1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/process.c 4 * 5 * Original Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 #include <linux/compat.h> 10 #include <linux/efi.h> 11 #include <linux/elf.h> 12 #include <linux/export.h> 13 #include <linux/sched.h> 14 #include <linux/sched/debug.h> 15 #include <linux/sched/task.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/kernel.h> 18 #include <linux/mman.h> 19 #include <linux/mm.h> 20 #include <linux/nospec.h> 21 #include <linux/stddef.h> 22 #include <linux/sysctl.h> 23 #include <linux/unistd.h> 24 #include <linux/user.h> 25 #include <linux/delay.h> 26 #include <linux/reboot.h> 27 #include <linux/interrupt.h> 28 #include <linux/init.h> 29 #include <linux/cpu.h> 30 #include <linux/elfcore.h> 31 #include <linux/pm.h> 32 #include <linux/tick.h> 33 #include <linux/utsname.h> 34 #include <linux/uaccess.h> 35 #include <linux/random.h> 36 #include <linux/hw_breakpoint.h> 37 #include <linux/personality.h> 38 #include <linux/notifier.h> 39 #include <trace/events/power.h> 40 #include <linux/percpu.h> 41 #include <linux/thread_info.h> 42 #include <linux/prctl.h> 43 #include <linux/stacktrace.h> 44 45 #include <asm/alternative.h> 46 #include <asm/arch_timer.h> 47 #include <asm/compat.h> 48 #include <asm/cpufeature.h> 49 #include <asm/cacheflush.h> 50 #include <asm/exec.h> 51 #include <asm/fpsimd.h> 52 #include <asm/gcs.h> 53 #include <asm/mmu_context.h> 54 #include <asm/mte.h> 55 #include <asm/processor.h> 56 #include <asm/pointer_auth.h> 57 #include <asm/stacktrace.h> 58 #include <asm/switch_to.h> 59 #include <asm/system_misc.h> 60 61 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) 62 #include <linux/stackprotector.h> 63 unsigned long __stack_chk_guard __ro_after_init; 64 EXPORT_SYMBOL(__stack_chk_guard); 65 #endif 66 67 /* 68 * Function pointers to optional machine specific functions 69 */ 70 void (*pm_power_off)(void); 71 EXPORT_SYMBOL_GPL(pm_power_off); 72 73 #ifdef CONFIG_HOTPLUG_CPU 74 void __noreturn arch_cpu_idle_dead(void) 75 { 76 cpu_die(); 77 } 78 #endif 79 80 /* 81 * Called by kexec, immediately prior to machine_kexec(). 82 * 83 * This must completely disable all secondary CPUs; simply causing those CPUs 84 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 85 * kexec'd kernel to use any and all RAM as it sees fit, without having to 86 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 87 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this. 88 */ 89 void machine_shutdown(void) 90 { 91 smp_shutdown_nonboot_cpus(reboot_cpu); 92 } 93 94 /* 95 * Halting simply requires that the secondary CPUs stop performing any 96 * activity (executing tasks, handling interrupts). smp_send_stop() 97 * achieves this. 98 */ 99 void machine_halt(void) 100 { 101 local_irq_disable(); 102 smp_send_stop(); 103 while (1); 104 } 105 106 /* 107 * Power-off simply requires that the secondary CPUs stop performing any 108 * activity (executing tasks, handling interrupts). smp_send_stop() 109 * achieves this. When the system power is turned off, it will take all CPUs 110 * with it. 111 */ 112 void machine_power_off(void) 113 { 114 local_irq_disable(); 115 smp_send_stop(); 116 do_kernel_power_off(); 117 } 118 119 /* 120 * Restart requires that the secondary CPUs stop performing any activity 121 * while the primary CPU resets the system. Systems with multiple CPUs must 122 * provide a HW restart implementation, to ensure that all CPUs reset at once. 123 * This is required so that any code running after reset on the primary CPU 124 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 125 * executing pre-reset code, and using RAM that the primary CPU's code wishes 126 * to use. Implementing such co-ordination would be essentially impossible. 127 */ 128 void machine_restart(char *cmd) 129 { 130 /* Disable interrupts first */ 131 local_irq_disable(); 132 smp_send_stop(); 133 134 /* 135 * UpdateCapsule() depends on the system being reset via 136 * ResetSystem(). 137 */ 138 if (efi_enabled(EFI_RUNTIME_SERVICES)) 139 efi_reboot(reboot_mode, NULL); 140 141 /* Now call the architecture specific reboot code. */ 142 do_kernel_restart(cmd); 143 144 /* 145 * Whoops - the architecture was unable to reboot. 146 */ 147 printk("Reboot failed -- System halted\n"); 148 while (1); 149 } 150 151 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str 152 static const char *const btypes[] = { 153 bstr(NONE, "--"), 154 bstr( JC, "jc"), 155 bstr( C, "-c"), 156 bstr( J , "j-") 157 }; 158 #undef bstr 159 160 static void print_pstate(struct pt_regs *regs) 161 { 162 u64 pstate = regs->pstate; 163 164 if (compat_user_mode(regs)) { 165 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n", 166 pstate, 167 pstate & PSR_AA32_N_BIT ? 'N' : 'n', 168 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', 169 pstate & PSR_AA32_C_BIT ? 'C' : 'c', 170 pstate & PSR_AA32_V_BIT ? 'V' : 'v', 171 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', 172 pstate & PSR_AA32_T_BIT ? "T32" : "A32", 173 pstate & PSR_AA32_E_BIT ? "BE" : "LE", 174 pstate & PSR_AA32_A_BIT ? 'A' : 'a', 175 pstate & PSR_AA32_I_BIT ? 'I' : 'i', 176 pstate & PSR_AA32_F_BIT ? 'F' : 'f', 177 pstate & PSR_AA32_DIT_BIT ? '+' : '-', 178 pstate & PSR_AA32_SSBS_BIT ? '+' : '-'); 179 } else { 180 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >> 181 PSR_BTYPE_SHIFT]; 182 183 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n", 184 pstate, 185 pstate & PSR_N_BIT ? 'N' : 'n', 186 pstate & PSR_Z_BIT ? 'Z' : 'z', 187 pstate & PSR_C_BIT ? 'C' : 'c', 188 pstate & PSR_V_BIT ? 'V' : 'v', 189 pstate & PSR_D_BIT ? 'D' : 'd', 190 pstate & PSR_A_BIT ? 'A' : 'a', 191 pstate & PSR_I_BIT ? 'I' : 'i', 192 pstate & PSR_F_BIT ? 'F' : 'f', 193 pstate & PSR_PAN_BIT ? '+' : '-', 194 pstate & PSR_UAO_BIT ? '+' : '-', 195 pstate & PSR_TCO_BIT ? '+' : '-', 196 pstate & PSR_DIT_BIT ? '+' : '-', 197 pstate & PSR_SSBS_BIT ? '+' : '-', 198 btype_str); 199 } 200 } 201 202 void __show_regs(struct pt_regs *regs) 203 { 204 int i, top_reg; 205 u64 lr, sp; 206 207 if (compat_user_mode(regs)) { 208 lr = regs->compat_lr; 209 sp = regs->compat_sp; 210 top_reg = 12; 211 } else { 212 lr = regs->regs[30]; 213 sp = regs->sp; 214 top_reg = 29; 215 } 216 217 show_regs_print_info(KERN_DEFAULT); 218 print_pstate(regs); 219 220 if (!user_mode(regs)) { 221 printk("pc : %pS\n", (void *)regs->pc); 222 printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr)); 223 } else { 224 printk("pc : %016llx\n", regs->pc); 225 printk("lr : %016llx\n", lr); 226 } 227 228 printk("sp : %016llx\n", sp); 229 230 if (system_uses_irq_prio_masking()) 231 printk("pmr_save: %08llx\n", regs->pmr_save); 232 233 i = top_reg; 234 235 while (i >= 0) { 236 printk("x%-2d: %016llx", i, regs->regs[i]); 237 238 while (i-- % 3) 239 pr_cont(" x%-2d: %016llx", i, regs->regs[i]); 240 241 pr_cont("\n"); 242 } 243 } 244 245 void show_regs(struct pt_regs *regs) 246 { 247 __show_regs(regs); 248 dump_backtrace(regs, NULL, KERN_DEFAULT); 249 } 250 251 static void tls_thread_flush(void) 252 { 253 write_sysreg(0, tpidr_el0); 254 if (system_supports_tpidr2()) 255 write_sysreg_s(0, SYS_TPIDR2_EL0); 256 257 if (is_compat_task()) { 258 current->thread.uw.tp_value = 0; 259 260 /* 261 * We need to ensure ordering between the shadow state and the 262 * hardware state, so that we don't corrupt the hardware state 263 * with a stale shadow state during context switch. 264 */ 265 barrier(); 266 write_sysreg(0, tpidrro_el0); 267 } 268 } 269 270 static void flush_tagged_addr_state(void) 271 { 272 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) 273 clear_thread_flag(TIF_TAGGED_ADDR); 274 } 275 276 static void flush_poe(void) 277 { 278 if (!system_supports_poe()) 279 return; 280 281 write_sysreg_s(POR_EL0_INIT, SYS_POR_EL0); 282 } 283 284 #ifdef CONFIG_ARM64_GCS 285 286 static void flush_gcs(void) 287 { 288 if (!system_supports_gcs()) 289 return; 290 291 gcs_free(current); 292 current->thread.gcs_el0_mode = 0; 293 write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1); 294 write_sysreg_s(0, SYS_GCSPR_EL0); 295 } 296 297 static int copy_thread_gcs(struct task_struct *p, 298 const struct kernel_clone_args *args) 299 { 300 unsigned long gcs; 301 302 if (!system_supports_gcs()) 303 return 0; 304 305 p->thread.gcs_base = 0; 306 p->thread.gcs_size = 0; 307 308 gcs = gcs_alloc_thread_stack(p, args); 309 if (IS_ERR_VALUE(gcs)) 310 return PTR_ERR((void *)gcs); 311 312 p->thread.gcs_el0_mode = current->thread.gcs_el0_mode; 313 p->thread.gcs_el0_locked = current->thread.gcs_el0_locked; 314 315 return 0; 316 } 317 318 #else 319 320 static void flush_gcs(void) { } 321 static int copy_thread_gcs(struct task_struct *p, 322 const struct kernel_clone_args *args) 323 { 324 return 0; 325 } 326 327 #endif 328 329 void flush_thread(void) 330 { 331 fpsimd_flush_thread(); 332 tls_thread_flush(); 333 flush_ptrace_hw_breakpoint(current); 334 flush_tagged_addr_state(); 335 flush_poe(); 336 flush_gcs(); 337 } 338 339 void arch_release_task_struct(struct task_struct *tsk) 340 { 341 fpsimd_release_task(tsk); 342 gcs_free(tsk); 343 } 344 345 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 346 { 347 if (current->mm) 348 fpsimd_preserve_current_state(); 349 *dst = *src; 350 351 /* 352 * Detach src's sve_state (if any) from dst so that it does not 353 * get erroneously used or freed prematurely. dst's copies 354 * will be allocated on demand later on if dst uses SVE. 355 * For consistency, also clear TIF_SVE here: this could be done 356 * later in copy_process(), but to avoid tripping up future 357 * maintainers it is best not to leave TIF flags and buffers in 358 * an inconsistent state, even temporarily. 359 */ 360 dst->thread.sve_state = NULL; 361 clear_tsk_thread_flag(dst, TIF_SVE); 362 363 /* 364 * In the unlikely event that we create a new thread with ZA 365 * enabled we should retain the ZA and ZT state so duplicate 366 * it here. This may be shortly freed if we exec() or if 367 * CLONE_SETTLS but it's simpler to do it here. To avoid 368 * confusing the rest of the code ensure that we have a 369 * sve_state allocated whenever sme_state is allocated. 370 */ 371 if (thread_za_enabled(&src->thread)) { 372 dst->thread.sve_state = kzalloc(sve_state_size(src), 373 GFP_KERNEL); 374 if (!dst->thread.sve_state) 375 return -ENOMEM; 376 377 dst->thread.sme_state = kmemdup(src->thread.sme_state, 378 sme_state_size(src), 379 GFP_KERNEL); 380 if (!dst->thread.sme_state) { 381 kfree(dst->thread.sve_state); 382 dst->thread.sve_state = NULL; 383 return -ENOMEM; 384 } 385 } else { 386 dst->thread.sme_state = NULL; 387 clear_tsk_thread_flag(dst, TIF_SME); 388 } 389 390 dst->thread.fp_type = FP_STATE_FPSIMD; 391 392 /* clear any pending asynchronous tag fault raised by the parent */ 393 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT); 394 395 return 0; 396 } 397 398 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 399 400 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) 401 { 402 unsigned long clone_flags = args->flags; 403 unsigned long stack_start = args->stack; 404 unsigned long tls = args->tls; 405 struct pt_regs *childregs = task_pt_regs(p); 406 int ret; 407 408 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 409 410 /* 411 * In case p was allocated the same task_struct pointer as some 412 * other recently-exited task, make sure p is disassociated from 413 * any cpu that may have run that now-exited task recently. 414 * Otherwise we could erroneously skip reloading the FPSIMD 415 * registers for p. 416 */ 417 fpsimd_flush_task_state(p); 418 419 ptrauth_thread_init_kernel(p); 420 421 if (likely(!args->fn)) { 422 *childregs = *current_pt_regs(); 423 childregs->regs[0] = 0; 424 425 /* 426 * Read the current TLS pointer from tpidr_el0 as it may be 427 * out-of-sync with the saved value. 428 */ 429 *task_user_tls(p) = read_sysreg(tpidr_el0); 430 if (system_supports_tpidr2()) 431 p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0); 432 433 if (system_supports_poe()) 434 p->thread.por_el0 = read_sysreg_s(SYS_POR_EL0); 435 436 if (stack_start) { 437 if (is_compat_thread(task_thread_info(p))) 438 childregs->compat_sp = stack_start; 439 else 440 childregs->sp = stack_start; 441 } 442 443 /* 444 * If a TLS pointer was passed to clone, use it for the new 445 * thread. We also reset TPIDR2 if it's in use. 446 */ 447 if (clone_flags & CLONE_SETTLS) { 448 p->thread.uw.tp_value = tls; 449 p->thread.tpidr2_el0 = 0; 450 } 451 452 ret = copy_thread_gcs(p, args); 453 if (ret != 0) 454 return ret; 455 } else { 456 /* 457 * A kthread has no context to ERET to, so ensure any buggy 458 * ERET is treated as an illegal exception return. 459 * 460 * When a user task is created from a kthread, childregs will 461 * be initialized by start_thread() or start_compat_thread(). 462 */ 463 memset(childregs, 0, sizeof(struct pt_regs)); 464 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT; 465 466 p->thread.cpu_context.x19 = (unsigned long)args->fn; 467 p->thread.cpu_context.x20 = (unsigned long)args->fn_arg; 468 } 469 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 470 p->thread.cpu_context.sp = (unsigned long)childregs; 471 /* 472 * For the benefit of the unwinder, set up childregs->stackframe 473 * as the final frame for the new task. 474 */ 475 p->thread.cpu_context.fp = (unsigned long)childregs->stackframe; 476 477 ptrace_hw_copy_thread(p); 478 479 return 0; 480 } 481 482 void tls_preserve_current_state(void) 483 { 484 *task_user_tls(current) = read_sysreg(tpidr_el0); 485 if (system_supports_tpidr2() && !is_compat_task()) 486 current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0); 487 } 488 489 static void tls_thread_switch(struct task_struct *next) 490 { 491 tls_preserve_current_state(); 492 493 if (is_compat_thread(task_thread_info(next))) 494 write_sysreg(next->thread.uw.tp_value, tpidrro_el0); 495 else if (!arm64_kernel_unmapped_at_el0()) 496 write_sysreg(0, tpidrro_el0); 497 498 write_sysreg(*task_user_tls(next), tpidr_el0); 499 if (system_supports_tpidr2()) 500 write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0); 501 } 502 503 /* 504 * Force SSBS state on context-switch, since it may be lost after migrating 505 * from a CPU which treats the bit as RES0 in a heterogeneous system. 506 */ 507 static void ssbs_thread_switch(struct task_struct *next) 508 { 509 /* 510 * Nothing to do for kernel threads, but 'regs' may be junk 511 * (e.g. idle task) so check the flags and bail early. 512 */ 513 if (unlikely(next->flags & PF_KTHREAD)) 514 return; 515 516 /* 517 * If all CPUs implement the SSBS extension, then we just need to 518 * context-switch the PSTATE field. 519 */ 520 if (alternative_has_cap_unlikely(ARM64_SSBS)) 521 return; 522 523 spectre_v4_enable_task_mitigation(next); 524 } 525 526 /* 527 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 528 * shadow copy so that we can restore this upon entry from userspace. 529 * 530 * This is *only* for exception entry from EL0, and is not valid until we 531 * __switch_to() a user task. 532 */ 533 DEFINE_PER_CPU(struct task_struct *, __entry_task); 534 535 static void entry_task_switch(struct task_struct *next) 536 { 537 __this_cpu_write(__entry_task, next); 538 } 539 540 #ifdef CONFIG_ARM64_GCS 541 542 void gcs_preserve_current_state(void) 543 { 544 current->thread.gcspr_el0 = read_sysreg_s(SYS_GCSPR_EL0); 545 } 546 547 static void gcs_thread_switch(struct task_struct *next) 548 { 549 if (!system_supports_gcs()) 550 return; 551 552 /* GCSPR_EL0 is always readable */ 553 gcs_preserve_current_state(); 554 write_sysreg_s(next->thread.gcspr_el0, SYS_GCSPR_EL0); 555 556 if (current->thread.gcs_el0_mode != next->thread.gcs_el0_mode) 557 gcs_set_el0_mode(next); 558 559 /* 560 * Ensure that GCS memory effects of the 'prev' thread are 561 * ordered before other memory accesses with release semantics 562 * (or preceded by a DMB) on the current PE. In addition, any 563 * memory accesses with acquire semantics (or succeeded by a 564 * DMB) are ordered before GCS memory effects of the 'next' 565 * thread. This will ensure that the GCS memory effects are 566 * visible to other PEs in case of migration. 567 */ 568 if (task_gcs_el0_enabled(current) || task_gcs_el0_enabled(next)) 569 gcsb_dsync(); 570 } 571 572 #else 573 574 static void gcs_thread_switch(struct task_struct *next) 575 { 576 } 577 578 #endif 579 580 /* 581 * Handle sysreg updates for ARM erratum 1418040 which affects the 32bit view of 582 * CNTVCT, various other errata which require trapping all CNTVCT{,_EL0} 583 * accesses and prctl(PR_SET_TSC). Ensure access is disabled iff a workaround is 584 * required or PR_TSC_SIGSEGV is set. 585 */ 586 static void update_cntkctl_el1(struct task_struct *next) 587 { 588 struct thread_info *ti = task_thread_info(next); 589 590 if (test_ti_thread_flag(ti, TIF_TSC_SIGSEGV) || 591 has_erratum_handler(read_cntvct_el0) || 592 (IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) && 593 this_cpu_has_cap(ARM64_WORKAROUND_1418040) && 594 is_compat_thread(ti))) 595 sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0); 596 else 597 sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN); 598 } 599 600 static void cntkctl_thread_switch(struct task_struct *prev, 601 struct task_struct *next) 602 { 603 if ((read_ti_thread_flags(task_thread_info(prev)) & 604 (_TIF_32BIT | _TIF_TSC_SIGSEGV)) != 605 (read_ti_thread_flags(task_thread_info(next)) & 606 (_TIF_32BIT | _TIF_TSC_SIGSEGV))) 607 update_cntkctl_el1(next); 608 } 609 610 static int do_set_tsc_mode(unsigned int val) 611 { 612 bool tsc_sigsegv; 613 614 if (val == PR_TSC_SIGSEGV) 615 tsc_sigsegv = true; 616 else if (val == PR_TSC_ENABLE) 617 tsc_sigsegv = false; 618 else 619 return -EINVAL; 620 621 preempt_disable(); 622 update_thread_flag(TIF_TSC_SIGSEGV, tsc_sigsegv); 623 update_cntkctl_el1(current); 624 preempt_enable(); 625 626 return 0; 627 } 628 629 static void permission_overlay_switch(struct task_struct *next) 630 { 631 if (!system_supports_poe()) 632 return; 633 634 current->thread.por_el0 = read_sysreg_s(SYS_POR_EL0); 635 if (current->thread.por_el0 != next->thread.por_el0) { 636 write_sysreg_s(next->thread.por_el0, SYS_POR_EL0); 637 } 638 } 639 640 /* 641 * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore 642 * this function must be called with preemption disabled and the update to 643 * sctlr_user must be made in the same preemption disabled block so that 644 * __switch_to() does not see the variable update before the SCTLR_EL1 one. 645 */ 646 void update_sctlr_el1(u64 sctlr) 647 { 648 /* 649 * EnIA must not be cleared while in the kernel as this is necessary for 650 * in-kernel PAC. It will be cleared on kernel exit if needed. 651 */ 652 sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr); 653 654 /* ISB required for the kernel uaccess routines when setting TCF0. */ 655 isb(); 656 } 657 658 /* 659 * Thread switching. 660 */ 661 __notrace_funcgraph __sched 662 struct task_struct *__switch_to(struct task_struct *prev, 663 struct task_struct *next) 664 { 665 struct task_struct *last; 666 667 fpsimd_thread_switch(next); 668 tls_thread_switch(next); 669 hw_breakpoint_thread_switch(next); 670 contextidr_thread_switch(next); 671 entry_task_switch(next); 672 ssbs_thread_switch(next); 673 cntkctl_thread_switch(prev, next); 674 ptrauth_thread_switch_user(next); 675 permission_overlay_switch(next); 676 gcs_thread_switch(next); 677 678 /* 679 * Complete any pending TLB or cache maintenance on this CPU in case 680 * the thread migrates to a different CPU. 681 * This full barrier is also required by the membarrier system 682 * call. 683 */ 684 dsb(ish); 685 686 /* 687 * MTE thread switching must happen after the DSB above to ensure that 688 * any asynchronous tag check faults have been logged in the TFSR*_EL1 689 * registers. 690 */ 691 mte_thread_switch(next); 692 /* avoid expensive SCTLR_EL1 accesses if no change */ 693 if (prev->thread.sctlr_user != next->thread.sctlr_user) 694 update_sctlr_el1(next->thread.sctlr_user); 695 696 /* the actual thread switch */ 697 last = cpu_switch_to(prev, next); 698 699 return last; 700 } 701 702 struct wchan_info { 703 unsigned long pc; 704 int count; 705 }; 706 707 static bool get_wchan_cb(void *arg, unsigned long pc) 708 { 709 struct wchan_info *wchan_info = arg; 710 711 if (!in_sched_functions(pc)) { 712 wchan_info->pc = pc; 713 return false; 714 } 715 return wchan_info->count++ < 16; 716 } 717 718 unsigned long __get_wchan(struct task_struct *p) 719 { 720 struct wchan_info wchan_info = { 721 .pc = 0, 722 .count = 0, 723 }; 724 725 if (!try_get_task_stack(p)) 726 return 0; 727 728 arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL); 729 730 put_task_stack(p); 731 732 return wchan_info.pc; 733 } 734 735 unsigned long arch_align_stack(unsigned long sp) 736 { 737 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 738 sp -= get_random_u32_below(PAGE_SIZE); 739 return sp & ~0xf; 740 } 741 742 #ifdef CONFIG_COMPAT 743 int compat_elf_check_arch(const struct elf32_hdr *hdr) 744 { 745 if (!system_supports_32bit_el0()) 746 return false; 747 748 if ((hdr)->e_machine != EM_ARM) 749 return false; 750 751 if (!((hdr)->e_flags & EF_ARM_EABI_MASK)) 752 return false; 753 754 /* 755 * Prevent execve() of a 32-bit program from a deadline task 756 * if the restricted affinity mask would be inadmissible on an 757 * asymmetric system. 758 */ 759 return !static_branch_unlikely(&arm64_mismatched_32bit_el0) || 760 !dl_task_check_affinity(current, system_32bit_el0_cpumask()); 761 } 762 #endif 763 764 /* 765 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 766 */ 767 void arch_setup_new_exec(void) 768 { 769 unsigned long mmflags = 0; 770 771 if (is_compat_task()) { 772 mmflags = MMCF_AARCH32; 773 774 /* 775 * Restrict the CPU affinity mask for a 32-bit task so that 776 * it contains only 32-bit-capable CPUs. 777 * 778 * From the perspective of the task, this looks similar to 779 * what would happen if the 64-bit-only CPUs were hot-unplugged 780 * at the point of execve(), although we try a bit harder to 781 * honour the cpuset hierarchy. 782 */ 783 if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) 784 force_compatible_cpus_allowed_ptr(current); 785 } else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) { 786 relax_compatible_cpus_allowed_ptr(current); 787 } 788 789 current->mm->context.flags = mmflags; 790 ptrauth_thread_init_user(); 791 mte_thread_init_user(); 792 do_set_tsc_mode(PR_TSC_ENABLE); 793 794 if (task_spec_ssb_noexec(current)) { 795 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS, 796 PR_SPEC_ENABLE); 797 } 798 } 799 800 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 801 /* 802 * Control the relaxed ABI allowing tagged user addresses into the kernel. 803 */ 804 static unsigned int tagged_addr_disabled; 805 806 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg) 807 { 808 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE; 809 struct thread_info *ti = task_thread_info(task); 810 811 if (is_compat_thread(ti)) 812 return -EINVAL; 813 814 if (system_supports_mte()) 815 valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \ 816 | PR_MTE_TAG_MASK; 817 818 if (arg & ~valid_mask) 819 return -EINVAL; 820 821 /* 822 * Do not allow the enabling of the tagged address ABI if globally 823 * disabled via sysctl abi.tagged_addr_disabled. 824 */ 825 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled) 826 return -EINVAL; 827 828 if (set_mte_ctrl(task, arg) != 0) 829 return -EINVAL; 830 831 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE); 832 833 return 0; 834 } 835 836 long get_tagged_addr_ctrl(struct task_struct *task) 837 { 838 long ret = 0; 839 struct thread_info *ti = task_thread_info(task); 840 841 if (is_compat_thread(ti)) 842 return -EINVAL; 843 844 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR)) 845 ret = PR_TAGGED_ADDR_ENABLE; 846 847 ret |= get_mte_ctrl(task); 848 849 return ret; 850 } 851 852 /* 853 * Global sysctl to disable the tagged user addresses support. This control 854 * only prevents the tagged address ABI enabling via prctl() and does not 855 * disable it for tasks that already opted in to the relaxed ABI. 856 */ 857 858 static struct ctl_table tagged_addr_sysctl_table[] = { 859 { 860 .procname = "tagged_addr_disabled", 861 .mode = 0644, 862 .data = &tagged_addr_disabled, 863 .maxlen = sizeof(int), 864 .proc_handler = proc_dointvec_minmax, 865 .extra1 = SYSCTL_ZERO, 866 .extra2 = SYSCTL_ONE, 867 }, 868 }; 869 870 static int __init tagged_addr_init(void) 871 { 872 if (!register_sysctl("abi", tagged_addr_sysctl_table)) 873 return -EINVAL; 874 return 0; 875 } 876 877 core_initcall(tagged_addr_init); 878 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */ 879 880 #ifdef CONFIG_BINFMT_ELF 881 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state, 882 bool has_interp, bool is_interp) 883 { 884 /* 885 * For dynamically linked executables the interpreter is 886 * responsible for setting PROT_BTI on everything except 887 * itself. 888 */ 889 if (is_interp != has_interp) 890 return prot; 891 892 if (!(state->flags & ARM64_ELF_BTI)) 893 return prot; 894 895 if (prot & PROT_EXEC) 896 prot |= PROT_BTI; 897 898 return prot; 899 } 900 #endif 901 902 int get_tsc_mode(unsigned long adr) 903 { 904 unsigned int val; 905 906 if (is_compat_task()) 907 return -EINVAL; 908 909 if (test_thread_flag(TIF_TSC_SIGSEGV)) 910 val = PR_TSC_SIGSEGV; 911 else 912 val = PR_TSC_ENABLE; 913 914 return put_user(val, (unsigned int __user *)adr); 915 } 916 917 int set_tsc_mode(unsigned int val) 918 { 919 if (is_compat_task()) 920 return -EINVAL; 921 922 return do_set_tsc_mode(val); 923 } 924