1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/process.c 4 * 5 * Original Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 #include <linux/compat.h> 10 #include <linux/efi.h> 11 #include <linux/elf.h> 12 #include <linux/export.h> 13 #include <linux/sched.h> 14 #include <linux/sched/debug.h> 15 #include <linux/sched/task.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/kernel.h> 18 #include <linux/mman.h> 19 #include <linux/mm.h> 20 #include <linux/nospec.h> 21 #include <linux/stddef.h> 22 #include <linux/sysctl.h> 23 #include <linux/unistd.h> 24 #include <linux/user.h> 25 #include <linux/delay.h> 26 #include <linux/reboot.h> 27 #include <linux/interrupt.h> 28 #include <linux/init.h> 29 #include <linux/cpu.h> 30 #include <linux/elfcore.h> 31 #include <linux/pm.h> 32 #include <linux/tick.h> 33 #include <linux/utsname.h> 34 #include <linux/uaccess.h> 35 #include <linux/random.h> 36 #include <linux/hw_breakpoint.h> 37 #include <linux/personality.h> 38 #include <linux/notifier.h> 39 #include <trace/events/power.h> 40 #include <linux/percpu.h> 41 #include <linux/thread_info.h> 42 #include <linux/prctl.h> 43 #include <linux/stacktrace.h> 44 45 #include <asm/alternative.h> 46 #include <asm/arch_timer.h> 47 #include <asm/compat.h> 48 #include <asm/cpufeature.h> 49 #include <asm/cacheflush.h> 50 #include <asm/exec.h> 51 #include <asm/fpsimd.h> 52 #include <asm/mmu_context.h> 53 #include <asm/mte.h> 54 #include <asm/processor.h> 55 #include <asm/pointer_auth.h> 56 #include <asm/stacktrace.h> 57 #include <asm/switch_to.h> 58 #include <asm/system_misc.h> 59 60 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) 61 #include <linux/stackprotector.h> 62 unsigned long __stack_chk_guard __ro_after_init; 63 EXPORT_SYMBOL(__stack_chk_guard); 64 #endif 65 66 /* 67 * Function pointers to optional machine specific functions 68 */ 69 void (*pm_power_off)(void); 70 EXPORT_SYMBOL_GPL(pm_power_off); 71 72 #ifdef CONFIG_HOTPLUG_CPU 73 void __noreturn arch_cpu_idle_dead(void) 74 { 75 cpu_die(); 76 } 77 #endif 78 79 /* 80 * Called by kexec, immediately prior to machine_kexec(). 81 * 82 * This must completely disable all secondary CPUs; simply causing those CPUs 83 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 84 * kexec'd kernel to use any and all RAM as it sees fit, without having to 85 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 86 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this. 87 */ 88 void machine_shutdown(void) 89 { 90 smp_shutdown_nonboot_cpus(reboot_cpu); 91 } 92 93 /* 94 * Halting simply requires that the secondary CPUs stop performing any 95 * activity (executing tasks, handling interrupts). smp_send_stop() 96 * achieves this. 97 */ 98 void machine_halt(void) 99 { 100 local_irq_disable(); 101 smp_send_stop(); 102 while (1); 103 } 104 105 /* 106 * Power-off simply requires that the secondary CPUs stop performing any 107 * activity (executing tasks, handling interrupts). smp_send_stop() 108 * achieves this. When the system power is turned off, it will take all CPUs 109 * with it. 110 */ 111 void machine_power_off(void) 112 { 113 local_irq_disable(); 114 smp_send_stop(); 115 do_kernel_power_off(); 116 } 117 118 /* 119 * Restart requires that the secondary CPUs stop performing any activity 120 * while the primary CPU resets the system. Systems with multiple CPUs must 121 * provide a HW restart implementation, to ensure that all CPUs reset at once. 122 * This is required so that any code running after reset on the primary CPU 123 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 124 * executing pre-reset code, and using RAM that the primary CPU's code wishes 125 * to use. Implementing such co-ordination would be essentially impossible. 126 */ 127 void machine_restart(char *cmd) 128 { 129 /* Disable interrupts first */ 130 local_irq_disable(); 131 smp_send_stop(); 132 133 /* 134 * UpdateCapsule() depends on the system being reset via 135 * ResetSystem(). 136 */ 137 if (efi_enabled(EFI_RUNTIME_SERVICES)) 138 efi_reboot(reboot_mode, NULL); 139 140 /* Now call the architecture specific reboot code. */ 141 do_kernel_restart(cmd); 142 143 /* 144 * Whoops - the architecture was unable to reboot. 145 */ 146 printk("Reboot failed -- System halted\n"); 147 while (1); 148 } 149 150 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str 151 static const char *const btypes[] = { 152 bstr(NONE, "--"), 153 bstr( JC, "jc"), 154 bstr( C, "-c"), 155 bstr( J , "j-") 156 }; 157 #undef bstr 158 159 static void print_pstate(struct pt_regs *regs) 160 { 161 u64 pstate = regs->pstate; 162 163 if (compat_user_mode(regs)) { 164 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n", 165 pstate, 166 pstate & PSR_AA32_N_BIT ? 'N' : 'n', 167 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', 168 pstate & PSR_AA32_C_BIT ? 'C' : 'c', 169 pstate & PSR_AA32_V_BIT ? 'V' : 'v', 170 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', 171 pstate & PSR_AA32_T_BIT ? "T32" : "A32", 172 pstate & PSR_AA32_E_BIT ? "BE" : "LE", 173 pstate & PSR_AA32_A_BIT ? 'A' : 'a', 174 pstate & PSR_AA32_I_BIT ? 'I' : 'i', 175 pstate & PSR_AA32_F_BIT ? 'F' : 'f', 176 pstate & PSR_AA32_DIT_BIT ? '+' : '-', 177 pstate & PSR_AA32_SSBS_BIT ? '+' : '-'); 178 } else { 179 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >> 180 PSR_BTYPE_SHIFT]; 181 182 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n", 183 pstate, 184 pstate & PSR_N_BIT ? 'N' : 'n', 185 pstate & PSR_Z_BIT ? 'Z' : 'z', 186 pstate & PSR_C_BIT ? 'C' : 'c', 187 pstate & PSR_V_BIT ? 'V' : 'v', 188 pstate & PSR_D_BIT ? 'D' : 'd', 189 pstate & PSR_A_BIT ? 'A' : 'a', 190 pstate & PSR_I_BIT ? 'I' : 'i', 191 pstate & PSR_F_BIT ? 'F' : 'f', 192 pstate & PSR_PAN_BIT ? '+' : '-', 193 pstate & PSR_UAO_BIT ? '+' : '-', 194 pstate & PSR_TCO_BIT ? '+' : '-', 195 pstate & PSR_DIT_BIT ? '+' : '-', 196 pstate & PSR_SSBS_BIT ? '+' : '-', 197 btype_str); 198 } 199 } 200 201 void __show_regs(struct pt_regs *regs) 202 { 203 int i, top_reg; 204 u64 lr, sp; 205 206 if (compat_user_mode(regs)) { 207 lr = regs->compat_lr; 208 sp = regs->compat_sp; 209 top_reg = 12; 210 } else { 211 lr = regs->regs[30]; 212 sp = regs->sp; 213 top_reg = 29; 214 } 215 216 show_regs_print_info(KERN_DEFAULT); 217 print_pstate(regs); 218 219 if (!user_mode(regs)) { 220 printk("pc : %pS\n", (void *)regs->pc); 221 printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr)); 222 } else { 223 printk("pc : %016llx\n", regs->pc); 224 printk("lr : %016llx\n", lr); 225 } 226 227 printk("sp : %016llx\n", sp); 228 229 if (system_uses_irq_prio_masking()) 230 printk("pmr_save: %08llx\n", regs->pmr_save); 231 232 i = top_reg; 233 234 while (i >= 0) { 235 printk("x%-2d: %016llx", i, regs->regs[i]); 236 237 while (i-- % 3) 238 pr_cont(" x%-2d: %016llx", i, regs->regs[i]); 239 240 pr_cont("\n"); 241 } 242 } 243 244 void show_regs(struct pt_regs *regs) 245 { 246 __show_regs(regs); 247 dump_backtrace(regs, NULL, KERN_DEFAULT); 248 } 249 250 static void tls_thread_flush(void) 251 { 252 write_sysreg(0, tpidr_el0); 253 if (system_supports_tpidr2()) 254 write_sysreg_s(0, SYS_TPIDR2_EL0); 255 256 if (is_compat_task()) { 257 current->thread.uw.tp_value = 0; 258 259 /* 260 * We need to ensure ordering between the shadow state and the 261 * hardware state, so that we don't corrupt the hardware state 262 * with a stale shadow state during context switch. 263 */ 264 barrier(); 265 write_sysreg(0, tpidrro_el0); 266 } 267 } 268 269 static void flush_tagged_addr_state(void) 270 { 271 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) 272 clear_thread_flag(TIF_TAGGED_ADDR); 273 } 274 275 static void flush_poe(void) 276 { 277 if (!system_supports_poe()) 278 return; 279 280 write_sysreg_s(POR_EL0_INIT, SYS_POR_EL0); 281 } 282 283 void flush_thread(void) 284 { 285 fpsimd_flush_thread(); 286 tls_thread_flush(); 287 flush_ptrace_hw_breakpoint(current); 288 flush_tagged_addr_state(); 289 flush_poe(); 290 } 291 292 void arch_release_task_struct(struct task_struct *tsk) 293 { 294 fpsimd_release_task(tsk); 295 } 296 297 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 298 { 299 if (current->mm) 300 fpsimd_preserve_current_state(); 301 *dst = *src; 302 303 /* 304 * Detach src's sve_state (if any) from dst so that it does not 305 * get erroneously used or freed prematurely. dst's copies 306 * will be allocated on demand later on if dst uses SVE. 307 * For consistency, also clear TIF_SVE here: this could be done 308 * later in copy_process(), but to avoid tripping up future 309 * maintainers it is best not to leave TIF flags and buffers in 310 * an inconsistent state, even temporarily. 311 */ 312 dst->thread.sve_state = NULL; 313 clear_tsk_thread_flag(dst, TIF_SVE); 314 315 /* 316 * In the unlikely event that we create a new thread with ZA 317 * enabled we should retain the ZA and ZT state so duplicate 318 * it here. This may be shortly freed if we exec() or if 319 * CLONE_SETTLS but it's simpler to do it here. To avoid 320 * confusing the rest of the code ensure that we have a 321 * sve_state allocated whenever sme_state is allocated. 322 */ 323 if (thread_za_enabled(&src->thread)) { 324 dst->thread.sve_state = kzalloc(sve_state_size(src), 325 GFP_KERNEL); 326 if (!dst->thread.sve_state) 327 return -ENOMEM; 328 329 dst->thread.sme_state = kmemdup(src->thread.sme_state, 330 sme_state_size(src), 331 GFP_KERNEL); 332 if (!dst->thread.sme_state) { 333 kfree(dst->thread.sve_state); 334 dst->thread.sve_state = NULL; 335 return -ENOMEM; 336 } 337 } else { 338 dst->thread.sme_state = NULL; 339 clear_tsk_thread_flag(dst, TIF_SME); 340 } 341 342 dst->thread.fp_type = FP_STATE_FPSIMD; 343 344 /* clear any pending asynchronous tag fault raised by the parent */ 345 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT); 346 347 return 0; 348 } 349 350 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 351 352 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) 353 { 354 unsigned long clone_flags = args->flags; 355 unsigned long stack_start = args->stack; 356 unsigned long tls = args->tls; 357 struct pt_regs *childregs = task_pt_regs(p); 358 359 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 360 361 /* 362 * In case p was allocated the same task_struct pointer as some 363 * other recently-exited task, make sure p is disassociated from 364 * any cpu that may have run that now-exited task recently. 365 * Otherwise we could erroneously skip reloading the FPSIMD 366 * registers for p. 367 */ 368 fpsimd_flush_task_state(p); 369 370 ptrauth_thread_init_kernel(p); 371 372 if (likely(!args->fn)) { 373 *childregs = *current_pt_regs(); 374 childregs->regs[0] = 0; 375 376 /* 377 * Read the current TLS pointer from tpidr_el0 as it may be 378 * out-of-sync with the saved value. 379 */ 380 *task_user_tls(p) = read_sysreg(tpidr_el0); 381 if (system_supports_tpidr2()) 382 p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0); 383 384 if (system_supports_poe()) 385 p->thread.por_el0 = read_sysreg_s(SYS_POR_EL0); 386 387 if (stack_start) { 388 if (is_compat_thread(task_thread_info(p))) 389 childregs->compat_sp = stack_start; 390 else 391 childregs->sp = stack_start; 392 } 393 394 /* 395 * If a TLS pointer was passed to clone, use it for the new 396 * thread. We also reset TPIDR2 if it's in use. 397 */ 398 if (clone_flags & CLONE_SETTLS) { 399 p->thread.uw.tp_value = tls; 400 p->thread.tpidr2_el0 = 0; 401 } 402 } else { 403 /* 404 * A kthread has no context to ERET to, so ensure any buggy 405 * ERET is treated as an illegal exception return. 406 * 407 * When a user task is created from a kthread, childregs will 408 * be initialized by start_thread() or start_compat_thread(). 409 */ 410 memset(childregs, 0, sizeof(struct pt_regs)); 411 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT; 412 413 p->thread.cpu_context.x19 = (unsigned long)args->fn; 414 p->thread.cpu_context.x20 = (unsigned long)args->fn_arg; 415 416 if (system_supports_poe()) 417 p->thread.por_el0 = POR_EL0_INIT; 418 } 419 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 420 p->thread.cpu_context.sp = (unsigned long)childregs; 421 /* 422 * For the benefit of the unwinder, set up childregs->stackframe 423 * as the final frame for the new task. 424 */ 425 p->thread.cpu_context.fp = (unsigned long)childregs->stackframe; 426 427 ptrace_hw_copy_thread(p); 428 429 return 0; 430 } 431 432 void tls_preserve_current_state(void) 433 { 434 *task_user_tls(current) = read_sysreg(tpidr_el0); 435 if (system_supports_tpidr2() && !is_compat_task()) 436 current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0); 437 } 438 439 static void tls_thread_switch(struct task_struct *next) 440 { 441 tls_preserve_current_state(); 442 443 if (is_compat_thread(task_thread_info(next))) 444 write_sysreg(next->thread.uw.tp_value, tpidrro_el0); 445 else if (!arm64_kernel_unmapped_at_el0()) 446 write_sysreg(0, tpidrro_el0); 447 448 write_sysreg(*task_user_tls(next), tpidr_el0); 449 if (system_supports_tpidr2()) 450 write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0); 451 } 452 453 /* 454 * Force SSBS state on context-switch, since it may be lost after migrating 455 * from a CPU which treats the bit as RES0 in a heterogeneous system. 456 */ 457 static void ssbs_thread_switch(struct task_struct *next) 458 { 459 /* 460 * Nothing to do for kernel threads, but 'regs' may be junk 461 * (e.g. idle task) so check the flags and bail early. 462 */ 463 if (unlikely(next->flags & PF_KTHREAD)) 464 return; 465 466 /* 467 * If all CPUs implement the SSBS extension, then we just need to 468 * context-switch the PSTATE field. 469 */ 470 if (alternative_has_cap_unlikely(ARM64_SSBS)) 471 return; 472 473 spectre_v4_enable_task_mitigation(next); 474 } 475 476 /* 477 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 478 * shadow copy so that we can restore this upon entry from userspace. 479 * 480 * This is *only* for exception entry from EL0, and is not valid until we 481 * __switch_to() a user task. 482 */ 483 DEFINE_PER_CPU(struct task_struct *, __entry_task); 484 485 static void entry_task_switch(struct task_struct *next) 486 { 487 __this_cpu_write(__entry_task, next); 488 } 489 490 /* 491 * Handle sysreg updates for ARM erratum 1418040 which affects the 32bit view of 492 * CNTVCT, various other errata which require trapping all CNTVCT{,_EL0} 493 * accesses and prctl(PR_SET_TSC). Ensure access is disabled iff a workaround is 494 * required or PR_TSC_SIGSEGV is set. 495 */ 496 static void update_cntkctl_el1(struct task_struct *next) 497 { 498 struct thread_info *ti = task_thread_info(next); 499 500 if (test_ti_thread_flag(ti, TIF_TSC_SIGSEGV) || 501 has_erratum_handler(read_cntvct_el0) || 502 (IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) && 503 this_cpu_has_cap(ARM64_WORKAROUND_1418040) && 504 is_compat_thread(ti))) 505 sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0); 506 else 507 sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN); 508 } 509 510 static void cntkctl_thread_switch(struct task_struct *prev, 511 struct task_struct *next) 512 { 513 if ((read_ti_thread_flags(task_thread_info(prev)) & 514 (_TIF_32BIT | _TIF_TSC_SIGSEGV)) != 515 (read_ti_thread_flags(task_thread_info(next)) & 516 (_TIF_32BIT | _TIF_TSC_SIGSEGV))) 517 update_cntkctl_el1(next); 518 } 519 520 static int do_set_tsc_mode(unsigned int val) 521 { 522 bool tsc_sigsegv; 523 524 if (val == PR_TSC_SIGSEGV) 525 tsc_sigsegv = true; 526 else if (val == PR_TSC_ENABLE) 527 tsc_sigsegv = false; 528 else 529 return -EINVAL; 530 531 preempt_disable(); 532 update_thread_flag(TIF_TSC_SIGSEGV, tsc_sigsegv); 533 update_cntkctl_el1(current); 534 preempt_enable(); 535 536 return 0; 537 } 538 539 static void permission_overlay_switch(struct task_struct *next) 540 { 541 if (!system_supports_poe()) 542 return; 543 544 current->thread.por_el0 = read_sysreg_s(SYS_POR_EL0); 545 if (current->thread.por_el0 != next->thread.por_el0) { 546 write_sysreg_s(next->thread.por_el0, SYS_POR_EL0); 547 } 548 } 549 550 /* 551 * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore 552 * this function must be called with preemption disabled and the update to 553 * sctlr_user must be made in the same preemption disabled block so that 554 * __switch_to() does not see the variable update before the SCTLR_EL1 one. 555 */ 556 void update_sctlr_el1(u64 sctlr) 557 { 558 /* 559 * EnIA must not be cleared while in the kernel as this is necessary for 560 * in-kernel PAC. It will be cleared on kernel exit if needed. 561 */ 562 sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr); 563 564 /* ISB required for the kernel uaccess routines when setting TCF0. */ 565 isb(); 566 } 567 568 /* 569 * Thread switching. 570 */ 571 __notrace_funcgraph __sched 572 struct task_struct *__switch_to(struct task_struct *prev, 573 struct task_struct *next) 574 { 575 struct task_struct *last; 576 577 fpsimd_thread_switch(next); 578 tls_thread_switch(next); 579 hw_breakpoint_thread_switch(next); 580 contextidr_thread_switch(next); 581 entry_task_switch(next); 582 ssbs_thread_switch(next); 583 cntkctl_thread_switch(prev, next); 584 ptrauth_thread_switch_user(next); 585 permission_overlay_switch(next); 586 587 /* 588 * Complete any pending TLB or cache maintenance on this CPU in case 589 * the thread migrates to a different CPU. 590 * This full barrier is also required by the membarrier system 591 * call. 592 */ 593 dsb(ish); 594 595 /* 596 * MTE thread switching must happen after the DSB above to ensure that 597 * any asynchronous tag check faults have been logged in the TFSR*_EL1 598 * registers. 599 */ 600 mte_thread_switch(next); 601 /* avoid expensive SCTLR_EL1 accesses if no change */ 602 if (prev->thread.sctlr_user != next->thread.sctlr_user) 603 update_sctlr_el1(next->thread.sctlr_user); 604 605 /* the actual thread switch */ 606 last = cpu_switch_to(prev, next); 607 608 return last; 609 } 610 611 struct wchan_info { 612 unsigned long pc; 613 int count; 614 }; 615 616 static bool get_wchan_cb(void *arg, unsigned long pc) 617 { 618 struct wchan_info *wchan_info = arg; 619 620 if (!in_sched_functions(pc)) { 621 wchan_info->pc = pc; 622 return false; 623 } 624 return wchan_info->count++ < 16; 625 } 626 627 unsigned long __get_wchan(struct task_struct *p) 628 { 629 struct wchan_info wchan_info = { 630 .pc = 0, 631 .count = 0, 632 }; 633 634 if (!try_get_task_stack(p)) 635 return 0; 636 637 arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL); 638 639 put_task_stack(p); 640 641 return wchan_info.pc; 642 } 643 644 unsigned long arch_align_stack(unsigned long sp) 645 { 646 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 647 sp -= get_random_u32_below(PAGE_SIZE); 648 return sp & ~0xf; 649 } 650 651 #ifdef CONFIG_COMPAT 652 int compat_elf_check_arch(const struct elf32_hdr *hdr) 653 { 654 if (!system_supports_32bit_el0()) 655 return false; 656 657 if ((hdr)->e_machine != EM_ARM) 658 return false; 659 660 if (!((hdr)->e_flags & EF_ARM_EABI_MASK)) 661 return false; 662 663 /* 664 * Prevent execve() of a 32-bit program from a deadline task 665 * if the restricted affinity mask would be inadmissible on an 666 * asymmetric system. 667 */ 668 return !static_branch_unlikely(&arm64_mismatched_32bit_el0) || 669 !dl_task_check_affinity(current, system_32bit_el0_cpumask()); 670 } 671 #endif 672 673 /* 674 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 675 */ 676 void arch_setup_new_exec(void) 677 { 678 unsigned long mmflags = 0; 679 680 if (is_compat_task()) { 681 mmflags = MMCF_AARCH32; 682 683 /* 684 * Restrict the CPU affinity mask for a 32-bit task so that 685 * it contains only 32-bit-capable CPUs. 686 * 687 * From the perspective of the task, this looks similar to 688 * what would happen if the 64-bit-only CPUs were hot-unplugged 689 * at the point of execve(), although we try a bit harder to 690 * honour the cpuset hierarchy. 691 */ 692 if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) 693 force_compatible_cpus_allowed_ptr(current); 694 } else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) { 695 relax_compatible_cpus_allowed_ptr(current); 696 } 697 698 current->mm->context.flags = mmflags; 699 ptrauth_thread_init_user(); 700 mte_thread_init_user(); 701 do_set_tsc_mode(PR_TSC_ENABLE); 702 703 if (task_spec_ssb_noexec(current)) { 704 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS, 705 PR_SPEC_ENABLE); 706 } 707 } 708 709 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 710 /* 711 * Control the relaxed ABI allowing tagged user addresses into the kernel. 712 */ 713 static unsigned int tagged_addr_disabled; 714 715 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg) 716 { 717 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE; 718 struct thread_info *ti = task_thread_info(task); 719 720 if (is_compat_thread(ti)) 721 return -EINVAL; 722 723 if (system_supports_mte()) 724 valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \ 725 | PR_MTE_TAG_MASK; 726 727 if (arg & ~valid_mask) 728 return -EINVAL; 729 730 /* 731 * Do not allow the enabling of the tagged address ABI if globally 732 * disabled via sysctl abi.tagged_addr_disabled. 733 */ 734 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled) 735 return -EINVAL; 736 737 if (set_mte_ctrl(task, arg) != 0) 738 return -EINVAL; 739 740 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE); 741 742 return 0; 743 } 744 745 long get_tagged_addr_ctrl(struct task_struct *task) 746 { 747 long ret = 0; 748 struct thread_info *ti = task_thread_info(task); 749 750 if (is_compat_thread(ti)) 751 return -EINVAL; 752 753 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR)) 754 ret = PR_TAGGED_ADDR_ENABLE; 755 756 ret |= get_mte_ctrl(task); 757 758 return ret; 759 } 760 761 /* 762 * Global sysctl to disable the tagged user addresses support. This control 763 * only prevents the tagged address ABI enabling via prctl() and does not 764 * disable it for tasks that already opted in to the relaxed ABI. 765 */ 766 767 static struct ctl_table tagged_addr_sysctl_table[] = { 768 { 769 .procname = "tagged_addr_disabled", 770 .mode = 0644, 771 .data = &tagged_addr_disabled, 772 .maxlen = sizeof(int), 773 .proc_handler = proc_dointvec_minmax, 774 .extra1 = SYSCTL_ZERO, 775 .extra2 = SYSCTL_ONE, 776 }, 777 }; 778 779 static int __init tagged_addr_init(void) 780 { 781 if (!register_sysctl("abi", tagged_addr_sysctl_table)) 782 return -EINVAL; 783 return 0; 784 } 785 786 core_initcall(tagged_addr_init); 787 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */ 788 789 #ifdef CONFIG_BINFMT_ELF 790 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state, 791 bool has_interp, bool is_interp) 792 { 793 /* 794 * For dynamically linked executables the interpreter is 795 * responsible for setting PROT_BTI on everything except 796 * itself. 797 */ 798 if (is_interp != has_interp) 799 return prot; 800 801 if (!(state->flags & ARM64_ELF_BTI)) 802 return prot; 803 804 if (prot & PROT_EXEC) 805 prot |= PROT_BTI; 806 807 return prot; 808 } 809 #endif 810 811 int get_tsc_mode(unsigned long adr) 812 { 813 unsigned int val; 814 815 if (is_compat_task()) 816 return -EINVAL; 817 818 if (test_thread_flag(TIF_TSC_SIGSEGV)) 819 val = PR_TSC_SIGSEGV; 820 else 821 val = PR_TSC_ENABLE; 822 823 return put_user(val, (unsigned int __user *)adr); 824 } 825 826 int set_tsc_mode(unsigned int val) 827 { 828 if (is_compat_task()) 829 return -EINVAL; 830 831 return do_set_tsc_mode(val); 832 } 833