xref: /linux/arch/arm64/kernel/process.c (revision b74710eaff314d6afe4fb0bbe9bc7657bf226fd4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/process.c
4  *
5  * Original Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 #include <linux/compat.h>
10 #include <linux/efi.h>
11 #include <linux/elf.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/mman.h>
19 #include <linux/mm.h>
20 #include <linux/nospec.h>
21 #include <linux/stddef.h>
22 #include <linux/sysctl.h>
23 #include <linux/unistd.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
31 #include <linux/pm.h>
32 #include <linux/tick.h>
33 #include <linux/utsname.h>
34 #include <linux/uaccess.h>
35 #include <linux/random.h>
36 #include <linux/hw_breakpoint.h>
37 #include <linux/personality.h>
38 #include <linux/notifier.h>
39 #include <trace/events/power.h>
40 #include <linux/percpu.h>
41 #include <linux/thread_info.h>
42 #include <linux/prctl.h>
43 #include <linux/stacktrace.h>
44 
45 #include <asm/alternative.h>
46 #include <asm/arch_timer.h>
47 #include <asm/compat.h>
48 #include <asm/cpufeature.h>
49 #include <asm/cacheflush.h>
50 #include <asm/exec.h>
51 #include <asm/fpsimd.h>
52 #include <asm/gcs.h>
53 #include <asm/mmu_context.h>
54 #include <asm/mte.h>
55 #include <asm/processor.h>
56 #include <asm/pointer_auth.h>
57 #include <asm/stacktrace.h>
58 #include <asm/switch_to.h>
59 #include <asm/system_misc.h>
60 
61 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
62 #include <linux/stackprotector.h>
63 unsigned long __stack_chk_guard __ro_after_init;
64 EXPORT_SYMBOL(__stack_chk_guard);
65 #endif
66 
67 /*
68  * Function pointers to optional machine specific functions
69  */
70 void (*pm_power_off)(void);
71 EXPORT_SYMBOL_GPL(pm_power_off);
72 
73 #ifdef CONFIG_HOTPLUG_CPU
74 void __noreturn arch_cpu_idle_dead(void)
75 {
76        cpu_die();
77 }
78 #endif
79 
80 /*
81  * Called by kexec, immediately prior to machine_kexec().
82  *
83  * This must completely disable all secondary CPUs; simply causing those CPUs
84  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
85  * kexec'd kernel to use any and all RAM as it sees fit, without having to
86  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
87  * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
88  */
89 void machine_shutdown(void)
90 {
91 	smp_shutdown_nonboot_cpus(reboot_cpu);
92 }
93 
94 /*
95  * Halting simply requires that the secondary CPUs stop performing any
96  * activity (executing tasks, handling interrupts). smp_send_stop()
97  * achieves this.
98  */
99 void machine_halt(void)
100 {
101 	local_irq_disable();
102 	smp_send_stop();
103 	while (1);
104 }
105 
106 /*
107  * Power-off simply requires that the secondary CPUs stop performing any
108  * activity (executing tasks, handling interrupts). smp_send_stop()
109  * achieves this. When the system power is turned off, it will take all CPUs
110  * with it.
111  */
112 void machine_power_off(void)
113 {
114 	local_irq_disable();
115 	smp_send_stop();
116 	do_kernel_power_off();
117 }
118 
119 /*
120  * Restart requires that the secondary CPUs stop performing any activity
121  * while the primary CPU resets the system. Systems with multiple CPUs must
122  * provide a HW restart implementation, to ensure that all CPUs reset at once.
123  * This is required so that any code running after reset on the primary CPU
124  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
125  * executing pre-reset code, and using RAM that the primary CPU's code wishes
126  * to use. Implementing such co-ordination would be essentially impossible.
127  */
128 void machine_restart(char *cmd)
129 {
130 	/* Disable interrupts first */
131 	local_irq_disable();
132 	smp_send_stop();
133 
134 	/*
135 	 * UpdateCapsule() depends on the system being reset via
136 	 * ResetSystem().
137 	 */
138 	if (efi_enabled(EFI_RUNTIME_SERVICES))
139 		efi_reboot(reboot_mode, NULL);
140 
141 	/* Now call the architecture specific reboot code. */
142 	do_kernel_restart(cmd);
143 
144 	/*
145 	 * Whoops - the architecture was unable to reboot.
146 	 */
147 	printk("Reboot failed -- System halted\n");
148 	while (1);
149 }
150 
151 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
152 static const char *const btypes[] = {
153 	bstr(NONE, "--"),
154 	bstr(  JC, "jc"),
155 	bstr(   C, "-c"),
156 	bstr(  J , "j-")
157 };
158 #undef bstr
159 
160 static void print_pstate(struct pt_regs *regs)
161 {
162 	u64 pstate = regs->pstate;
163 
164 	if (compat_user_mode(regs)) {
165 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
166 			pstate,
167 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
168 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
169 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
170 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
171 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
172 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
173 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
174 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
175 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
176 			pstate & PSR_AA32_F_BIT ? 'F' : 'f',
177 			pstate & PSR_AA32_DIT_BIT ? '+' : '-',
178 			pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
179 	} else {
180 		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
181 					       PSR_BTYPE_SHIFT];
182 
183 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
184 			pstate,
185 			pstate & PSR_N_BIT ? 'N' : 'n',
186 			pstate & PSR_Z_BIT ? 'Z' : 'z',
187 			pstate & PSR_C_BIT ? 'C' : 'c',
188 			pstate & PSR_V_BIT ? 'V' : 'v',
189 			pstate & PSR_D_BIT ? 'D' : 'd',
190 			pstate & PSR_A_BIT ? 'A' : 'a',
191 			pstate & PSR_I_BIT ? 'I' : 'i',
192 			pstate & PSR_F_BIT ? 'F' : 'f',
193 			pstate & PSR_PAN_BIT ? '+' : '-',
194 			pstate & PSR_UAO_BIT ? '+' : '-',
195 			pstate & PSR_TCO_BIT ? '+' : '-',
196 			pstate & PSR_DIT_BIT ? '+' : '-',
197 			pstate & PSR_SSBS_BIT ? '+' : '-',
198 			btype_str);
199 	}
200 }
201 
202 void __show_regs(struct pt_regs *regs)
203 {
204 	int i, top_reg;
205 	u64 lr, sp;
206 
207 	if (compat_user_mode(regs)) {
208 		lr = regs->compat_lr;
209 		sp = regs->compat_sp;
210 		top_reg = 12;
211 	} else {
212 		lr = regs->regs[30];
213 		sp = regs->sp;
214 		top_reg = 29;
215 	}
216 
217 	show_regs_print_info(KERN_DEFAULT);
218 	print_pstate(regs);
219 
220 	if (!user_mode(regs)) {
221 		printk("pc : %pS\n", (void *)regs->pc);
222 		printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr));
223 	} else {
224 		printk("pc : %016llx\n", regs->pc);
225 		printk("lr : %016llx\n", lr);
226 	}
227 
228 	printk("sp : %016llx\n", sp);
229 
230 	if (system_uses_irq_prio_masking())
231 		printk("pmr: %08x\n", regs->pmr);
232 
233 	i = top_reg;
234 
235 	while (i >= 0) {
236 		printk("x%-2d: %016llx", i, regs->regs[i]);
237 
238 		while (i-- % 3)
239 			pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
240 
241 		pr_cont("\n");
242 	}
243 }
244 
245 void show_regs(struct pt_regs *regs)
246 {
247 	__show_regs(regs);
248 	dump_backtrace(regs, NULL, KERN_DEFAULT);
249 }
250 
251 static void tls_thread_flush(void)
252 {
253 	write_sysreg(0, tpidr_el0);
254 	if (system_supports_tpidr2())
255 		write_sysreg_s(0, SYS_TPIDR2_EL0);
256 
257 	if (is_compat_task()) {
258 		current->thread.uw.tp_value = 0;
259 
260 		/*
261 		 * We need to ensure ordering between the shadow state and the
262 		 * hardware state, so that we don't corrupt the hardware state
263 		 * with a stale shadow state during context switch.
264 		 */
265 		barrier();
266 		write_sysreg(0, tpidrro_el0);
267 	}
268 }
269 
270 static void flush_tagged_addr_state(void)
271 {
272 	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
273 		clear_thread_flag(TIF_TAGGED_ADDR);
274 }
275 
276 static void flush_poe(void)
277 {
278 	if (!system_supports_poe())
279 		return;
280 
281 	write_sysreg_s(POR_EL0_INIT, SYS_POR_EL0);
282 }
283 
284 #ifdef CONFIG_ARM64_GCS
285 
286 static void flush_gcs(void)
287 {
288 	if (!system_supports_gcs())
289 		return;
290 
291 	gcs_free(current);
292 	current->thread.gcs_el0_mode = 0;
293 	write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1);
294 	write_sysreg_s(0, SYS_GCSPR_EL0);
295 }
296 
297 static int copy_thread_gcs(struct task_struct *p,
298 			   const struct kernel_clone_args *args)
299 {
300 	unsigned long gcs;
301 
302 	if (!system_supports_gcs())
303 		return 0;
304 
305 	p->thread.gcs_base = 0;
306 	p->thread.gcs_size = 0;
307 
308 	gcs = gcs_alloc_thread_stack(p, args);
309 	if (IS_ERR_VALUE(gcs))
310 		return PTR_ERR((void *)gcs);
311 
312 	p->thread.gcs_el0_mode = current->thread.gcs_el0_mode;
313 	p->thread.gcs_el0_locked = current->thread.gcs_el0_locked;
314 
315 	return 0;
316 }
317 
318 #else
319 
320 static void flush_gcs(void) { }
321 static int copy_thread_gcs(struct task_struct *p,
322 			   const struct kernel_clone_args *args)
323 {
324 	return 0;
325 }
326 
327 #endif
328 
329 void flush_thread(void)
330 {
331 	fpsimd_flush_thread();
332 	tls_thread_flush();
333 	flush_ptrace_hw_breakpoint(current);
334 	flush_tagged_addr_state();
335 	flush_poe();
336 	flush_gcs();
337 }
338 
339 void arch_release_task_struct(struct task_struct *tsk)
340 {
341 	fpsimd_release_task(tsk);
342 	gcs_free(tsk);
343 }
344 
345 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
346 {
347 	/*
348 	 * The current/src task's FPSIMD state may or may not be live, and may
349 	 * have been altered by ptrace after entry to the kernel. Save the
350 	 * effective FPSIMD state so that this will be copied into dst.
351 	 */
352 	fpsimd_save_and_flush_current_state();
353 	fpsimd_sync_from_effective_state(src);
354 
355 	*dst = *src;
356 
357 	/*
358 	 * Drop stale reference to src's sve_state and convert dst to
359 	 * non-streaming FPSIMD mode.
360 	 */
361 	dst->thread.fp_type = FP_STATE_FPSIMD;
362 	dst->thread.sve_state = NULL;
363 	clear_tsk_thread_flag(dst, TIF_SVE);
364 	task_smstop_sm(dst);
365 
366 	/*
367 	 * Drop stale reference to src's sme_state and ensure dst has ZA
368 	 * disabled.
369 	 *
370 	 * When necessary, ZA will be inherited later in copy_thread_za().
371 	 */
372 	dst->thread.sme_state = NULL;
373 	clear_tsk_thread_flag(dst, TIF_SME);
374 	dst->thread.svcr &= ~SVCR_ZA_MASK;
375 
376 	/* clear any pending asynchronous tag fault raised by the parent */
377 	clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
378 
379 	return 0;
380 }
381 
382 static int copy_thread_za(struct task_struct *dst, struct task_struct *src)
383 {
384 	if (!thread_za_enabled(&src->thread))
385 		return 0;
386 
387 	dst->thread.sve_state = kzalloc(sve_state_size(src),
388 					GFP_KERNEL);
389 	if (!dst->thread.sve_state)
390 		return -ENOMEM;
391 
392 	dst->thread.sme_state = kmemdup(src->thread.sme_state,
393 					sme_state_size(src),
394 					GFP_KERNEL);
395 	if (!dst->thread.sme_state) {
396 		kfree(dst->thread.sve_state);
397 		dst->thread.sve_state = NULL;
398 		return -ENOMEM;
399 	}
400 
401 	set_tsk_thread_flag(dst, TIF_SME);
402 	dst->thread.svcr |= SVCR_ZA_MASK;
403 
404 	return 0;
405 }
406 
407 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
408 
409 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
410 {
411 	unsigned long clone_flags = args->flags;
412 	unsigned long stack_start = args->stack;
413 	unsigned long tls = args->tls;
414 	struct pt_regs *childregs = task_pt_regs(p);
415 	int ret;
416 
417 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
418 
419 	/*
420 	 * In case p was allocated the same task_struct pointer as some
421 	 * other recently-exited task, make sure p is disassociated from
422 	 * any cpu that may have run that now-exited task recently.
423 	 * Otherwise we could erroneously skip reloading the FPSIMD
424 	 * registers for p.
425 	 */
426 	fpsimd_flush_task_state(p);
427 
428 	ptrauth_thread_init_kernel(p);
429 
430 	if (likely(!args->fn)) {
431 		*childregs = *current_pt_regs();
432 		childregs->regs[0] = 0;
433 
434 		/*
435 		 * Read the current TLS pointer from tpidr_el0 as it may be
436 		 * out-of-sync with the saved value.
437 		 */
438 		*task_user_tls(p) = read_sysreg(tpidr_el0);
439 
440 		if (system_supports_poe())
441 			p->thread.por_el0 = read_sysreg_s(SYS_POR_EL0);
442 
443 		if (stack_start) {
444 			if (is_compat_thread(task_thread_info(p)))
445 				childregs->compat_sp = stack_start;
446 			else
447 				childregs->sp = stack_start;
448 		}
449 
450 		/*
451 		 * Due to the AAPCS64 "ZA lazy saving scheme", PSTATE.ZA and
452 		 * TPIDR2 need to be manipulated as a pair, and either both
453 		 * need to be inherited or both need to be reset.
454 		 *
455 		 * Within a process, child threads must not inherit their
456 		 * parent's TPIDR2 value or they may clobber their parent's
457 		 * stack at some later point.
458 		 *
459 		 * When a process is fork()'d, the child must inherit ZA and
460 		 * TPIDR2 from its parent in case there was dormant ZA state.
461 		 *
462 		 * Use CLONE_VM to determine when the child will share the
463 		 * address space with the parent, and cannot safely inherit the
464 		 * state.
465 		 */
466 		if (system_supports_sme()) {
467 			if (!(clone_flags & CLONE_VM)) {
468 				p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
469 				ret = copy_thread_za(p, current);
470 				if (ret)
471 					return ret;
472 			} else {
473 				p->thread.tpidr2_el0 = 0;
474 				WARN_ON_ONCE(p->thread.svcr & SVCR_ZA_MASK);
475 			}
476 		}
477 
478 		/*
479 		 * If a TLS pointer was passed to clone, use it for the new
480 		 * thread.
481 		 */
482 		if (clone_flags & CLONE_SETTLS)
483 			p->thread.uw.tp_value = tls;
484 
485 		ret = copy_thread_gcs(p, args);
486 		if (ret != 0)
487 			return ret;
488 	} else {
489 		/*
490 		 * A kthread has no context to ERET to, so ensure any buggy
491 		 * ERET is treated as an illegal exception return.
492 		 *
493 		 * When a user task is created from a kthread, childregs will
494 		 * be initialized by start_thread() or start_compat_thread().
495 		 */
496 		memset(childregs, 0, sizeof(struct pt_regs));
497 		childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
498 		childregs->stackframe.type = FRAME_META_TYPE_FINAL;
499 
500 		p->thread.cpu_context.x19 = (unsigned long)args->fn;
501 		p->thread.cpu_context.x20 = (unsigned long)args->fn_arg;
502 
503 		if (system_supports_poe())
504 			p->thread.por_el0 = POR_EL0_INIT;
505 	}
506 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
507 	p->thread.cpu_context.sp = (unsigned long)childregs;
508 	/*
509 	 * For the benefit of the unwinder, set up childregs->stackframe
510 	 * as the final frame for the new task.
511 	 */
512 	p->thread.cpu_context.fp = (unsigned long)&childregs->stackframe;
513 
514 	ptrace_hw_copy_thread(p);
515 
516 	return 0;
517 }
518 
519 void tls_preserve_current_state(void)
520 {
521 	*task_user_tls(current) = read_sysreg(tpidr_el0);
522 	if (system_supports_tpidr2() && !is_compat_task())
523 		current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
524 }
525 
526 static void tls_thread_switch(struct task_struct *next)
527 {
528 	tls_preserve_current_state();
529 
530 	if (is_compat_thread(task_thread_info(next)))
531 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
532 	else
533 		write_sysreg(0, tpidrro_el0);
534 
535 	write_sysreg(*task_user_tls(next), tpidr_el0);
536 	if (system_supports_tpidr2())
537 		write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0);
538 }
539 
540 /*
541  * Force SSBS state on context-switch, since it may be lost after migrating
542  * from a CPU which treats the bit as RES0 in a heterogeneous system.
543  */
544 static void ssbs_thread_switch(struct task_struct *next)
545 {
546 	/*
547 	 * Nothing to do for kernel threads, but 'regs' may be junk
548 	 * (e.g. idle task) so check the flags and bail early.
549 	 */
550 	if (unlikely(next->flags & PF_KTHREAD))
551 		return;
552 
553 	/*
554 	 * If all CPUs implement the SSBS extension, then we just need to
555 	 * context-switch the PSTATE field.
556 	 */
557 	if (alternative_has_cap_unlikely(ARM64_SSBS))
558 		return;
559 
560 	spectre_v4_enable_task_mitigation(next);
561 }
562 
563 /*
564  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
565  * shadow copy so that we can restore this upon entry from userspace.
566  *
567  * This is *only* for exception entry from EL0, and is not valid until we
568  * __switch_to() a user task.
569  */
570 DEFINE_PER_CPU(struct task_struct *, __entry_task);
571 
572 static void entry_task_switch(struct task_struct *next)
573 {
574 	__this_cpu_write(__entry_task, next);
575 }
576 
577 #ifdef CONFIG_ARM64_GCS
578 
579 void gcs_preserve_current_state(void)
580 {
581 	current->thread.gcspr_el0 = read_sysreg_s(SYS_GCSPR_EL0);
582 }
583 
584 static void gcs_thread_switch(struct task_struct *next)
585 {
586 	if (!system_supports_gcs())
587 		return;
588 
589 	/* GCSPR_EL0 is always readable */
590 	gcs_preserve_current_state();
591 	write_sysreg_s(next->thread.gcspr_el0, SYS_GCSPR_EL0);
592 
593 	if (current->thread.gcs_el0_mode != next->thread.gcs_el0_mode)
594 		gcs_set_el0_mode(next);
595 
596 	/*
597 	 * Ensure that GCS memory effects of the 'prev' thread are
598 	 * ordered before other memory accesses with release semantics
599 	 * (or preceded by a DMB) on the current PE. In addition, any
600 	 * memory accesses with acquire semantics (or succeeded by a
601 	 * DMB) are ordered before GCS memory effects of the 'next'
602 	 * thread. This will ensure that the GCS memory effects are
603 	 * visible to other PEs in case of migration.
604 	 */
605 	if (task_gcs_el0_enabled(current) || task_gcs_el0_enabled(next))
606 		gcsb_dsync();
607 }
608 
609 #else
610 
611 static void gcs_thread_switch(struct task_struct *next)
612 {
613 }
614 
615 #endif
616 
617 /*
618  * Handle sysreg updates for ARM erratum 1418040 which affects the 32bit view of
619  * CNTVCT, various other errata which require trapping all CNTVCT{,_EL0}
620  * accesses and prctl(PR_SET_TSC). Ensure access is disabled iff a workaround is
621  * required or PR_TSC_SIGSEGV is set.
622  */
623 static void update_cntkctl_el1(struct task_struct *next)
624 {
625 	struct thread_info *ti = task_thread_info(next);
626 
627 	if (test_ti_thread_flag(ti, TIF_TSC_SIGSEGV) ||
628 	    has_erratum_handler(read_cntvct_el0) ||
629 	    (IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) &&
630 	     this_cpu_has_cap(ARM64_WORKAROUND_1418040) &&
631 	     is_compat_thread(ti)))
632 		sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0);
633 	else
634 		sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN);
635 }
636 
637 static void cntkctl_thread_switch(struct task_struct *prev,
638 				  struct task_struct *next)
639 {
640 	if ((read_ti_thread_flags(task_thread_info(prev)) &
641 	     (_TIF_32BIT | _TIF_TSC_SIGSEGV)) !=
642 	    (read_ti_thread_flags(task_thread_info(next)) &
643 	     (_TIF_32BIT | _TIF_TSC_SIGSEGV)))
644 		update_cntkctl_el1(next);
645 }
646 
647 static int do_set_tsc_mode(unsigned int val)
648 {
649 	bool tsc_sigsegv;
650 
651 	if (val == PR_TSC_SIGSEGV)
652 		tsc_sigsegv = true;
653 	else if (val == PR_TSC_ENABLE)
654 		tsc_sigsegv = false;
655 	else
656 		return -EINVAL;
657 
658 	preempt_disable();
659 	update_thread_flag(TIF_TSC_SIGSEGV, tsc_sigsegv);
660 	update_cntkctl_el1(current);
661 	preempt_enable();
662 
663 	return 0;
664 }
665 
666 static void permission_overlay_switch(struct task_struct *next)
667 {
668 	if (!system_supports_poe())
669 		return;
670 
671 	current->thread.por_el0 = read_sysreg_s(SYS_POR_EL0);
672 	if (current->thread.por_el0 != next->thread.por_el0) {
673 		write_sysreg_s(next->thread.por_el0, SYS_POR_EL0);
674 	}
675 }
676 
677 /*
678  * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
679  * this function must be called with preemption disabled and the update to
680  * sctlr_user must be made in the same preemption disabled block so that
681  * __switch_to() does not see the variable update before the SCTLR_EL1 one.
682  */
683 void update_sctlr_el1(u64 sctlr)
684 {
685 	/*
686 	 * EnIA must not be cleared while in the kernel as this is necessary for
687 	 * in-kernel PAC. It will be cleared on kernel exit if needed.
688 	 */
689 	sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
690 
691 	/* ISB required for the kernel uaccess routines when setting TCF0. */
692 	isb();
693 }
694 
695 /*
696  * Thread switching.
697  */
698 __notrace_funcgraph __sched
699 struct task_struct *__switch_to(struct task_struct *prev,
700 				struct task_struct *next)
701 {
702 	struct task_struct *last;
703 
704 	fpsimd_thread_switch(next);
705 	tls_thread_switch(next);
706 	hw_breakpoint_thread_switch(next);
707 	contextidr_thread_switch(next);
708 	entry_task_switch(next);
709 	ssbs_thread_switch(next);
710 	cntkctl_thread_switch(prev, next);
711 	ptrauth_thread_switch_user(next);
712 	permission_overlay_switch(next);
713 	gcs_thread_switch(next);
714 
715 	/*
716 	 * Complete any pending TLB or cache maintenance on this CPU in case the
717 	 * thread migrates to a different CPU. This full barrier is also
718 	 * required by the membarrier system call. Additionally it makes any
719 	 * in-progress pgtable writes visible to the table walker; See
720 	 * emit_pte_barriers().
721 	 */
722 	dsb(ish);
723 
724 	/*
725 	 * MTE thread switching must happen after the DSB above to ensure that
726 	 * any asynchronous tag check faults have been logged in the TFSR*_EL1
727 	 * registers.
728 	 */
729 	mte_thread_switch(next);
730 	/* avoid expensive SCTLR_EL1 accesses if no change */
731 	if (prev->thread.sctlr_user != next->thread.sctlr_user)
732 		update_sctlr_el1(next->thread.sctlr_user);
733 
734 	/* the actual thread switch */
735 	last = cpu_switch_to(prev, next);
736 
737 	return last;
738 }
739 
740 struct wchan_info {
741 	unsigned long	pc;
742 	int		count;
743 };
744 
745 static bool get_wchan_cb(void *arg, unsigned long pc)
746 {
747 	struct wchan_info *wchan_info = arg;
748 
749 	if (!in_sched_functions(pc)) {
750 		wchan_info->pc = pc;
751 		return false;
752 	}
753 	return wchan_info->count++ < 16;
754 }
755 
756 unsigned long __get_wchan(struct task_struct *p)
757 {
758 	struct wchan_info wchan_info = {
759 		.pc = 0,
760 		.count = 0,
761 	};
762 
763 	if (!try_get_task_stack(p))
764 		return 0;
765 
766 	arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL);
767 
768 	put_task_stack(p);
769 
770 	return wchan_info.pc;
771 }
772 
773 unsigned long arch_align_stack(unsigned long sp)
774 {
775 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
776 		sp -= get_random_u32_below(PAGE_SIZE);
777 	return sp & ~0xf;
778 }
779 
780 #ifdef CONFIG_COMPAT
781 int compat_elf_check_arch(const struct elf32_hdr *hdr)
782 {
783 	if (!system_supports_32bit_el0())
784 		return false;
785 
786 	if ((hdr)->e_machine != EM_ARM)
787 		return false;
788 
789 	if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
790 		return false;
791 
792 	/*
793 	 * Prevent execve() of a 32-bit program from a deadline task
794 	 * if the restricted affinity mask would be inadmissible on an
795 	 * asymmetric system.
796 	 */
797 	return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
798 	       !dl_task_check_affinity(current, system_32bit_el0_cpumask());
799 }
800 #endif
801 
802 /*
803  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
804  */
805 void arch_setup_new_exec(void)
806 {
807 	unsigned long mmflags = 0;
808 
809 	if (is_compat_task()) {
810 		mmflags = MMCF_AARCH32;
811 
812 		/*
813 		 * Restrict the CPU affinity mask for a 32-bit task so that
814 		 * it contains only 32-bit-capable CPUs.
815 		 *
816 		 * From the perspective of the task, this looks similar to
817 		 * what would happen if the 64-bit-only CPUs were hot-unplugged
818 		 * at the point of execve(), although we try a bit harder to
819 		 * honour the cpuset hierarchy.
820 		 */
821 		if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
822 			force_compatible_cpus_allowed_ptr(current);
823 	} else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
824 		relax_compatible_cpus_allowed_ptr(current);
825 	}
826 
827 	current->mm->context.flags = mmflags;
828 	ptrauth_thread_init_user();
829 	mte_thread_init_user();
830 	do_set_tsc_mode(PR_TSC_ENABLE);
831 
832 	if (task_spec_ssb_noexec(current)) {
833 		arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
834 					 PR_SPEC_ENABLE);
835 	}
836 }
837 
838 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
839 /*
840  * Control the relaxed ABI allowing tagged user addresses into the kernel.
841  */
842 static unsigned int tagged_addr_disabled;
843 
844 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
845 {
846 	unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
847 	struct thread_info *ti = task_thread_info(task);
848 
849 	if (is_compat_thread(ti))
850 		return -EINVAL;
851 
852 	if (system_supports_mte())
853 		valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \
854 			| PR_MTE_TAG_MASK;
855 
856 	if (arg & ~valid_mask)
857 		return -EINVAL;
858 
859 	/*
860 	 * Do not allow the enabling of the tagged address ABI if globally
861 	 * disabled via sysctl abi.tagged_addr_disabled.
862 	 */
863 	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
864 		return -EINVAL;
865 
866 	if (set_mte_ctrl(task, arg) != 0)
867 		return -EINVAL;
868 
869 	update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
870 
871 	return 0;
872 }
873 
874 long get_tagged_addr_ctrl(struct task_struct *task)
875 {
876 	long ret = 0;
877 	struct thread_info *ti = task_thread_info(task);
878 
879 	if (is_compat_thread(ti))
880 		return -EINVAL;
881 
882 	if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
883 		ret = PR_TAGGED_ADDR_ENABLE;
884 
885 	ret |= get_mte_ctrl(task);
886 
887 	return ret;
888 }
889 
890 /*
891  * Global sysctl to disable the tagged user addresses support. This control
892  * only prevents the tagged address ABI enabling via prctl() and does not
893  * disable it for tasks that already opted in to the relaxed ABI.
894  */
895 
896 static const struct ctl_table tagged_addr_sysctl_table[] = {
897 	{
898 		.procname	= "tagged_addr_disabled",
899 		.mode		= 0644,
900 		.data		= &tagged_addr_disabled,
901 		.maxlen		= sizeof(int),
902 		.proc_handler	= proc_dointvec_minmax,
903 		.extra1		= SYSCTL_ZERO,
904 		.extra2		= SYSCTL_ONE,
905 	},
906 };
907 
908 static int __init tagged_addr_init(void)
909 {
910 	if (!register_sysctl("abi", tagged_addr_sysctl_table))
911 		return -EINVAL;
912 	return 0;
913 }
914 
915 core_initcall(tagged_addr_init);
916 #endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
917 
918 #ifdef CONFIG_BINFMT_ELF
919 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
920 			 bool has_interp, bool is_interp)
921 {
922 	/*
923 	 * For dynamically linked executables the interpreter is
924 	 * responsible for setting PROT_BTI on everything except
925 	 * itself.
926 	 */
927 	if (is_interp != has_interp)
928 		return prot;
929 
930 	if (!(state->flags & ARM64_ELF_BTI))
931 		return prot;
932 
933 	if (prot & PROT_EXEC)
934 		prot |= PROT_BTI;
935 
936 	return prot;
937 }
938 #endif
939 
940 int get_tsc_mode(unsigned long adr)
941 {
942 	unsigned int val;
943 
944 	if (is_compat_task())
945 		return -EINVAL;
946 
947 	if (test_thread_flag(TIF_TSC_SIGSEGV))
948 		val = PR_TSC_SIGSEGV;
949 	else
950 		val = PR_TSC_ENABLE;
951 
952 	return put_user(val, (unsigned int __user *)adr);
953 }
954 
955 int set_tsc_mode(unsigned int val)
956 {
957 	if (is_compat_task())
958 		return -EINVAL;
959 
960 	return do_set_tsc_mode(val);
961 }
962