xref: /linux/arch/arm64/kernel/process.c (revision a2cce7a9f1b8cc3d4edce106fb971529f1d4d9ce)
1 /*
2  * Based on arch/arm/kernel/process.c
3  *
4  * Original Copyright (C) 1995  Linus Torvalds
5  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
6  * Copyright (C) 2012 ARM Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <stdarg.h>
22 
23 #include <linux/compat.h>
24 #include <linux/efi.h>
25 #include <linux/export.h>
26 #include <linux/sched.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/stddef.h>
30 #include <linux/unistd.h>
31 #include <linux/user.h>
32 #include <linux/delay.h>
33 #include <linux/reboot.h>
34 #include <linux/interrupt.h>
35 #include <linux/kallsyms.h>
36 #include <linux/init.h>
37 #include <linux/cpu.h>
38 #include <linux/elfcore.h>
39 #include <linux/pm.h>
40 #include <linux/tick.h>
41 #include <linux/utsname.h>
42 #include <linux/uaccess.h>
43 #include <linux/random.h>
44 #include <linux/hw_breakpoint.h>
45 #include <linux/personality.h>
46 #include <linux/notifier.h>
47 
48 #include <asm/compat.h>
49 #include <asm/cacheflush.h>
50 #include <asm/fpsimd.h>
51 #include <asm/mmu_context.h>
52 #include <asm/processor.h>
53 #include <asm/stacktrace.h>
54 
55 #ifdef CONFIG_CC_STACKPROTECTOR
56 #include <linux/stackprotector.h>
57 unsigned long __stack_chk_guard __read_mostly;
58 EXPORT_SYMBOL(__stack_chk_guard);
59 #endif
60 
61 /*
62  * Function pointers to optional machine specific functions
63  */
64 void (*pm_power_off)(void);
65 EXPORT_SYMBOL_GPL(pm_power_off);
66 
67 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
68 
69 /*
70  * This is our default idle handler.
71  */
72 void arch_cpu_idle(void)
73 {
74 	/*
75 	 * This should do all the clock switching and wait for interrupt
76 	 * tricks
77 	 */
78 	cpu_do_idle();
79 	local_irq_enable();
80 }
81 
82 #ifdef CONFIG_HOTPLUG_CPU
83 void arch_cpu_idle_dead(void)
84 {
85        cpu_die();
86 }
87 #endif
88 
89 /*
90  * Called by kexec, immediately prior to machine_kexec().
91  *
92  * This must completely disable all secondary CPUs; simply causing those CPUs
93  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
94  * kexec'd kernel to use any and all RAM as it sees fit, without having to
95  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
96  * functionality embodied in disable_nonboot_cpus() to achieve this.
97  */
98 void machine_shutdown(void)
99 {
100 	disable_nonboot_cpus();
101 }
102 
103 /*
104  * Halting simply requires that the secondary CPUs stop performing any
105  * activity (executing tasks, handling interrupts). smp_send_stop()
106  * achieves this.
107  */
108 void machine_halt(void)
109 {
110 	local_irq_disable();
111 	smp_send_stop();
112 	while (1);
113 }
114 
115 /*
116  * Power-off simply requires that the secondary CPUs stop performing any
117  * activity (executing tasks, handling interrupts). smp_send_stop()
118  * achieves this. When the system power is turned off, it will take all CPUs
119  * with it.
120  */
121 void machine_power_off(void)
122 {
123 	local_irq_disable();
124 	smp_send_stop();
125 	if (pm_power_off)
126 		pm_power_off();
127 }
128 
129 /*
130  * Restart requires that the secondary CPUs stop performing any activity
131  * while the primary CPU resets the system. Systems with multiple CPUs must
132  * provide a HW restart implementation, to ensure that all CPUs reset at once.
133  * This is required so that any code running after reset on the primary CPU
134  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
135  * executing pre-reset code, and using RAM that the primary CPU's code wishes
136  * to use. Implementing such co-ordination would be essentially impossible.
137  */
138 void machine_restart(char *cmd)
139 {
140 	/* Disable interrupts first */
141 	local_irq_disable();
142 	smp_send_stop();
143 
144 	/*
145 	 * UpdateCapsule() depends on the system being reset via
146 	 * ResetSystem().
147 	 */
148 	if (efi_enabled(EFI_RUNTIME_SERVICES))
149 		efi_reboot(reboot_mode, NULL);
150 
151 	/* Now call the architecture specific reboot code. */
152 	if (arm_pm_restart)
153 		arm_pm_restart(reboot_mode, cmd);
154 	else
155 		do_kernel_restart(cmd);
156 
157 	/*
158 	 * Whoops - the architecture was unable to reboot.
159 	 */
160 	printk("Reboot failed -- System halted\n");
161 	while (1);
162 }
163 
164 void __show_regs(struct pt_regs *regs)
165 {
166 	int i, top_reg;
167 	u64 lr, sp;
168 
169 	if (compat_user_mode(regs)) {
170 		lr = regs->compat_lr;
171 		sp = regs->compat_sp;
172 		top_reg = 12;
173 	} else {
174 		lr = regs->regs[30];
175 		sp = regs->sp;
176 		top_reg = 29;
177 	}
178 
179 	show_regs_print_info(KERN_DEFAULT);
180 	print_symbol("PC is at %s\n", instruction_pointer(regs));
181 	print_symbol("LR is at %s\n", lr);
182 	printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n",
183 	       regs->pc, lr, regs->pstate);
184 	printk("sp : %016llx\n", sp);
185 	for (i = top_reg; i >= 0; i--) {
186 		printk("x%-2d: %016llx ", i, regs->regs[i]);
187 		if (i % 2 == 0)
188 			printk("\n");
189 	}
190 	printk("\n");
191 }
192 
193 void show_regs(struct pt_regs * regs)
194 {
195 	printk("\n");
196 	__show_regs(regs);
197 }
198 
199 /*
200  * Free current thread data structures etc..
201  */
202 void exit_thread(void)
203 {
204 }
205 
206 static void tls_thread_flush(void)
207 {
208 	asm ("msr tpidr_el0, xzr");
209 
210 	if (is_compat_task()) {
211 		current->thread.tp_value = 0;
212 
213 		/*
214 		 * We need to ensure ordering between the shadow state and the
215 		 * hardware state, so that we don't corrupt the hardware state
216 		 * with a stale shadow state during context switch.
217 		 */
218 		barrier();
219 		asm ("msr tpidrro_el0, xzr");
220 	}
221 }
222 
223 void flush_thread(void)
224 {
225 	fpsimd_flush_thread();
226 	tls_thread_flush();
227 	flush_ptrace_hw_breakpoint(current);
228 }
229 
230 void release_thread(struct task_struct *dead_task)
231 {
232 }
233 
234 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
235 {
236 	if (current->mm)
237 		fpsimd_preserve_current_state();
238 	*dst = *src;
239 	return 0;
240 }
241 
242 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
243 
244 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
245 		unsigned long stk_sz, struct task_struct *p)
246 {
247 	struct pt_regs *childregs = task_pt_regs(p);
248 
249 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
250 
251 	if (likely(!(p->flags & PF_KTHREAD))) {
252 		*childregs = *current_pt_regs();
253 		childregs->regs[0] = 0;
254 
255 		/*
256 		 * Read the current TLS pointer from tpidr_el0 as it may be
257 		 * out-of-sync with the saved value.
258 		 */
259 		asm("mrs %0, tpidr_el0" : "=r" (*task_user_tls(p)));
260 
261 		if (stack_start) {
262 			if (is_compat_thread(task_thread_info(p)))
263 				childregs->compat_sp = stack_start;
264 			/* 16-byte aligned stack mandatory on AArch64 */
265 			else if (stack_start & 15)
266 				return -EINVAL;
267 			else
268 				childregs->sp = stack_start;
269 		}
270 
271 		/*
272 		 * If a TLS pointer was passed to clone (4th argument), use it
273 		 * for the new thread.
274 		 */
275 		if (clone_flags & CLONE_SETTLS)
276 			p->thread.tp_value = childregs->regs[3];
277 	} else {
278 		memset(childregs, 0, sizeof(struct pt_regs));
279 		childregs->pstate = PSR_MODE_EL1h;
280 		p->thread.cpu_context.x19 = stack_start;
281 		p->thread.cpu_context.x20 = stk_sz;
282 	}
283 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
284 	p->thread.cpu_context.sp = (unsigned long)childregs;
285 
286 	ptrace_hw_copy_thread(p);
287 
288 	return 0;
289 }
290 
291 static void tls_thread_switch(struct task_struct *next)
292 {
293 	unsigned long tpidr, tpidrro;
294 
295 	asm("mrs %0, tpidr_el0" : "=r" (tpidr));
296 	*task_user_tls(current) = tpidr;
297 
298 	tpidr = *task_user_tls(next);
299 	tpidrro = is_compat_thread(task_thread_info(next)) ?
300 		  next->thread.tp_value : 0;
301 
302 	asm(
303 	"	msr	tpidr_el0, %0\n"
304 	"	msr	tpidrro_el0, %1"
305 	: : "r" (tpidr), "r" (tpidrro));
306 }
307 
308 /*
309  * Thread switching.
310  */
311 struct task_struct *__switch_to(struct task_struct *prev,
312 				struct task_struct *next)
313 {
314 	struct task_struct *last;
315 
316 	fpsimd_thread_switch(next);
317 	tls_thread_switch(next);
318 	hw_breakpoint_thread_switch(next);
319 	contextidr_thread_switch(next);
320 
321 	/*
322 	 * Complete any pending TLB or cache maintenance on this CPU in case
323 	 * the thread migrates to a different CPU.
324 	 */
325 	dsb(ish);
326 
327 	/* the actual thread switch */
328 	last = cpu_switch_to(prev, next);
329 
330 	return last;
331 }
332 
333 unsigned long get_wchan(struct task_struct *p)
334 {
335 	struct stackframe frame;
336 	unsigned long stack_page;
337 	int count = 0;
338 	if (!p || p == current || p->state == TASK_RUNNING)
339 		return 0;
340 
341 	frame.fp = thread_saved_fp(p);
342 	frame.sp = thread_saved_sp(p);
343 	frame.pc = thread_saved_pc(p);
344 	stack_page = (unsigned long)task_stack_page(p);
345 	do {
346 		if (frame.sp < stack_page ||
347 		    frame.sp >= stack_page + THREAD_SIZE ||
348 		    unwind_frame(&frame))
349 			return 0;
350 		if (!in_sched_functions(frame.pc))
351 			return frame.pc;
352 	} while (count ++ < 16);
353 	return 0;
354 }
355 
356 unsigned long arch_align_stack(unsigned long sp)
357 {
358 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
359 		sp -= get_random_int() & ~PAGE_MASK;
360 	return sp & ~0xf;
361 }
362 
363 static unsigned long randomize_base(unsigned long base)
364 {
365 	unsigned long range_end = base + (STACK_RND_MASK << PAGE_SHIFT) + 1;
366 	return randomize_range(base, range_end, 0) ? : base;
367 }
368 
369 unsigned long arch_randomize_brk(struct mm_struct *mm)
370 {
371 	return randomize_base(mm->brk);
372 }
373