1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/process.c 4 * 5 * Original Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 #include <linux/compat.h> 10 #include <linux/efi.h> 11 #include <linux/elf.h> 12 #include <linux/export.h> 13 #include <linux/sched.h> 14 #include <linux/sched/debug.h> 15 #include <linux/sched/task.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/kernel.h> 18 #include <linux/mman.h> 19 #include <linux/mm.h> 20 #include <linux/nospec.h> 21 #include <linux/stddef.h> 22 #include <linux/sysctl.h> 23 #include <linux/unistd.h> 24 #include <linux/user.h> 25 #include <linux/delay.h> 26 #include <linux/reboot.h> 27 #include <linux/interrupt.h> 28 #include <linux/init.h> 29 #include <linux/cpu.h> 30 #include <linux/elfcore.h> 31 #include <linux/pm.h> 32 #include <linux/tick.h> 33 #include <linux/utsname.h> 34 #include <linux/uaccess.h> 35 #include <linux/random.h> 36 #include <linux/hw_breakpoint.h> 37 #include <linux/personality.h> 38 #include <linux/notifier.h> 39 #include <trace/events/power.h> 40 #include <linux/percpu.h> 41 #include <linux/thread_info.h> 42 #include <linux/prctl.h> 43 #include <linux/stacktrace.h> 44 45 #include <asm/alternative.h> 46 #include <asm/arch_timer.h> 47 #include <asm/compat.h> 48 #include <asm/cpufeature.h> 49 #include <asm/cacheflush.h> 50 #include <asm/exec.h> 51 #include <asm/fpsimd.h> 52 #include <asm/gcs.h> 53 #include <asm/mmu_context.h> 54 #include <asm/mte.h> 55 #include <asm/processor.h> 56 #include <asm/pointer_auth.h> 57 #include <asm/stacktrace.h> 58 #include <asm/switch_to.h> 59 #include <asm/system_misc.h> 60 61 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) 62 #include <linux/stackprotector.h> 63 unsigned long __stack_chk_guard __ro_after_init; 64 EXPORT_SYMBOL(__stack_chk_guard); 65 #endif 66 67 /* 68 * Function pointers to optional machine specific functions 69 */ 70 void (*pm_power_off)(void); 71 EXPORT_SYMBOL_GPL(pm_power_off); 72 73 #ifdef CONFIG_HOTPLUG_CPU 74 void __noreturn arch_cpu_idle_dead(void) 75 { 76 cpu_die(); 77 } 78 #endif 79 80 /* 81 * Called by kexec, immediately prior to machine_kexec(). 82 * 83 * This must completely disable all secondary CPUs; simply causing those CPUs 84 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 85 * kexec'd kernel to use any and all RAM as it sees fit, without having to 86 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 87 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this. 88 */ 89 void machine_shutdown(void) 90 { 91 smp_shutdown_nonboot_cpus(reboot_cpu); 92 } 93 94 /* 95 * Halting simply requires that the secondary CPUs stop performing any 96 * activity (executing tasks, handling interrupts). smp_send_stop() 97 * achieves this. 98 */ 99 void machine_halt(void) 100 { 101 local_irq_disable(); 102 smp_send_stop(); 103 while (1); 104 } 105 106 /* 107 * Power-off simply requires that the secondary CPUs stop performing any 108 * activity (executing tasks, handling interrupts). smp_send_stop() 109 * achieves this. When the system power is turned off, it will take all CPUs 110 * with it. 111 */ 112 void machine_power_off(void) 113 { 114 local_irq_disable(); 115 smp_send_stop(); 116 do_kernel_power_off(); 117 } 118 119 /* 120 * Restart requires that the secondary CPUs stop performing any activity 121 * while the primary CPU resets the system. Systems with multiple CPUs must 122 * provide a HW restart implementation, to ensure that all CPUs reset at once. 123 * This is required so that any code running after reset on the primary CPU 124 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 125 * executing pre-reset code, and using RAM that the primary CPU's code wishes 126 * to use. Implementing such co-ordination would be essentially impossible. 127 */ 128 void machine_restart(char *cmd) 129 { 130 /* Disable interrupts first */ 131 local_irq_disable(); 132 smp_send_stop(); 133 134 /* 135 * UpdateCapsule() depends on the system being reset via 136 * ResetSystem(). 137 */ 138 if (efi_enabled(EFI_RUNTIME_SERVICES)) 139 efi_reboot(reboot_mode, NULL); 140 141 /* Now call the architecture specific reboot code. */ 142 do_kernel_restart(cmd); 143 144 /* 145 * Whoops - the architecture was unable to reboot. 146 */ 147 printk("Reboot failed -- System halted\n"); 148 while (1); 149 } 150 151 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str 152 static const char *const btypes[] = { 153 bstr(NONE, "--"), 154 bstr( JC, "jc"), 155 bstr( C, "-c"), 156 bstr( J , "j-") 157 }; 158 #undef bstr 159 160 static void print_pstate(struct pt_regs *regs) 161 { 162 u64 pstate = regs->pstate; 163 164 if (compat_user_mode(regs)) { 165 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n", 166 pstate, 167 pstate & PSR_AA32_N_BIT ? 'N' : 'n', 168 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', 169 pstate & PSR_AA32_C_BIT ? 'C' : 'c', 170 pstate & PSR_AA32_V_BIT ? 'V' : 'v', 171 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', 172 pstate & PSR_AA32_T_BIT ? "T32" : "A32", 173 pstate & PSR_AA32_E_BIT ? "BE" : "LE", 174 pstate & PSR_AA32_A_BIT ? 'A' : 'a', 175 pstate & PSR_AA32_I_BIT ? 'I' : 'i', 176 pstate & PSR_AA32_F_BIT ? 'F' : 'f', 177 pstate & PSR_AA32_DIT_BIT ? '+' : '-', 178 pstate & PSR_AA32_SSBS_BIT ? '+' : '-'); 179 } else { 180 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >> 181 PSR_BTYPE_SHIFT]; 182 183 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n", 184 pstate, 185 pstate & PSR_N_BIT ? 'N' : 'n', 186 pstate & PSR_Z_BIT ? 'Z' : 'z', 187 pstate & PSR_C_BIT ? 'C' : 'c', 188 pstate & PSR_V_BIT ? 'V' : 'v', 189 pstate & PSR_D_BIT ? 'D' : 'd', 190 pstate & PSR_A_BIT ? 'A' : 'a', 191 pstate & PSR_I_BIT ? 'I' : 'i', 192 pstate & PSR_F_BIT ? 'F' : 'f', 193 pstate & PSR_PAN_BIT ? '+' : '-', 194 pstate & PSR_UAO_BIT ? '+' : '-', 195 pstate & PSR_TCO_BIT ? '+' : '-', 196 pstate & PSR_DIT_BIT ? '+' : '-', 197 pstate & PSR_SSBS_BIT ? '+' : '-', 198 btype_str); 199 } 200 } 201 202 void __show_regs(struct pt_regs *regs) 203 { 204 int i, top_reg; 205 u64 lr, sp; 206 207 if (compat_user_mode(regs)) { 208 lr = regs->compat_lr; 209 sp = regs->compat_sp; 210 top_reg = 12; 211 } else { 212 lr = regs->regs[30]; 213 sp = regs->sp; 214 top_reg = 29; 215 } 216 217 show_regs_print_info(KERN_DEFAULT); 218 print_pstate(regs); 219 220 if (!user_mode(regs)) { 221 printk("pc : %pS\n", (void *)regs->pc); 222 printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr)); 223 } else { 224 printk("pc : %016llx\n", regs->pc); 225 printk("lr : %016llx\n", lr); 226 } 227 228 printk("sp : %016llx\n", sp); 229 230 if (system_uses_irq_prio_masking()) 231 printk("pmr: %08x\n", regs->pmr); 232 233 i = top_reg; 234 235 while (i >= 0) { 236 printk("x%-2d: %016llx", i, regs->regs[i]); 237 238 while (i-- % 3) 239 pr_cont(" x%-2d: %016llx", i, regs->regs[i]); 240 241 pr_cont("\n"); 242 } 243 } 244 245 void show_regs(struct pt_regs *regs) 246 { 247 __show_regs(regs); 248 dump_backtrace(regs, NULL, KERN_DEFAULT); 249 } 250 251 static void tls_thread_flush(void) 252 { 253 write_sysreg(0, tpidr_el0); 254 if (system_supports_tpidr2()) 255 write_sysreg_s(0, SYS_TPIDR2_EL0); 256 257 if (is_compat_task()) { 258 current->thread.uw.tp_value = 0; 259 260 /* 261 * We need to ensure ordering between the shadow state and the 262 * hardware state, so that we don't corrupt the hardware state 263 * with a stale shadow state during context switch. 264 */ 265 barrier(); 266 write_sysreg(0, tpidrro_el0); 267 } 268 } 269 270 static void flush_tagged_addr_state(void) 271 { 272 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) 273 clear_thread_flag(TIF_TAGGED_ADDR); 274 } 275 276 static void flush_poe(void) 277 { 278 if (!system_supports_poe()) 279 return; 280 281 write_sysreg_s(POR_EL0_INIT, SYS_POR_EL0); 282 } 283 284 #ifdef CONFIG_ARM64_GCS 285 286 static void flush_gcs(void) 287 { 288 if (!system_supports_gcs()) 289 return; 290 291 current->thread.gcspr_el0 = 0; 292 current->thread.gcs_base = 0; 293 current->thread.gcs_size = 0; 294 current->thread.gcs_el0_mode = 0; 295 write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1); 296 write_sysreg_s(0, SYS_GCSPR_EL0); 297 } 298 299 static int copy_thread_gcs(struct task_struct *p, 300 const struct kernel_clone_args *args) 301 { 302 unsigned long gcs; 303 304 if (!system_supports_gcs()) 305 return 0; 306 307 p->thread.gcs_base = 0; 308 p->thread.gcs_size = 0; 309 310 gcs = gcs_alloc_thread_stack(p, args); 311 if (IS_ERR_VALUE(gcs)) 312 return PTR_ERR((void *)gcs); 313 314 p->thread.gcs_el0_mode = current->thread.gcs_el0_mode; 315 p->thread.gcs_el0_locked = current->thread.gcs_el0_locked; 316 317 return 0; 318 } 319 320 #else 321 322 static void flush_gcs(void) { } 323 static int copy_thread_gcs(struct task_struct *p, 324 const struct kernel_clone_args *args) 325 { 326 return 0; 327 } 328 329 #endif 330 331 void flush_thread(void) 332 { 333 fpsimd_flush_thread(); 334 tls_thread_flush(); 335 flush_ptrace_hw_breakpoint(current); 336 flush_tagged_addr_state(); 337 flush_poe(); 338 flush_gcs(); 339 } 340 341 void arch_release_task_struct(struct task_struct *tsk) 342 { 343 fpsimd_release_task(tsk); 344 gcs_free(tsk); 345 } 346 347 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 348 { 349 /* 350 * The current/src task's FPSIMD state may or may not be live, and may 351 * have been altered by ptrace after entry to the kernel. Save the 352 * effective FPSIMD state so that this will be copied into dst. 353 */ 354 fpsimd_save_and_flush_current_state(); 355 fpsimd_sync_from_effective_state(src); 356 357 *dst = *src; 358 359 /* 360 * Drop stale reference to src's sve_state and convert dst to 361 * non-streaming FPSIMD mode. 362 */ 363 dst->thread.fp_type = FP_STATE_FPSIMD; 364 dst->thread.sve_state = NULL; 365 clear_tsk_thread_flag(dst, TIF_SVE); 366 task_smstop_sm(dst); 367 368 /* 369 * Drop stale reference to src's sme_state and ensure dst has ZA 370 * disabled. 371 * 372 * When necessary, ZA will be inherited later in copy_thread_za(). 373 */ 374 dst->thread.sme_state = NULL; 375 clear_tsk_thread_flag(dst, TIF_SME); 376 dst->thread.svcr &= ~SVCR_ZA_MASK; 377 378 /* clear any pending asynchronous tag fault raised by the parent */ 379 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT); 380 381 return 0; 382 } 383 384 static int copy_thread_za(struct task_struct *dst, struct task_struct *src) 385 { 386 if (!thread_za_enabled(&src->thread)) 387 return 0; 388 389 dst->thread.sve_state = kzalloc(sve_state_size(src), 390 GFP_KERNEL); 391 if (!dst->thread.sve_state) 392 return -ENOMEM; 393 394 dst->thread.sme_state = kmemdup(src->thread.sme_state, 395 sme_state_size(src), 396 GFP_KERNEL); 397 if (!dst->thread.sme_state) { 398 kfree(dst->thread.sve_state); 399 dst->thread.sve_state = NULL; 400 return -ENOMEM; 401 } 402 403 set_tsk_thread_flag(dst, TIF_SME); 404 dst->thread.svcr |= SVCR_ZA_MASK; 405 406 return 0; 407 } 408 409 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 410 411 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) 412 { 413 unsigned long clone_flags = args->flags; 414 unsigned long stack_start = args->stack; 415 unsigned long tls = args->tls; 416 struct pt_regs *childregs = task_pt_regs(p); 417 int ret; 418 419 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 420 421 /* 422 * In case p was allocated the same task_struct pointer as some 423 * other recently-exited task, make sure p is disassociated from 424 * any cpu that may have run that now-exited task recently. 425 * Otherwise we could erroneously skip reloading the FPSIMD 426 * registers for p. 427 */ 428 fpsimd_flush_task_state(p); 429 430 ptrauth_thread_init_kernel(p); 431 432 if (likely(!args->fn)) { 433 *childregs = *current_pt_regs(); 434 childregs->regs[0] = 0; 435 436 /* 437 * Read the current TLS pointer from tpidr_el0 as it may be 438 * out-of-sync with the saved value. 439 */ 440 *task_user_tls(p) = read_sysreg(tpidr_el0); 441 442 if (system_supports_poe()) 443 p->thread.por_el0 = read_sysreg_s(SYS_POR_EL0); 444 445 if (stack_start) { 446 if (is_compat_thread(task_thread_info(p))) 447 childregs->compat_sp = stack_start; 448 else 449 childregs->sp = stack_start; 450 } 451 452 /* 453 * Due to the AAPCS64 "ZA lazy saving scheme", PSTATE.ZA and 454 * TPIDR2 need to be manipulated as a pair, and either both 455 * need to be inherited or both need to be reset. 456 * 457 * Within a process, child threads must not inherit their 458 * parent's TPIDR2 value or they may clobber their parent's 459 * stack at some later point. 460 * 461 * When a process is fork()'d, the child must inherit ZA and 462 * TPIDR2 from its parent in case there was dormant ZA state. 463 * 464 * Use CLONE_VM to determine when the child will share the 465 * address space with the parent, and cannot safely inherit the 466 * state. 467 */ 468 if (system_supports_sme()) { 469 if (!(clone_flags & CLONE_VM)) { 470 p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0); 471 ret = copy_thread_za(p, current); 472 if (ret) 473 return ret; 474 } else { 475 p->thread.tpidr2_el0 = 0; 476 WARN_ON_ONCE(p->thread.svcr & SVCR_ZA_MASK); 477 } 478 } 479 480 /* 481 * If a TLS pointer was passed to clone, use it for the new 482 * thread. 483 */ 484 if (clone_flags & CLONE_SETTLS) 485 p->thread.uw.tp_value = tls; 486 487 ret = copy_thread_gcs(p, args); 488 if (ret != 0) 489 return ret; 490 } else { 491 /* 492 * A kthread has no context to ERET to, so ensure any buggy 493 * ERET is treated as an illegal exception return. 494 * 495 * When a user task is created from a kthread, childregs will 496 * be initialized by start_thread() or start_compat_thread(). 497 */ 498 memset(childregs, 0, sizeof(struct pt_regs)); 499 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT; 500 childregs->stackframe.type = FRAME_META_TYPE_FINAL; 501 502 p->thread.cpu_context.x19 = (unsigned long)args->fn; 503 p->thread.cpu_context.x20 = (unsigned long)args->fn_arg; 504 505 if (system_supports_poe()) 506 p->thread.por_el0 = POR_EL0_INIT; 507 } 508 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 509 p->thread.cpu_context.sp = (unsigned long)childregs; 510 /* 511 * For the benefit of the unwinder, set up childregs->stackframe 512 * as the final frame for the new task. 513 */ 514 p->thread.cpu_context.fp = (unsigned long)&childregs->stackframe; 515 516 ptrace_hw_copy_thread(p); 517 518 return 0; 519 } 520 521 void tls_preserve_current_state(void) 522 { 523 *task_user_tls(current) = read_sysreg(tpidr_el0); 524 if (system_supports_tpidr2() && !is_compat_task()) 525 current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0); 526 } 527 528 static void tls_thread_switch(struct task_struct *next) 529 { 530 tls_preserve_current_state(); 531 532 if (is_compat_thread(task_thread_info(next))) 533 write_sysreg(next->thread.uw.tp_value, tpidrro_el0); 534 else 535 write_sysreg(0, tpidrro_el0); 536 537 write_sysreg(*task_user_tls(next), tpidr_el0); 538 if (system_supports_tpidr2()) 539 write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0); 540 } 541 542 /* 543 * Force SSBS state on context-switch, since it may be lost after migrating 544 * from a CPU which treats the bit as RES0 in a heterogeneous system. 545 */ 546 static void ssbs_thread_switch(struct task_struct *next) 547 { 548 /* 549 * Nothing to do for kernel threads, but 'regs' may be junk 550 * (e.g. idle task) so check the flags and bail early. 551 */ 552 if (unlikely(next->flags & PF_KTHREAD)) 553 return; 554 555 /* 556 * If all CPUs implement the SSBS extension, then we just need to 557 * context-switch the PSTATE field. 558 */ 559 if (alternative_has_cap_unlikely(ARM64_SSBS)) 560 return; 561 562 spectre_v4_enable_task_mitigation(next); 563 } 564 565 /* 566 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 567 * shadow copy so that we can restore this upon entry from userspace. 568 * 569 * This is *only* for exception entry from EL0, and is not valid until we 570 * __switch_to() a user task. 571 */ 572 DEFINE_PER_CPU(struct task_struct *, __entry_task); 573 574 static void entry_task_switch(struct task_struct *next) 575 { 576 __this_cpu_write(__entry_task, next); 577 } 578 579 #ifdef CONFIG_ARM64_GCS 580 581 void gcs_preserve_current_state(void) 582 { 583 current->thread.gcspr_el0 = read_sysreg_s(SYS_GCSPR_EL0); 584 } 585 586 static void gcs_thread_switch(struct task_struct *next) 587 { 588 if (!system_supports_gcs()) 589 return; 590 591 /* GCSPR_EL0 is always readable */ 592 gcs_preserve_current_state(); 593 write_sysreg_s(next->thread.gcspr_el0, SYS_GCSPR_EL0); 594 595 if (current->thread.gcs_el0_mode != next->thread.gcs_el0_mode) 596 gcs_set_el0_mode(next); 597 598 /* 599 * Ensure that GCS memory effects of the 'prev' thread are 600 * ordered before other memory accesses with release semantics 601 * (or preceded by a DMB) on the current PE. In addition, any 602 * memory accesses with acquire semantics (or succeeded by a 603 * DMB) are ordered before GCS memory effects of the 'next' 604 * thread. This will ensure that the GCS memory effects are 605 * visible to other PEs in case of migration. 606 */ 607 if (task_gcs_el0_enabled(current) || task_gcs_el0_enabled(next)) 608 gcsb_dsync(); 609 } 610 611 #else 612 613 static void gcs_thread_switch(struct task_struct *next) 614 { 615 } 616 617 #endif 618 619 /* 620 * Handle sysreg updates for ARM erratum 1418040 which affects the 32bit view of 621 * CNTVCT, various other errata which require trapping all CNTVCT{,_EL0} 622 * accesses and prctl(PR_SET_TSC). Ensure access is disabled iff a workaround is 623 * required or PR_TSC_SIGSEGV is set. 624 */ 625 static void update_cntkctl_el1(struct task_struct *next) 626 { 627 struct thread_info *ti = task_thread_info(next); 628 629 if (test_ti_thread_flag(ti, TIF_TSC_SIGSEGV) || 630 has_erratum_handler(read_cntvct_el0) || 631 (IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) && 632 this_cpu_has_cap(ARM64_WORKAROUND_1418040) && 633 is_compat_thread(ti))) 634 sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0); 635 else 636 sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN); 637 } 638 639 static void cntkctl_thread_switch(struct task_struct *prev, 640 struct task_struct *next) 641 { 642 if ((read_ti_thread_flags(task_thread_info(prev)) & 643 (_TIF_32BIT | _TIF_TSC_SIGSEGV)) != 644 (read_ti_thread_flags(task_thread_info(next)) & 645 (_TIF_32BIT | _TIF_TSC_SIGSEGV))) 646 update_cntkctl_el1(next); 647 } 648 649 static int do_set_tsc_mode(unsigned int val) 650 { 651 bool tsc_sigsegv; 652 653 if (val == PR_TSC_SIGSEGV) 654 tsc_sigsegv = true; 655 else if (val == PR_TSC_ENABLE) 656 tsc_sigsegv = false; 657 else 658 return -EINVAL; 659 660 preempt_disable(); 661 update_thread_flag(TIF_TSC_SIGSEGV, tsc_sigsegv); 662 update_cntkctl_el1(current); 663 preempt_enable(); 664 665 return 0; 666 } 667 668 static void permission_overlay_switch(struct task_struct *next) 669 { 670 if (!system_supports_poe()) 671 return; 672 673 current->thread.por_el0 = read_sysreg_s(SYS_POR_EL0); 674 if (current->thread.por_el0 != next->thread.por_el0) { 675 write_sysreg_s(next->thread.por_el0, SYS_POR_EL0); 676 } 677 } 678 679 /* 680 * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore 681 * this function must be called with preemption disabled and the update to 682 * sctlr_user must be made in the same preemption disabled block so that 683 * __switch_to() does not see the variable update before the SCTLR_EL1 one. 684 */ 685 void update_sctlr_el1(u64 sctlr) 686 { 687 /* 688 * EnIA must not be cleared while in the kernel as this is necessary for 689 * in-kernel PAC. It will be cleared on kernel exit if needed. 690 */ 691 sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr); 692 693 /* ISB required for the kernel uaccess routines when setting TCF0. */ 694 isb(); 695 } 696 697 /* 698 * Thread switching. 699 */ 700 __notrace_funcgraph __sched 701 struct task_struct *__switch_to(struct task_struct *prev, 702 struct task_struct *next) 703 { 704 struct task_struct *last; 705 706 fpsimd_thread_switch(next); 707 tls_thread_switch(next); 708 hw_breakpoint_thread_switch(next); 709 contextidr_thread_switch(next); 710 entry_task_switch(next); 711 ssbs_thread_switch(next); 712 cntkctl_thread_switch(prev, next); 713 ptrauth_thread_switch_user(next); 714 permission_overlay_switch(next); 715 gcs_thread_switch(next); 716 717 /* 718 * Complete any pending TLB or cache maintenance on this CPU in case the 719 * thread migrates to a different CPU. This full barrier is also 720 * required by the membarrier system call. Additionally it makes any 721 * in-progress pgtable writes visible to the table walker; See 722 * emit_pte_barriers(). 723 */ 724 dsb(ish); 725 726 /* 727 * MTE thread switching must happen after the DSB above to ensure that 728 * any asynchronous tag check faults have been logged in the TFSR*_EL1 729 * registers. 730 */ 731 mte_thread_switch(next); 732 /* avoid expensive SCTLR_EL1 accesses if no change */ 733 if (prev->thread.sctlr_user != next->thread.sctlr_user) 734 update_sctlr_el1(next->thread.sctlr_user); 735 736 /* the actual thread switch */ 737 last = cpu_switch_to(prev, next); 738 739 return last; 740 } 741 742 struct wchan_info { 743 unsigned long pc; 744 int count; 745 }; 746 747 static bool get_wchan_cb(void *arg, unsigned long pc) 748 { 749 struct wchan_info *wchan_info = arg; 750 751 if (!in_sched_functions(pc)) { 752 wchan_info->pc = pc; 753 return false; 754 } 755 return wchan_info->count++ < 16; 756 } 757 758 unsigned long __get_wchan(struct task_struct *p) 759 { 760 struct wchan_info wchan_info = { 761 .pc = 0, 762 .count = 0, 763 }; 764 765 if (!try_get_task_stack(p)) 766 return 0; 767 768 arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL); 769 770 put_task_stack(p); 771 772 return wchan_info.pc; 773 } 774 775 unsigned long arch_align_stack(unsigned long sp) 776 { 777 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 778 sp -= get_random_u32_below(PAGE_SIZE); 779 return sp & ~0xf; 780 } 781 782 #ifdef CONFIG_COMPAT 783 int compat_elf_check_arch(const struct elf32_hdr *hdr) 784 { 785 if (!system_supports_32bit_el0()) 786 return false; 787 788 if ((hdr)->e_machine != EM_ARM) 789 return false; 790 791 if (!((hdr)->e_flags & EF_ARM_EABI_MASK)) 792 return false; 793 794 /* 795 * Prevent execve() of a 32-bit program from a deadline task 796 * if the restricted affinity mask would be inadmissible on an 797 * asymmetric system. 798 */ 799 return !static_branch_unlikely(&arm64_mismatched_32bit_el0) || 800 !dl_task_check_affinity(current, system_32bit_el0_cpumask()); 801 } 802 #endif 803 804 /* 805 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 806 */ 807 void arch_setup_new_exec(void) 808 { 809 unsigned long mmflags = 0; 810 811 if (is_compat_task()) { 812 mmflags = MMCF_AARCH32; 813 814 /* 815 * Restrict the CPU affinity mask for a 32-bit task so that 816 * it contains only 32-bit-capable CPUs. 817 * 818 * From the perspective of the task, this looks similar to 819 * what would happen if the 64-bit-only CPUs were hot-unplugged 820 * at the point of execve(), although we try a bit harder to 821 * honour the cpuset hierarchy. 822 */ 823 if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) 824 force_compatible_cpus_allowed_ptr(current); 825 } else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) { 826 relax_compatible_cpus_allowed_ptr(current); 827 } 828 829 current->mm->context.flags = mmflags; 830 ptrauth_thread_init_user(); 831 mte_thread_init_user(); 832 do_set_tsc_mode(PR_TSC_ENABLE); 833 834 if (task_spec_ssb_noexec(current)) { 835 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS, 836 PR_SPEC_ENABLE); 837 } 838 } 839 840 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 841 /* 842 * Control the relaxed ABI allowing tagged user addresses into the kernel. 843 */ 844 static unsigned int tagged_addr_disabled; 845 846 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg) 847 { 848 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE; 849 struct thread_info *ti = task_thread_info(task); 850 851 if (is_compat_thread(ti)) 852 return -EINVAL; 853 854 if (system_supports_mte()) 855 valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \ 856 | PR_MTE_TAG_MASK; 857 858 if (arg & ~valid_mask) 859 return -EINVAL; 860 861 /* 862 * Do not allow the enabling of the tagged address ABI if globally 863 * disabled via sysctl abi.tagged_addr_disabled. 864 */ 865 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled) 866 return -EINVAL; 867 868 if (set_mte_ctrl(task, arg) != 0) 869 return -EINVAL; 870 871 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE); 872 873 return 0; 874 } 875 876 long get_tagged_addr_ctrl(struct task_struct *task) 877 { 878 long ret = 0; 879 struct thread_info *ti = task_thread_info(task); 880 881 if (is_compat_thread(ti)) 882 return -EINVAL; 883 884 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR)) 885 ret = PR_TAGGED_ADDR_ENABLE; 886 887 ret |= get_mte_ctrl(task); 888 889 return ret; 890 } 891 892 /* 893 * Global sysctl to disable the tagged user addresses support. This control 894 * only prevents the tagged address ABI enabling via prctl() and does not 895 * disable it for tasks that already opted in to the relaxed ABI. 896 */ 897 898 static const struct ctl_table tagged_addr_sysctl_table[] = { 899 { 900 .procname = "tagged_addr_disabled", 901 .mode = 0644, 902 .data = &tagged_addr_disabled, 903 .maxlen = sizeof(int), 904 .proc_handler = proc_dointvec_minmax, 905 .extra1 = SYSCTL_ZERO, 906 .extra2 = SYSCTL_ONE, 907 }, 908 }; 909 910 static int __init tagged_addr_init(void) 911 { 912 if (!register_sysctl("abi", tagged_addr_sysctl_table)) 913 return -EINVAL; 914 return 0; 915 } 916 917 core_initcall(tagged_addr_init); 918 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */ 919 920 #ifdef CONFIG_BINFMT_ELF 921 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state, 922 bool has_interp, bool is_interp) 923 { 924 /* 925 * For dynamically linked executables the interpreter is 926 * responsible for setting PROT_BTI on everything except 927 * itself. 928 */ 929 if (is_interp != has_interp) 930 return prot; 931 932 if (!(state->flags & ARM64_ELF_BTI)) 933 return prot; 934 935 if (prot & PROT_EXEC) 936 prot |= PROT_BTI; 937 938 return prot; 939 } 940 #endif 941 942 int get_tsc_mode(unsigned long adr) 943 { 944 unsigned int val; 945 946 if (is_compat_task()) 947 return -EINVAL; 948 949 if (test_thread_flag(TIF_TSC_SIGSEGV)) 950 val = PR_TSC_SIGSEGV; 951 else 952 val = PR_TSC_ENABLE; 953 954 return put_user(val, (unsigned int __user *)adr); 955 } 956 957 int set_tsc_mode(unsigned int val) 958 { 959 if (is_compat_task()) 960 return -EINVAL; 961 962 return do_set_tsc_mode(val); 963 } 964