xref: /linux/arch/arm64/kernel/process.c (revision a9c9a6f741cdaa2fa9ba24a790db8d07295761e3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/process.c
4  *
5  * Original Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <stdarg.h>
11 
12 #include <linux/compat.h>
13 #include <linux/efi.h>
14 #include <linux/elf.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/sched/debug.h>
18 #include <linux/sched/task.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/kernel.h>
21 #include <linux/mman.h>
22 #include <linux/mm.h>
23 #include <linux/nospec.h>
24 #include <linux/sched.h>
25 #include <linux/stddef.h>
26 #include <linux/sysctl.h>
27 #include <linux/unistd.h>
28 #include <linux/user.h>
29 #include <linux/delay.h>
30 #include <linux/reboot.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/cpu.h>
34 #include <linux/elfcore.h>
35 #include <linux/pm.h>
36 #include <linux/tick.h>
37 #include <linux/utsname.h>
38 #include <linux/uaccess.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/personality.h>
42 #include <linux/notifier.h>
43 #include <trace/events/power.h>
44 #include <linux/percpu.h>
45 #include <linux/thread_info.h>
46 #include <linux/prctl.h>
47 
48 #include <asm/alternative.h>
49 #include <asm/compat.h>
50 #include <asm/cpufeature.h>
51 #include <asm/cacheflush.h>
52 #include <asm/exec.h>
53 #include <asm/fpsimd.h>
54 #include <asm/mmu_context.h>
55 #include <asm/mte.h>
56 #include <asm/processor.h>
57 #include <asm/pointer_auth.h>
58 #include <asm/stacktrace.h>
59 #include <asm/switch_to.h>
60 #include <asm/system_misc.h>
61 
62 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
63 #include <linux/stackprotector.h>
64 unsigned long __stack_chk_guard __read_mostly;
65 EXPORT_SYMBOL(__stack_chk_guard);
66 #endif
67 
68 /*
69  * Function pointers to optional machine specific functions
70  */
71 void (*pm_power_off)(void);
72 EXPORT_SYMBOL_GPL(pm_power_off);
73 
74 #ifdef CONFIG_HOTPLUG_CPU
75 void arch_cpu_idle_dead(void)
76 {
77        cpu_die();
78 }
79 #endif
80 
81 /*
82  * Called by kexec, immediately prior to machine_kexec().
83  *
84  * This must completely disable all secondary CPUs; simply causing those CPUs
85  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
86  * kexec'd kernel to use any and all RAM as it sees fit, without having to
87  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
88  * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
89  */
90 void machine_shutdown(void)
91 {
92 	smp_shutdown_nonboot_cpus(reboot_cpu);
93 }
94 
95 /*
96  * Halting simply requires that the secondary CPUs stop performing any
97  * activity (executing tasks, handling interrupts). smp_send_stop()
98  * achieves this.
99  */
100 void machine_halt(void)
101 {
102 	local_irq_disable();
103 	smp_send_stop();
104 	while (1);
105 }
106 
107 /*
108  * Power-off simply requires that the secondary CPUs stop performing any
109  * activity (executing tasks, handling interrupts). smp_send_stop()
110  * achieves this. When the system power is turned off, it will take all CPUs
111  * with it.
112  */
113 void machine_power_off(void)
114 {
115 	local_irq_disable();
116 	smp_send_stop();
117 	if (pm_power_off)
118 		pm_power_off();
119 }
120 
121 /*
122  * Restart requires that the secondary CPUs stop performing any activity
123  * while the primary CPU resets the system. Systems with multiple CPUs must
124  * provide a HW restart implementation, to ensure that all CPUs reset at once.
125  * This is required so that any code running after reset on the primary CPU
126  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
127  * executing pre-reset code, and using RAM that the primary CPU's code wishes
128  * to use. Implementing such co-ordination would be essentially impossible.
129  */
130 void machine_restart(char *cmd)
131 {
132 	/* Disable interrupts first */
133 	local_irq_disable();
134 	smp_send_stop();
135 
136 	/*
137 	 * UpdateCapsule() depends on the system being reset via
138 	 * ResetSystem().
139 	 */
140 	if (efi_enabled(EFI_RUNTIME_SERVICES))
141 		efi_reboot(reboot_mode, NULL);
142 
143 	/* Now call the architecture specific reboot code. */
144 	do_kernel_restart(cmd);
145 
146 	/*
147 	 * Whoops - the architecture was unable to reboot.
148 	 */
149 	printk("Reboot failed -- System halted\n");
150 	while (1);
151 }
152 
153 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
154 static const char *const btypes[] = {
155 	bstr(NONE, "--"),
156 	bstr(  JC, "jc"),
157 	bstr(   C, "-c"),
158 	bstr(  J , "j-")
159 };
160 #undef bstr
161 
162 static void print_pstate(struct pt_regs *regs)
163 {
164 	u64 pstate = regs->pstate;
165 
166 	if (compat_user_mode(regs)) {
167 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
168 			pstate,
169 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
170 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
171 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
172 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
173 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
174 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
175 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
176 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
177 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
178 			pstate & PSR_AA32_F_BIT ? 'F' : 'f',
179 			pstate & PSR_AA32_DIT_BIT ? '+' : '-',
180 			pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
181 	} else {
182 		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
183 					       PSR_BTYPE_SHIFT];
184 
185 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
186 			pstate,
187 			pstate & PSR_N_BIT ? 'N' : 'n',
188 			pstate & PSR_Z_BIT ? 'Z' : 'z',
189 			pstate & PSR_C_BIT ? 'C' : 'c',
190 			pstate & PSR_V_BIT ? 'V' : 'v',
191 			pstate & PSR_D_BIT ? 'D' : 'd',
192 			pstate & PSR_A_BIT ? 'A' : 'a',
193 			pstate & PSR_I_BIT ? 'I' : 'i',
194 			pstate & PSR_F_BIT ? 'F' : 'f',
195 			pstate & PSR_PAN_BIT ? '+' : '-',
196 			pstate & PSR_UAO_BIT ? '+' : '-',
197 			pstate & PSR_TCO_BIT ? '+' : '-',
198 			pstate & PSR_DIT_BIT ? '+' : '-',
199 			pstate & PSR_SSBS_BIT ? '+' : '-',
200 			btype_str);
201 	}
202 }
203 
204 void __show_regs(struct pt_regs *regs)
205 {
206 	int i, top_reg;
207 	u64 lr, sp;
208 
209 	if (compat_user_mode(regs)) {
210 		lr = regs->compat_lr;
211 		sp = regs->compat_sp;
212 		top_reg = 12;
213 	} else {
214 		lr = regs->regs[30];
215 		sp = regs->sp;
216 		top_reg = 29;
217 	}
218 
219 	show_regs_print_info(KERN_DEFAULT);
220 	print_pstate(regs);
221 
222 	if (!user_mode(regs)) {
223 		printk("pc : %pS\n", (void *)regs->pc);
224 		printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
225 	} else {
226 		printk("pc : %016llx\n", regs->pc);
227 		printk("lr : %016llx\n", lr);
228 	}
229 
230 	printk("sp : %016llx\n", sp);
231 
232 	if (system_uses_irq_prio_masking())
233 		printk("pmr_save: %08llx\n", regs->pmr_save);
234 
235 	i = top_reg;
236 
237 	while (i >= 0) {
238 		printk("x%-2d: %016llx", i, regs->regs[i]);
239 
240 		while (i-- % 3)
241 			pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
242 
243 		pr_cont("\n");
244 	}
245 }
246 
247 void show_regs(struct pt_regs *regs)
248 {
249 	__show_regs(regs);
250 	dump_backtrace(regs, NULL, KERN_DEFAULT);
251 }
252 
253 static void tls_thread_flush(void)
254 {
255 	write_sysreg(0, tpidr_el0);
256 
257 	if (is_compat_task()) {
258 		current->thread.uw.tp_value = 0;
259 
260 		/*
261 		 * We need to ensure ordering between the shadow state and the
262 		 * hardware state, so that we don't corrupt the hardware state
263 		 * with a stale shadow state during context switch.
264 		 */
265 		barrier();
266 		write_sysreg(0, tpidrro_el0);
267 	}
268 }
269 
270 static void flush_tagged_addr_state(void)
271 {
272 	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
273 		clear_thread_flag(TIF_TAGGED_ADDR);
274 }
275 
276 void flush_thread(void)
277 {
278 	fpsimd_flush_thread();
279 	tls_thread_flush();
280 	flush_ptrace_hw_breakpoint(current);
281 	flush_tagged_addr_state();
282 }
283 
284 void release_thread(struct task_struct *dead_task)
285 {
286 }
287 
288 void arch_release_task_struct(struct task_struct *tsk)
289 {
290 	fpsimd_release_task(tsk);
291 }
292 
293 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
294 {
295 	if (current->mm)
296 		fpsimd_preserve_current_state();
297 	*dst = *src;
298 
299 	/* We rely on the above assignment to initialize dst's thread_flags: */
300 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
301 
302 	/*
303 	 * Detach src's sve_state (if any) from dst so that it does not
304 	 * get erroneously used or freed prematurely.  dst's sve_state
305 	 * will be allocated on demand later on if dst uses SVE.
306 	 * For consistency, also clear TIF_SVE here: this could be done
307 	 * later in copy_process(), but to avoid tripping up future
308 	 * maintainers it is best not to leave TIF_SVE and sve_state in
309 	 * an inconsistent state, even temporarily.
310 	 */
311 	dst->thread.sve_state = NULL;
312 	clear_tsk_thread_flag(dst, TIF_SVE);
313 
314 	/* clear any pending asynchronous tag fault raised by the parent */
315 	clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
316 
317 	return 0;
318 }
319 
320 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
321 
322 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
323 		unsigned long stk_sz, struct task_struct *p, unsigned long tls)
324 {
325 	struct pt_regs *childregs = task_pt_regs(p);
326 
327 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
328 
329 	/*
330 	 * In case p was allocated the same task_struct pointer as some
331 	 * other recently-exited task, make sure p is disassociated from
332 	 * any cpu that may have run that now-exited task recently.
333 	 * Otherwise we could erroneously skip reloading the FPSIMD
334 	 * registers for p.
335 	 */
336 	fpsimd_flush_task_state(p);
337 
338 	ptrauth_thread_init_kernel(p);
339 
340 	if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) {
341 		*childregs = *current_pt_regs();
342 		childregs->regs[0] = 0;
343 
344 		/*
345 		 * Read the current TLS pointer from tpidr_el0 as it may be
346 		 * out-of-sync with the saved value.
347 		 */
348 		*task_user_tls(p) = read_sysreg(tpidr_el0);
349 
350 		if (stack_start) {
351 			if (is_compat_thread(task_thread_info(p)))
352 				childregs->compat_sp = stack_start;
353 			else
354 				childregs->sp = stack_start;
355 		}
356 
357 		/*
358 		 * If a TLS pointer was passed to clone, use it for the new
359 		 * thread.
360 		 */
361 		if (clone_flags & CLONE_SETTLS)
362 			p->thread.uw.tp_value = tls;
363 	} else {
364 		/*
365 		 * A kthread has no context to ERET to, so ensure any buggy
366 		 * ERET is treated as an illegal exception return.
367 		 *
368 		 * When a user task is created from a kthread, childregs will
369 		 * be initialized by start_thread() or start_compat_thread().
370 		 */
371 		memset(childregs, 0, sizeof(struct pt_regs));
372 		childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
373 
374 		p->thread.cpu_context.x19 = stack_start;
375 		p->thread.cpu_context.x20 = stk_sz;
376 	}
377 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
378 	p->thread.cpu_context.sp = (unsigned long)childregs;
379 	/*
380 	 * For the benefit of the unwinder, set up childregs->stackframe
381 	 * as the final frame for the new task.
382 	 */
383 	p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
384 
385 	ptrace_hw_copy_thread(p);
386 
387 	return 0;
388 }
389 
390 void tls_preserve_current_state(void)
391 {
392 	*task_user_tls(current) = read_sysreg(tpidr_el0);
393 }
394 
395 static void tls_thread_switch(struct task_struct *next)
396 {
397 	tls_preserve_current_state();
398 
399 	if (is_compat_thread(task_thread_info(next)))
400 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
401 	else if (!arm64_kernel_unmapped_at_el0())
402 		write_sysreg(0, tpidrro_el0);
403 
404 	write_sysreg(*task_user_tls(next), tpidr_el0);
405 }
406 
407 /*
408  * Force SSBS state on context-switch, since it may be lost after migrating
409  * from a CPU which treats the bit as RES0 in a heterogeneous system.
410  */
411 static void ssbs_thread_switch(struct task_struct *next)
412 {
413 	/*
414 	 * Nothing to do for kernel threads, but 'regs' may be junk
415 	 * (e.g. idle task) so check the flags and bail early.
416 	 */
417 	if (unlikely(next->flags & PF_KTHREAD))
418 		return;
419 
420 	/*
421 	 * If all CPUs implement the SSBS extension, then we just need to
422 	 * context-switch the PSTATE field.
423 	 */
424 	if (cpus_have_const_cap(ARM64_SSBS))
425 		return;
426 
427 	spectre_v4_enable_task_mitigation(next);
428 }
429 
430 /*
431  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
432  * shadow copy so that we can restore this upon entry from userspace.
433  *
434  * This is *only* for exception entry from EL0, and is not valid until we
435  * __switch_to() a user task.
436  */
437 DEFINE_PER_CPU(struct task_struct *, __entry_task);
438 
439 static void entry_task_switch(struct task_struct *next)
440 {
441 	__this_cpu_write(__entry_task, next);
442 }
443 
444 /*
445  * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
446  * Assuming the virtual counter is enabled at the beginning of times:
447  *
448  * - disable access when switching from a 64bit task to a 32bit task
449  * - enable access when switching from a 32bit task to a 64bit task
450  */
451 static void erratum_1418040_thread_switch(struct task_struct *prev,
452 					  struct task_struct *next)
453 {
454 	bool prev32, next32;
455 	u64 val;
456 
457 	if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040))
458 		return;
459 
460 	prev32 = is_compat_thread(task_thread_info(prev));
461 	next32 = is_compat_thread(task_thread_info(next));
462 
463 	if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
464 		return;
465 
466 	val = read_sysreg(cntkctl_el1);
467 
468 	if (!next32)
469 		val |= ARCH_TIMER_USR_VCT_ACCESS_EN;
470 	else
471 		val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
472 
473 	write_sysreg(val, cntkctl_el1);
474 }
475 
476 /*
477  * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
478  * this function must be called with preemption disabled and the update to
479  * sctlr_user must be made in the same preemption disabled block so that
480  * __switch_to() does not see the variable update before the SCTLR_EL1 one.
481  */
482 void update_sctlr_el1(u64 sctlr)
483 {
484 	/*
485 	 * EnIA must not be cleared while in the kernel as this is necessary for
486 	 * in-kernel PAC. It will be cleared on kernel exit if needed.
487 	 */
488 	sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
489 
490 	/* ISB required for the kernel uaccess routines when setting TCF0. */
491 	isb();
492 }
493 
494 /*
495  * Thread switching.
496  */
497 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
498 				struct task_struct *next)
499 {
500 	struct task_struct *last;
501 
502 	fpsimd_thread_switch(next);
503 	tls_thread_switch(next);
504 	hw_breakpoint_thread_switch(next);
505 	contextidr_thread_switch(next);
506 	entry_task_switch(next);
507 	ssbs_thread_switch(next);
508 	erratum_1418040_thread_switch(prev, next);
509 	ptrauth_thread_switch_user(next);
510 
511 	/*
512 	 * Complete any pending TLB or cache maintenance on this CPU in case
513 	 * the thread migrates to a different CPU.
514 	 * This full barrier is also required by the membarrier system
515 	 * call.
516 	 */
517 	dsb(ish);
518 
519 	/*
520 	 * MTE thread switching must happen after the DSB above to ensure that
521 	 * any asynchronous tag check faults have been logged in the TFSR*_EL1
522 	 * registers.
523 	 */
524 	mte_thread_switch(next);
525 	/* avoid expensive SCTLR_EL1 accesses if no change */
526 	if (prev->thread.sctlr_user != next->thread.sctlr_user)
527 		update_sctlr_el1(next->thread.sctlr_user);
528 
529 	/* the actual thread switch */
530 	last = cpu_switch_to(prev, next);
531 
532 	return last;
533 }
534 
535 unsigned long get_wchan(struct task_struct *p)
536 {
537 	struct stackframe frame;
538 	unsigned long stack_page, ret = 0;
539 	int count = 0;
540 	if (!p || p == current || task_is_running(p))
541 		return 0;
542 
543 	stack_page = (unsigned long)try_get_task_stack(p);
544 	if (!stack_page)
545 		return 0;
546 
547 	start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
548 
549 	do {
550 		if (unwind_frame(p, &frame))
551 			goto out;
552 		if (!in_sched_functions(frame.pc)) {
553 			ret = frame.pc;
554 			goto out;
555 		}
556 	} while (count++ < 16);
557 
558 out:
559 	put_task_stack(p);
560 	return ret;
561 }
562 
563 unsigned long arch_align_stack(unsigned long sp)
564 {
565 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
566 		sp -= get_random_int() & ~PAGE_MASK;
567 	return sp & ~0xf;
568 }
569 
570 #ifdef CONFIG_COMPAT
571 int compat_elf_check_arch(const struct elf32_hdr *hdr)
572 {
573 	if (!system_supports_32bit_el0())
574 		return false;
575 
576 	if ((hdr)->e_machine != EM_ARM)
577 		return false;
578 
579 	if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
580 		return false;
581 
582 	/*
583 	 * Prevent execve() of a 32-bit program from a deadline task
584 	 * if the restricted affinity mask would be inadmissible on an
585 	 * asymmetric system.
586 	 */
587 	return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
588 	       !dl_task_check_affinity(current, system_32bit_el0_cpumask());
589 }
590 #endif
591 
592 /*
593  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
594  */
595 void arch_setup_new_exec(void)
596 {
597 	unsigned long mmflags = 0;
598 
599 	if (is_compat_task()) {
600 		mmflags = MMCF_AARCH32;
601 
602 		/*
603 		 * Restrict the CPU affinity mask for a 32-bit task so that
604 		 * it contains only 32-bit-capable CPUs.
605 		 *
606 		 * From the perspective of the task, this looks similar to
607 		 * what would happen if the 64-bit-only CPUs were hot-unplugged
608 		 * at the point of execve(), although we try a bit harder to
609 		 * honour the cpuset hierarchy.
610 		 */
611 		if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
612 			force_compatible_cpus_allowed_ptr(current);
613 	} else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
614 		relax_compatible_cpus_allowed_ptr(current);
615 	}
616 
617 	current->mm->context.flags = mmflags;
618 	ptrauth_thread_init_user();
619 	mte_thread_init_user();
620 
621 	if (task_spec_ssb_noexec(current)) {
622 		arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
623 					 PR_SPEC_ENABLE);
624 	}
625 }
626 
627 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
628 /*
629  * Control the relaxed ABI allowing tagged user addresses into the kernel.
630  */
631 static unsigned int tagged_addr_disabled;
632 
633 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
634 {
635 	unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
636 	struct thread_info *ti = task_thread_info(task);
637 
638 	if (is_compat_thread(ti))
639 		return -EINVAL;
640 
641 	if (system_supports_mte())
642 		valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK;
643 
644 	if (arg & ~valid_mask)
645 		return -EINVAL;
646 
647 	/*
648 	 * Do not allow the enabling of the tagged address ABI if globally
649 	 * disabled via sysctl abi.tagged_addr_disabled.
650 	 */
651 	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
652 		return -EINVAL;
653 
654 	if (set_mte_ctrl(task, arg) != 0)
655 		return -EINVAL;
656 
657 	update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
658 
659 	return 0;
660 }
661 
662 long get_tagged_addr_ctrl(struct task_struct *task)
663 {
664 	long ret = 0;
665 	struct thread_info *ti = task_thread_info(task);
666 
667 	if (is_compat_thread(ti))
668 		return -EINVAL;
669 
670 	if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
671 		ret = PR_TAGGED_ADDR_ENABLE;
672 
673 	ret |= get_mte_ctrl(task);
674 
675 	return ret;
676 }
677 
678 /*
679  * Global sysctl to disable the tagged user addresses support. This control
680  * only prevents the tagged address ABI enabling via prctl() and does not
681  * disable it for tasks that already opted in to the relaxed ABI.
682  */
683 
684 static struct ctl_table tagged_addr_sysctl_table[] = {
685 	{
686 		.procname	= "tagged_addr_disabled",
687 		.mode		= 0644,
688 		.data		= &tagged_addr_disabled,
689 		.maxlen		= sizeof(int),
690 		.proc_handler	= proc_dointvec_minmax,
691 		.extra1		= SYSCTL_ZERO,
692 		.extra2		= SYSCTL_ONE,
693 	},
694 	{ }
695 };
696 
697 static int __init tagged_addr_init(void)
698 {
699 	if (!register_sysctl("abi", tagged_addr_sysctl_table))
700 		return -EINVAL;
701 	return 0;
702 }
703 
704 core_initcall(tagged_addr_init);
705 #endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
706 
707 #ifdef CONFIG_BINFMT_ELF
708 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
709 			 bool has_interp, bool is_interp)
710 {
711 	/*
712 	 * For dynamically linked executables the interpreter is
713 	 * responsible for setting PROT_BTI on everything except
714 	 * itself.
715 	 */
716 	if (is_interp != has_interp)
717 		return prot;
718 
719 	if (!(state->flags & ARM64_ELF_BTI))
720 		return prot;
721 
722 	if (prot & PROT_EXEC)
723 		prot |= PROT_BTI;
724 
725 	return prot;
726 }
727 #endif
728