xref: /linux/arch/arm64/kernel/process.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  * Based on arch/arm/kernel/process.c
3  *
4  * Original Copyright (C) 1995  Linus Torvalds
5  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
6  * Copyright (C) 2012 ARM Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <stdarg.h>
22 
23 #include <linux/export.h>
24 #include <linux/sched.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/stddef.h>
28 #include <linux/unistd.h>
29 #include <linux/user.h>
30 #include <linux/delay.h>
31 #include <linux/reboot.h>
32 #include <linux/interrupt.h>
33 #include <linux/kallsyms.h>
34 #include <linux/init.h>
35 #include <linux/cpu.h>
36 #include <linux/elfcore.h>
37 #include <linux/pm.h>
38 #include <linux/tick.h>
39 #include <linux/utsname.h>
40 #include <linux/uaccess.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/personality.h>
44 #include <linux/notifier.h>
45 
46 #include <asm/compat.h>
47 #include <asm/cacheflush.h>
48 #include <asm/processor.h>
49 #include <asm/stacktrace.h>
50 #include <asm/fpsimd.h>
51 
52 static void setup_restart(void)
53 {
54 	/*
55 	 * Tell the mm system that we are going to reboot -
56 	 * we may need it to insert some 1:1 mappings so that
57 	 * soft boot works.
58 	 */
59 	setup_mm_for_reboot();
60 
61 	/* Clean and invalidate caches */
62 	flush_cache_all();
63 
64 	/* Turn D-cache off */
65 	cpu_cache_off();
66 
67 	/* Push out any further dirty data, and ensure cache is empty */
68 	flush_cache_all();
69 }
70 
71 void soft_restart(unsigned long addr)
72 {
73 	setup_restart();
74 	cpu_reset(addr);
75 }
76 
77 /*
78  * Function pointers to optional machine specific functions
79  */
80 void (*pm_power_off)(void);
81 EXPORT_SYMBOL_GPL(pm_power_off);
82 
83 void (*pm_restart)(const char *cmd);
84 EXPORT_SYMBOL_GPL(pm_restart);
85 
86 
87 /*
88  * This is our default idle handler.
89  */
90 static void default_idle(void)
91 {
92 	/*
93 	 * This should do all the clock switching and wait for interrupt
94 	 * tricks
95 	 */
96 	cpu_do_idle();
97 	local_irq_enable();
98 }
99 
100 void (*pm_idle)(void) = default_idle;
101 EXPORT_SYMBOL_GPL(pm_idle);
102 
103 /*
104  * The idle thread, has rather strange semantics for calling pm_idle,
105  * but this is what x86 does and we need to do the same, so that
106  * things like cpuidle get called in the same way.  The only difference
107  * is that we always respect 'hlt_counter' to prevent low power idle.
108  */
109 void cpu_idle(void)
110 {
111 	local_fiq_enable();
112 
113 	/* endless idle loop with no priority at all */
114 	while (1) {
115 		tick_nohz_idle_enter();
116 		rcu_idle_enter();
117 		while (!need_resched()) {
118 			/*
119 			 * We need to disable interrupts here to ensure
120 			 * we don't miss a wakeup call.
121 			 */
122 			local_irq_disable();
123 			if (!need_resched()) {
124 				stop_critical_timings();
125 				pm_idle();
126 				start_critical_timings();
127 				/*
128 				 * pm_idle functions should always return
129 				 * with IRQs enabled.
130 				 */
131 				WARN_ON(irqs_disabled());
132 			} else {
133 				local_irq_enable();
134 			}
135 		}
136 		rcu_idle_exit();
137 		tick_nohz_idle_exit();
138 		schedule_preempt_disabled();
139 	}
140 }
141 
142 void machine_shutdown(void)
143 {
144 #ifdef CONFIG_SMP
145 	smp_send_stop();
146 #endif
147 }
148 
149 void machine_halt(void)
150 {
151 	machine_shutdown();
152 	while (1);
153 }
154 
155 void machine_power_off(void)
156 {
157 	machine_shutdown();
158 	if (pm_power_off)
159 		pm_power_off();
160 }
161 
162 void machine_restart(char *cmd)
163 {
164 	machine_shutdown();
165 
166 	/* Disable interrupts first */
167 	local_irq_disable();
168 	local_fiq_disable();
169 
170 	/* Now call the architecture specific reboot code. */
171 	if (pm_restart)
172 		pm_restart(cmd);
173 
174 	/*
175 	 * Whoops - the architecture was unable to reboot.
176 	 */
177 	printk("Reboot failed -- System halted\n");
178 	while (1);
179 }
180 
181 void __show_regs(struct pt_regs *regs)
182 {
183 	int i;
184 
185 	printk("CPU: %d    %s  (%s %.*s)\n",
186 		raw_smp_processor_id(), print_tainted(),
187 		init_utsname()->release,
188 		(int)strcspn(init_utsname()->version, " "),
189 		init_utsname()->version);
190 	print_symbol("PC is at %s\n", instruction_pointer(regs));
191 	print_symbol("LR is at %s\n", regs->regs[30]);
192 	printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n",
193 	       regs->pc, regs->regs[30], regs->pstate);
194 	printk("sp : %016llx\n", regs->sp);
195 	for (i = 29; i >= 0; i--) {
196 		printk("x%-2d: %016llx ", i, regs->regs[i]);
197 		if (i % 2 == 0)
198 			printk("\n");
199 	}
200 	printk("\n");
201 }
202 
203 void show_regs(struct pt_regs * regs)
204 {
205 	printk("\n");
206 	printk("Pid: %d, comm: %20s\n", task_pid_nr(current), current->comm);
207 	__show_regs(regs);
208 }
209 
210 /*
211  * Free current thread data structures etc..
212  */
213 void exit_thread(void)
214 {
215 }
216 
217 void flush_thread(void)
218 {
219 	fpsimd_flush_thread();
220 	flush_ptrace_hw_breakpoint(current);
221 }
222 
223 void release_thread(struct task_struct *dead_task)
224 {
225 }
226 
227 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
228 {
229 	fpsimd_save_state(&current->thread.fpsimd_state);
230 	*dst = *src;
231 	return 0;
232 }
233 
234 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
235 
236 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
237 		unsigned long stk_sz, struct task_struct *p)
238 {
239 	struct pt_regs *childregs = task_pt_regs(p);
240 	unsigned long tls = p->thread.tp_value;
241 
242 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
243 
244 	if (likely(!(p->flags & PF_KTHREAD))) {
245 		*childregs = *current_pt_regs();
246 		childregs->regs[0] = 0;
247 		if (is_compat_thread(task_thread_info(p))) {
248 			if (stack_start)
249 				childregs->compat_sp = stack_start;
250 		} else {
251 			/*
252 			 * Read the current TLS pointer from tpidr_el0 as it may be
253 			 * out-of-sync with the saved value.
254 			 */
255 			asm("mrs %0, tpidr_el0" : "=r" (tls));
256 			if (stack_start) {
257 				/* 16-byte aligned stack mandatory on AArch64 */
258 				if (stack_start & 15)
259 					return -EINVAL;
260 				childregs->sp = stack_start;
261 			}
262 		}
263 		/*
264 		 * If a TLS pointer was passed to clone (4th argument), use it
265 		 * for the new thread.
266 		 */
267 		if (clone_flags & CLONE_SETTLS)
268 			tls = childregs->regs[3];
269 	} else {
270 		memset(childregs, 0, sizeof(struct pt_regs));
271 		childregs->pstate = PSR_MODE_EL1h;
272 		p->thread.cpu_context.x19 = stack_start;
273 		p->thread.cpu_context.x20 = stk_sz;
274 	}
275 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
276 	p->thread.cpu_context.sp = (unsigned long)childregs;
277 	p->thread.tp_value = tls;
278 
279 	ptrace_hw_copy_thread(p);
280 
281 	return 0;
282 }
283 
284 static void tls_thread_switch(struct task_struct *next)
285 {
286 	unsigned long tpidr, tpidrro;
287 
288 	if (!is_compat_task()) {
289 		asm("mrs %0, tpidr_el0" : "=r" (tpidr));
290 		current->thread.tp_value = tpidr;
291 	}
292 
293 	if (is_compat_thread(task_thread_info(next))) {
294 		tpidr = 0;
295 		tpidrro = next->thread.tp_value;
296 	} else {
297 		tpidr = next->thread.tp_value;
298 		tpidrro = 0;
299 	}
300 
301 	asm(
302 	"	msr	tpidr_el0, %0\n"
303 	"	msr	tpidrro_el0, %1"
304 	: : "r" (tpidr), "r" (tpidrro));
305 }
306 
307 /*
308  * Thread switching.
309  */
310 struct task_struct *__switch_to(struct task_struct *prev,
311 				struct task_struct *next)
312 {
313 	struct task_struct *last;
314 
315 	fpsimd_thread_switch(next);
316 	tls_thread_switch(next);
317 	hw_breakpoint_thread_switch(next);
318 
319 	/* the actual thread switch */
320 	last = cpu_switch_to(prev, next);
321 
322 	return last;
323 }
324 
325 unsigned long get_wchan(struct task_struct *p)
326 {
327 	struct stackframe frame;
328 	int count = 0;
329 	if (!p || p == current || p->state == TASK_RUNNING)
330 		return 0;
331 
332 	frame.fp = thread_saved_fp(p);
333 	frame.sp = thread_saved_sp(p);
334 	frame.pc = thread_saved_pc(p);
335 	do {
336 		int ret = unwind_frame(&frame);
337 		if (ret < 0)
338 			return 0;
339 		if (!in_sched_functions(frame.pc))
340 			return frame.pc;
341 	} while (count ++ < 16);
342 	return 0;
343 }
344 
345 unsigned long arch_align_stack(unsigned long sp)
346 {
347 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
348 		sp -= get_random_int() & ~PAGE_MASK;
349 	return sp & ~0xf;
350 }
351 
352 static unsigned long randomize_base(unsigned long base)
353 {
354 	unsigned long range_end = base + (STACK_RND_MASK << PAGE_SHIFT) + 1;
355 	return randomize_range(base, range_end, 0) ? : base;
356 }
357 
358 unsigned long arch_randomize_brk(struct mm_struct *mm)
359 {
360 	return randomize_base(mm->brk);
361 }
362 
363 unsigned long randomize_et_dyn(unsigned long base)
364 {
365 	return randomize_base(base);
366 }
367