xref: /linux/arch/arm64/kernel/process.c (revision dacef016c088f8f69fe1e6e5feab3543df3dab83)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/process.c
4  *
5  * Original Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 #include <linux/compat.h>
10 #include <linux/efi.h>
11 #include <linux/elf.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/mman.h>
19 #include <linux/mm.h>
20 #include <linux/nospec.h>
21 #include <linux/stddef.h>
22 #include <linux/sysctl.h>
23 #include <linux/unistd.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
31 #include <linux/pm.h>
32 #include <linux/tick.h>
33 #include <linux/utsname.h>
34 #include <linux/uaccess.h>
35 #include <linux/random.h>
36 #include <linux/hw_breakpoint.h>
37 #include <linux/personality.h>
38 #include <linux/notifier.h>
39 #include <trace/events/power.h>
40 #include <linux/percpu.h>
41 #include <linux/thread_info.h>
42 #include <linux/prctl.h>
43 
44 #include <asm/alternative.h>
45 #include <asm/compat.h>
46 #include <asm/cpufeature.h>
47 #include <asm/cacheflush.h>
48 #include <asm/exec.h>
49 #include <asm/fpsimd.h>
50 #include <asm/mmu_context.h>
51 #include <asm/mte.h>
52 #include <asm/processor.h>
53 #include <asm/pointer_auth.h>
54 #include <asm/stacktrace.h>
55 #include <asm/switch_to.h>
56 #include <asm/system_misc.h>
57 
58 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
59 #include <linux/stackprotector.h>
60 unsigned long __stack_chk_guard __ro_after_init;
61 EXPORT_SYMBOL(__stack_chk_guard);
62 #endif
63 
64 /*
65  * Function pointers to optional machine specific functions
66  */
67 void (*pm_power_off)(void);
68 EXPORT_SYMBOL_GPL(pm_power_off);
69 
70 #ifdef CONFIG_HOTPLUG_CPU
71 void arch_cpu_idle_dead(void)
72 {
73        cpu_die();
74 }
75 #endif
76 
77 /*
78  * Called by kexec, immediately prior to machine_kexec().
79  *
80  * This must completely disable all secondary CPUs; simply causing those CPUs
81  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
82  * kexec'd kernel to use any and all RAM as it sees fit, without having to
83  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
84  * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
85  */
86 void machine_shutdown(void)
87 {
88 	smp_shutdown_nonboot_cpus(reboot_cpu);
89 }
90 
91 /*
92  * Halting simply requires that the secondary CPUs stop performing any
93  * activity (executing tasks, handling interrupts). smp_send_stop()
94  * achieves this.
95  */
96 void machine_halt(void)
97 {
98 	local_irq_disable();
99 	smp_send_stop();
100 	while (1);
101 }
102 
103 /*
104  * Power-off simply requires that the secondary CPUs stop performing any
105  * activity (executing tasks, handling interrupts). smp_send_stop()
106  * achieves this. When the system power is turned off, it will take all CPUs
107  * with it.
108  */
109 void machine_power_off(void)
110 {
111 	local_irq_disable();
112 	smp_send_stop();
113 	if (pm_power_off)
114 		pm_power_off();
115 }
116 
117 /*
118  * Restart requires that the secondary CPUs stop performing any activity
119  * while the primary CPU resets the system. Systems with multiple CPUs must
120  * provide a HW restart implementation, to ensure that all CPUs reset at once.
121  * This is required so that any code running after reset on the primary CPU
122  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
123  * executing pre-reset code, and using RAM that the primary CPU's code wishes
124  * to use. Implementing such co-ordination would be essentially impossible.
125  */
126 void machine_restart(char *cmd)
127 {
128 	/* Disable interrupts first */
129 	local_irq_disable();
130 	smp_send_stop();
131 
132 	/*
133 	 * UpdateCapsule() depends on the system being reset via
134 	 * ResetSystem().
135 	 */
136 	if (efi_enabled(EFI_RUNTIME_SERVICES))
137 		efi_reboot(reboot_mode, NULL);
138 
139 	/* Now call the architecture specific reboot code. */
140 	do_kernel_restart(cmd);
141 
142 	/*
143 	 * Whoops - the architecture was unable to reboot.
144 	 */
145 	printk("Reboot failed -- System halted\n");
146 	while (1);
147 }
148 
149 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
150 static const char *const btypes[] = {
151 	bstr(NONE, "--"),
152 	bstr(  JC, "jc"),
153 	bstr(   C, "-c"),
154 	bstr(  J , "j-")
155 };
156 #undef bstr
157 
158 static void print_pstate(struct pt_regs *regs)
159 {
160 	u64 pstate = regs->pstate;
161 
162 	if (compat_user_mode(regs)) {
163 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
164 			pstate,
165 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
166 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
167 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
168 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
169 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
170 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
171 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
172 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
173 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
174 			pstate & PSR_AA32_F_BIT ? 'F' : 'f',
175 			pstate & PSR_AA32_DIT_BIT ? '+' : '-',
176 			pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
177 	} else {
178 		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
179 					       PSR_BTYPE_SHIFT];
180 
181 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
182 			pstate,
183 			pstate & PSR_N_BIT ? 'N' : 'n',
184 			pstate & PSR_Z_BIT ? 'Z' : 'z',
185 			pstate & PSR_C_BIT ? 'C' : 'c',
186 			pstate & PSR_V_BIT ? 'V' : 'v',
187 			pstate & PSR_D_BIT ? 'D' : 'd',
188 			pstate & PSR_A_BIT ? 'A' : 'a',
189 			pstate & PSR_I_BIT ? 'I' : 'i',
190 			pstate & PSR_F_BIT ? 'F' : 'f',
191 			pstate & PSR_PAN_BIT ? '+' : '-',
192 			pstate & PSR_UAO_BIT ? '+' : '-',
193 			pstate & PSR_TCO_BIT ? '+' : '-',
194 			pstate & PSR_DIT_BIT ? '+' : '-',
195 			pstate & PSR_SSBS_BIT ? '+' : '-',
196 			btype_str);
197 	}
198 }
199 
200 void __show_regs(struct pt_regs *regs)
201 {
202 	int i, top_reg;
203 	u64 lr, sp;
204 
205 	if (compat_user_mode(regs)) {
206 		lr = regs->compat_lr;
207 		sp = regs->compat_sp;
208 		top_reg = 12;
209 	} else {
210 		lr = regs->regs[30];
211 		sp = regs->sp;
212 		top_reg = 29;
213 	}
214 
215 	show_regs_print_info(KERN_DEFAULT);
216 	print_pstate(regs);
217 
218 	if (!user_mode(regs)) {
219 		printk("pc : %pS\n", (void *)regs->pc);
220 		printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
221 	} else {
222 		printk("pc : %016llx\n", regs->pc);
223 		printk("lr : %016llx\n", lr);
224 	}
225 
226 	printk("sp : %016llx\n", sp);
227 
228 	if (system_uses_irq_prio_masking())
229 		printk("pmr_save: %08llx\n", regs->pmr_save);
230 
231 	i = top_reg;
232 
233 	while (i >= 0) {
234 		printk("x%-2d: %016llx", i, regs->regs[i]);
235 
236 		while (i-- % 3)
237 			pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
238 
239 		pr_cont("\n");
240 	}
241 }
242 
243 void show_regs(struct pt_regs *regs)
244 {
245 	__show_regs(regs);
246 	dump_backtrace(regs, NULL, KERN_DEFAULT);
247 }
248 
249 static void tls_thread_flush(void)
250 {
251 	write_sysreg(0, tpidr_el0);
252 
253 	if (is_compat_task()) {
254 		current->thread.uw.tp_value = 0;
255 
256 		/*
257 		 * We need to ensure ordering between the shadow state and the
258 		 * hardware state, so that we don't corrupt the hardware state
259 		 * with a stale shadow state during context switch.
260 		 */
261 		barrier();
262 		write_sysreg(0, tpidrro_el0);
263 	}
264 }
265 
266 static void flush_tagged_addr_state(void)
267 {
268 	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
269 		clear_thread_flag(TIF_TAGGED_ADDR);
270 }
271 
272 void flush_thread(void)
273 {
274 	fpsimd_flush_thread();
275 	tls_thread_flush();
276 	flush_ptrace_hw_breakpoint(current);
277 	flush_tagged_addr_state();
278 }
279 
280 void release_thread(struct task_struct *dead_task)
281 {
282 }
283 
284 void arch_release_task_struct(struct task_struct *tsk)
285 {
286 	fpsimd_release_task(tsk);
287 }
288 
289 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
290 {
291 	if (current->mm)
292 		fpsimd_preserve_current_state();
293 	*dst = *src;
294 
295 	/* We rely on the above assignment to initialize dst's thread_flags: */
296 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
297 
298 	/*
299 	 * Detach src's sve_state (if any) from dst so that it does not
300 	 * get erroneously used or freed prematurely.  dst's sve_state
301 	 * will be allocated on demand later on if dst uses SVE.
302 	 * For consistency, also clear TIF_SVE here: this could be done
303 	 * later in copy_process(), but to avoid tripping up future
304 	 * maintainers it is best not to leave TIF_SVE and sve_state in
305 	 * an inconsistent state, even temporarily.
306 	 */
307 	dst->thread.sve_state = NULL;
308 	clear_tsk_thread_flag(dst, TIF_SVE);
309 
310 	/* clear any pending asynchronous tag fault raised by the parent */
311 	clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
312 
313 	return 0;
314 }
315 
316 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
317 
318 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
319 		unsigned long stk_sz, struct task_struct *p, unsigned long tls)
320 {
321 	struct pt_regs *childregs = task_pt_regs(p);
322 
323 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
324 
325 	/*
326 	 * In case p was allocated the same task_struct pointer as some
327 	 * other recently-exited task, make sure p is disassociated from
328 	 * any cpu that may have run that now-exited task recently.
329 	 * Otherwise we could erroneously skip reloading the FPSIMD
330 	 * registers for p.
331 	 */
332 	fpsimd_flush_task_state(p);
333 
334 	ptrauth_thread_init_kernel(p);
335 
336 	if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) {
337 		*childregs = *current_pt_regs();
338 		childregs->regs[0] = 0;
339 
340 		/*
341 		 * Read the current TLS pointer from tpidr_el0 as it may be
342 		 * out-of-sync with the saved value.
343 		 */
344 		*task_user_tls(p) = read_sysreg(tpidr_el0);
345 
346 		if (stack_start) {
347 			if (is_compat_thread(task_thread_info(p)))
348 				childregs->compat_sp = stack_start;
349 			else
350 				childregs->sp = stack_start;
351 		}
352 
353 		/*
354 		 * If a TLS pointer was passed to clone, use it for the new
355 		 * thread.
356 		 */
357 		if (clone_flags & CLONE_SETTLS)
358 			p->thread.uw.tp_value = tls;
359 	} else {
360 		/*
361 		 * A kthread has no context to ERET to, so ensure any buggy
362 		 * ERET is treated as an illegal exception return.
363 		 *
364 		 * When a user task is created from a kthread, childregs will
365 		 * be initialized by start_thread() or start_compat_thread().
366 		 */
367 		memset(childregs, 0, sizeof(struct pt_regs));
368 		childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
369 
370 		p->thread.cpu_context.x19 = stack_start;
371 		p->thread.cpu_context.x20 = stk_sz;
372 	}
373 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
374 	p->thread.cpu_context.sp = (unsigned long)childregs;
375 	/*
376 	 * For the benefit of the unwinder, set up childregs->stackframe
377 	 * as the final frame for the new task.
378 	 */
379 	p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
380 
381 	ptrace_hw_copy_thread(p);
382 
383 	return 0;
384 }
385 
386 void tls_preserve_current_state(void)
387 {
388 	*task_user_tls(current) = read_sysreg(tpidr_el0);
389 }
390 
391 static void tls_thread_switch(struct task_struct *next)
392 {
393 	tls_preserve_current_state();
394 
395 	if (is_compat_thread(task_thread_info(next)))
396 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
397 	else if (!arm64_kernel_unmapped_at_el0())
398 		write_sysreg(0, tpidrro_el0);
399 
400 	write_sysreg(*task_user_tls(next), tpidr_el0);
401 }
402 
403 /*
404  * Force SSBS state on context-switch, since it may be lost after migrating
405  * from a CPU which treats the bit as RES0 in a heterogeneous system.
406  */
407 static void ssbs_thread_switch(struct task_struct *next)
408 {
409 	/*
410 	 * Nothing to do for kernel threads, but 'regs' may be junk
411 	 * (e.g. idle task) so check the flags and bail early.
412 	 */
413 	if (unlikely(next->flags & PF_KTHREAD))
414 		return;
415 
416 	/*
417 	 * If all CPUs implement the SSBS extension, then we just need to
418 	 * context-switch the PSTATE field.
419 	 */
420 	if (cpus_have_const_cap(ARM64_SSBS))
421 		return;
422 
423 	spectre_v4_enable_task_mitigation(next);
424 }
425 
426 /*
427  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
428  * shadow copy so that we can restore this upon entry from userspace.
429  *
430  * This is *only* for exception entry from EL0, and is not valid until we
431  * __switch_to() a user task.
432  */
433 DEFINE_PER_CPU(struct task_struct *, __entry_task);
434 
435 static void entry_task_switch(struct task_struct *next)
436 {
437 	__this_cpu_write(__entry_task, next);
438 }
439 
440 /*
441  * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
442  * Assuming the virtual counter is enabled at the beginning of times:
443  *
444  * - disable access when switching from a 64bit task to a 32bit task
445  * - enable access when switching from a 32bit task to a 64bit task
446  */
447 static void erratum_1418040_thread_switch(struct task_struct *prev,
448 					  struct task_struct *next)
449 {
450 	bool prev32, next32;
451 	u64 val;
452 
453 	if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040))
454 		return;
455 
456 	prev32 = is_compat_thread(task_thread_info(prev));
457 	next32 = is_compat_thread(task_thread_info(next));
458 
459 	if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
460 		return;
461 
462 	val = read_sysreg(cntkctl_el1);
463 
464 	if (!next32)
465 		val |= ARCH_TIMER_USR_VCT_ACCESS_EN;
466 	else
467 		val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
468 
469 	write_sysreg(val, cntkctl_el1);
470 }
471 
472 /*
473  * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
474  * this function must be called with preemption disabled and the update to
475  * sctlr_user must be made in the same preemption disabled block so that
476  * __switch_to() does not see the variable update before the SCTLR_EL1 one.
477  */
478 void update_sctlr_el1(u64 sctlr)
479 {
480 	/*
481 	 * EnIA must not be cleared while in the kernel as this is necessary for
482 	 * in-kernel PAC. It will be cleared on kernel exit if needed.
483 	 */
484 	sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
485 
486 	/* ISB required for the kernel uaccess routines when setting TCF0. */
487 	isb();
488 }
489 
490 /*
491  * Thread switching.
492  */
493 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
494 				struct task_struct *next)
495 {
496 	struct task_struct *last;
497 
498 	fpsimd_thread_switch(next);
499 	tls_thread_switch(next);
500 	hw_breakpoint_thread_switch(next);
501 	contextidr_thread_switch(next);
502 	entry_task_switch(next);
503 	ssbs_thread_switch(next);
504 	erratum_1418040_thread_switch(prev, next);
505 	ptrauth_thread_switch_user(next);
506 
507 	/*
508 	 * Complete any pending TLB or cache maintenance on this CPU in case
509 	 * the thread migrates to a different CPU.
510 	 * This full barrier is also required by the membarrier system
511 	 * call.
512 	 */
513 	dsb(ish);
514 
515 	/*
516 	 * MTE thread switching must happen after the DSB above to ensure that
517 	 * any asynchronous tag check faults have been logged in the TFSR*_EL1
518 	 * registers.
519 	 */
520 	mte_thread_switch(next);
521 	/* avoid expensive SCTLR_EL1 accesses if no change */
522 	if (prev->thread.sctlr_user != next->thread.sctlr_user)
523 		update_sctlr_el1(next->thread.sctlr_user);
524 
525 	/* the actual thread switch */
526 	last = cpu_switch_to(prev, next);
527 
528 	return last;
529 }
530 
531 unsigned long __get_wchan(struct task_struct *p)
532 {
533 	struct stackframe frame;
534 	unsigned long stack_page, ret = 0;
535 	int count = 0;
536 
537 	stack_page = (unsigned long)try_get_task_stack(p);
538 	if (!stack_page)
539 		return 0;
540 
541 	start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
542 
543 	do {
544 		if (unwind_frame(p, &frame))
545 			goto out;
546 		if (!in_sched_functions(frame.pc)) {
547 			ret = frame.pc;
548 			goto out;
549 		}
550 	} while (count++ < 16);
551 
552 out:
553 	put_task_stack(p);
554 	return ret;
555 }
556 
557 unsigned long arch_align_stack(unsigned long sp)
558 {
559 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
560 		sp -= get_random_int() & ~PAGE_MASK;
561 	return sp & ~0xf;
562 }
563 
564 #ifdef CONFIG_COMPAT
565 int compat_elf_check_arch(const struct elf32_hdr *hdr)
566 {
567 	if (!system_supports_32bit_el0())
568 		return false;
569 
570 	if ((hdr)->e_machine != EM_ARM)
571 		return false;
572 
573 	if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
574 		return false;
575 
576 	/*
577 	 * Prevent execve() of a 32-bit program from a deadline task
578 	 * if the restricted affinity mask would be inadmissible on an
579 	 * asymmetric system.
580 	 */
581 	return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
582 	       !dl_task_check_affinity(current, system_32bit_el0_cpumask());
583 }
584 #endif
585 
586 /*
587  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
588  */
589 void arch_setup_new_exec(void)
590 {
591 	unsigned long mmflags = 0;
592 
593 	if (is_compat_task()) {
594 		mmflags = MMCF_AARCH32;
595 
596 		/*
597 		 * Restrict the CPU affinity mask for a 32-bit task so that
598 		 * it contains only 32-bit-capable CPUs.
599 		 *
600 		 * From the perspective of the task, this looks similar to
601 		 * what would happen if the 64-bit-only CPUs were hot-unplugged
602 		 * at the point of execve(), although we try a bit harder to
603 		 * honour the cpuset hierarchy.
604 		 */
605 		if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
606 			force_compatible_cpus_allowed_ptr(current);
607 	} else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
608 		relax_compatible_cpus_allowed_ptr(current);
609 	}
610 
611 	current->mm->context.flags = mmflags;
612 	ptrauth_thread_init_user();
613 	mte_thread_init_user();
614 
615 	if (task_spec_ssb_noexec(current)) {
616 		arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
617 					 PR_SPEC_ENABLE);
618 	}
619 }
620 
621 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
622 /*
623  * Control the relaxed ABI allowing tagged user addresses into the kernel.
624  */
625 static unsigned int tagged_addr_disabled;
626 
627 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
628 {
629 	unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
630 	struct thread_info *ti = task_thread_info(task);
631 
632 	if (is_compat_thread(ti))
633 		return -EINVAL;
634 
635 	if (system_supports_mte())
636 		valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK;
637 
638 	if (arg & ~valid_mask)
639 		return -EINVAL;
640 
641 	/*
642 	 * Do not allow the enabling of the tagged address ABI if globally
643 	 * disabled via sysctl abi.tagged_addr_disabled.
644 	 */
645 	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
646 		return -EINVAL;
647 
648 	if (set_mte_ctrl(task, arg) != 0)
649 		return -EINVAL;
650 
651 	update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
652 
653 	return 0;
654 }
655 
656 long get_tagged_addr_ctrl(struct task_struct *task)
657 {
658 	long ret = 0;
659 	struct thread_info *ti = task_thread_info(task);
660 
661 	if (is_compat_thread(ti))
662 		return -EINVAL;
663 
664 	if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
665 		ret = PR_TAGGED_ADDR_ENABLE;
666 
667 	ret |= get_mte_ctrl(task);
668 
669 	return ret;
670 }
671 
672 /*
673  * Global sysctl to disable the tagged user addresses support. This control
674  * only prevents the tagged address ABI enabling via prctl() and does not
675  * disable it for tasks that already opted in to the relaxed ABI.
676  */
677 
678 static struct ctl_table tagged_addr_sysctl_table[] = {
679 	{
680 		.procname	= "tagged_addr_disabled",
681 		.mode		= 0644,
682 		.data		= &tagged_addr_disabled,
683 		.maxlen		= sizeof(int),
684 		.proc_handler	= proc_dointvec_minmax,
685 		.extra1		= SYSCTL_ZERO,
686 		.extra2		= SYSCTL_ONE,
687 	},
688 	{ }
689 };
690 
691 static int __init tagged_addr_init(void)
692 {
693 	if (!register_sysctl("abi", tagged_addr_sysctl_table))
694 		return -EINVAL;
695 	return 0;
696 }
697 
698 core_initcall(tagged_addr_init);
699 #endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
700 
701 #ifdef CONFIG_BINFMT_ELF
702 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
703 			 bool has_interp, bool is_interp)
704 {
705 	/*
706 	 * For dynamically linked executables the interpreter is
707 	 * responsible for setting PROT_BTI on everything except
708 	 * itself.
709 	 */
710 	if (is_interp != has_interp)
711 		return prot;
712 
713 	if (!(state->flags & ARM64_ELF_BTI))
714 		return prot;
715 
716 	if (prot & PROT_EXEC)
717 		prot |= PROT_BTI;
718 
719 	return prot;
720 }
721 #endif
722