 
1828 	rseq_syscall(regs);
1829 }
1830 
1831 /*
1832  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
1833  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
1834  * not described in ARM DDI 0487D.a.
1835  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
1836  * be allocated an EL0 meaning in future.
1837  * Userspace cannot use these until they have an architectural meaning.
1838  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
1839  * We also reserve IL for the kernel; SS is handled dynamically.
1840  */
1841 #define SPSR_EL1_AARCH64_RES0_BITS \
1842 	(GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
1843 	 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
1844 #define SPSR_EL1_AARCH32_RES0_BITS \
1845 	(GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
1846 
1847 static int valid_compat_regs(struct user_pt_regs *regs)
1848 {
1849 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
1850 
1851 	if (!system_supports_mixed_endian_el0()) {
1852 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
1853 			regs->pstate |= PSR_AA32_E_BIT;
1854 		else
1855 			regs->pstate &= ~PSR_AA32_E_BIT;
1856 	}
1857 
1858 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
1859 	    (regs->pstate & PSR_AA32_A_BIT) == 0 &&
1860 	    (regs->pstate & PSR_AA32_I_BIT) == 0 &&
1861 	    (regs->pstate & PSR_AA32_F_BIT) == 0) {
1862 		return 1;
1863 	}
1864 
1865 	/*
1866 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
1867 	 * arch/arm.
1868 	 */
1869 	regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
1870 			PSR_AA32_C_BIT | PSR_AA32_V_BIT |
1871 			PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
1872 			PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
1873 			PSR_AA32_T_BIT;
1874 	regs->pstate |= PSR_MODE32_BIT;
1875 
1876 	return 0;
1877 }
1878 
1879 static int valid_native_regs(struct user_pt_regs *regs)
1880 {
1881 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
1882 
1883 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
1884 	    (regs->pstate & PSR_D_BIT) == 0 &&
1885 	    (regs->pstate & PSR_A_BIT) == 0 &&
1886 	    (regs->pstate & PSR_I_BIT) == 0 &&
1887 	    (regs->pstate & PSR_F_BIT) == 0) {
1888 		return 1;
1889 	}
1890 
1891 	/* Force PSR to a valid 64-bit EL0t */
1892 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
1893 
1894 	return 0;
1895 }
1896 
1897 /*
1898  * Are the current registers suitable for user mode? (used to maintain
1899  * security in signal handlers)
1900  */
1901 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
1902 {
1903 	/* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
1904 	user_regs_reset_single_step(regs, task);
1905 
1906 	if (is_compat_thread(task_thread_info(task)))
1907 		return valid_compat_regs(regs);
1908 	else
1909 		return valid_native_regs(regs);
1910 }
1911