xref: /linux/arch/arm64/kernel/process.c (revision 9c39c6ffe0c2945c7cf814814c096bc23b63f53d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/process.c
4  *
5  * Original Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <stdarg.h>
11 
12 #include <linux/compat.h>
13 #include <linux/efi.h>
14 #include <linux/elf.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/sched/debug.h>
18 #include <linux/sched/task.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/kernel.h>
21 #include <linux/lockdep.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/nospec.h>
25 #include <linux/stddef.h>
26 #include <linux/sysctl.h>
27 #include <linux/unistd.h>
28 #include <linux/user.h>
29 #include <linux/delay.h>
30 #include <linux/reboot.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/cpu.h>
34 #include <linux/elfcore.h>
35 #include <linux/pm.h>
36 #include <linux/tick.h>
37 #include <linux/utsname.h>
38 #include <linux/uaccess.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/personality.h>
42 #include <linux/notifier.h>
43 #include <trace/events/power.h>
44 #include <linux/percpu.h>
45 #include <linux/thread_info.h>
46 #include <linux/prctl.h>
47 
48 #include <asm/alternative.h>
49 #include <asm/arch_gicv3.h>
50 #include <asm/compat.h>
51 #include <asm/cpufeature.h>
52 #include <asm/cacheflush.h>
53 #include <asm/exec.h>
54 #include <asm/fpsimd.h>
55 #include <asm/mmu_context.h>
56 #include <asm/mte.h>
57 #include <asm/processor.h>
58 #include <asm/pointer_auth.h>
59 #include <asm/stacktrace.h>
60 #include <asm/switch_to.h>
61 #include <asm/system_misc.h>
62 
63 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
64 #include <linux/stackprotector.h>
65 unsigned long __stack_chk_guard __read_mostly;
66 EXPORT_SYMBOL(__stack_chk_guard);
67 #endif
68 
69 /*
70  * Function pointers to optional machine specific functions
71  */
72 void (*pm_power_off)(void);
73 EXPORT_SYMBOL_GPL(pm_power_off);
74 
75 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
76 
77 static void noinstr __cpu_do_idle(void)
78 {
79 	dsb(sy);
80 	wfi();
81 }
82 
83 static void noinstr __cpu_do_idle_irqprio(void)
84 {
85 	unsigned long pmr;
86 	unsigned long daif_bits;
87 
88 	daif_bits = read_sysreg(daif);
89 	write_sysreg(daif_bits | PSR_I_BIT | PSR_F_BIT, daif);
90 
91 	/*
92 	 * Unmask PMR before going idle to make sure interrupts can
93 	 * be raised.
94 	 */
95 	pmr = gic_read_pmr();
96 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
97 
98 	__cpu_do_idle();
99 
100 	gic_write_pmr(pmr);
101 	write_sysreg(daif_bits, daif);
102 }
103 
104 /*
105  *	cpu_do_idle()
106  *
107  *	Idle the processor (wait for interrupt).
108  *
109  *	If the CPU supports priority masking we must do additional work to
110  *	ensure that interrupts are not masked at the PMR (because the core will
111  *	not wake up if we block the wake up signal in the interrupt controller).
112  */
113 void noinstr cpu_do_idle(void)
114 {
115 	if (system_uses_irq_prio_masking())
116 		__cpu_do_idle_irqprio();
117 	else
118 		__cpu_do_idle();
119 }
120 
121 /*
122  * This is our default idle handler.
123  */
124 void noinstr arch_cpu_idle(void)
125 {
126 	/*
127 	 * This should do all the clock switching and wait for interrupt
128 	 * tricks
129 	 */
130 	cpu_do_idle();
131 	raw_local_irq_enable();
132 }
133 
134 #ifdef CONFIG_HOTPLUG_CPU
135 void arch_cpu_idle_dead(void)
136 {
137        cpu_die();
138 }
139 #endif
140 
141 /*
142  * Called by kexec, immediately prior to machine_kexec().
143  *
144  * This must completely disable all secondary CPUs; simply causing those CPUs
145  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
146  * kexec'd kernel to use any and all RAM as it sees fit, without having to
147  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
148  * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
149  */
150 void machine_shutdown(void)
151 {
152 	smp_shutdown_nonboot_cpus(reboot_cpu);
153 }
154 
155 /*
156  * Halting simply requires that the secondary CPUs stop performing any
157  * activity (executing tasks, handling interrupts). smp_send_stop()
158  * achieves this.
159  */
160 void machine_halt(void)
161 {
162 	local_irq_disable();
163 	smp_send_stop();
164 	while (1);
165 }
166 
167 /*
168  * Power-off simply requires that the secondary CPUs stop performing any
169  * activity (executing tasks, handling interrupts). smp_send_stop()
170  * achieves this. When the system power is turned off, it will take all CPUs
171  * with it.
172  */
173 void machine_power_off(void)
174 {
175 	local_irq_disable();
176 	smp_send_stop();
177 	if (pm_power_off)
178 		pm_power_off();
179 }
180 
181 /*
182  * Restart requires that the secondary CPUs stop performing any activity
183  * while the primary CPU resets the system. Systems with multiple CPUs must
184  * provide a HW restart implementation, to ensure that all CPUs reset at once.
185  * This is required so that any code running after reset on the primary CPU
186  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
187  * executing pre-reset code, and using RAM that the primary CPU's code wishes
188  * to use. Implementing such co-ordination would be essentially impossible.
189  */
190 void machine_restart(char *cmd)
191 {
192 	/* Disable interrupts first */
193 	local_irq_disable();
194 	smp_send_stop();
195 
196 	/*
197 	 * UpdateCapsule() depends on the system being reset via
198 	 * ResetSystem().
199 	 */
200 	if (efi_enabled(EFI_RUNTIME_SERVICES))
201 		efi_reboot(reboot_mode, NULL);
202 
203 	/* Now call the architecture specific reboot code. */
204 	if (arm_pm_restart)
205 		arm_pm_restart(reboot_mode, cmd);
206 	else
207 		do_kernel_restart(cmd);
208 
209 	/*
210 	 * Whoops - the architecture was unable to reboot.
211 	 */
212 	printk("Reboot failed -- System halted\n");
213 	while (1);
214 }
215 
216 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
217 static const char *const btypes[] = {
218 	bstr(NONE, "--"),
219 	bstr(  JC, "jc"),
220 	bstr(   C, "-c"),
221 	bstr(  J , "j-")
222 };
223 #undef bstr
224 
225 static void print_pstate(struct pt_regs *regs)
226 {
227 	u64 pstate = regs->pstate;
228 
229 	if (compat_user_mode(regs)) {
230 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
231 			pstate,
232 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
233 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
234 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
235 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
236 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
237 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
238 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
239 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
240 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
241 			pstate & PSR_AA32_F_BIT ? 'F' : 'f');
242 	} else {
243 		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
244 					       PSR_BTYPE_SHIFT];
245 
246 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO BTYPE=%s)\n",
247 			pstate,
248 			pstate & PSR_N_BIT ? 'N' : 'n',
249 			pstate & PSR_Z_BIT ? 'Z' : 'z',
250 			pstate & PSR_C_BIT ? 'C' : 'c',
251 			pstate & PSR_V_BIT ? 'V' : 'v',
252 			pstate & PSR_D_BIT ? 'D' : 'd',
253 			pstate & PSR_A_BIT ? 'A' : 'a',
254 			pstate & PSR_I_BIT ? 'I' : 'i',
255 			pstate & PSR_F_BIT ? 'F' : 'f',
256 			pstate & PSR_PAN_BIT ? '+' : '-',
257 			pstate & PSR_UAO_BIT ? '+' : '-',
258 			pstate & PSR_TCO_BIT ? '+' : '-',
259 			btype_str);
260 	}
261 }
262 
263 void __show_regs(struct pt_regs *regs)
264 {
265 	int i, top_reg;
266 	u64 lr, sp;
267 
268 	if (compat_user_mode(regs)) {
269 		lr = regs->compat_lr;
270 		sp = regs->compat_sp;
271 		top_reg = 12;
272 	} else {
273 		lr = regs->regs[30];
274 		sp = regs->sp;
275 		top_reg = 29;
276 	}
277 
278 	show_regs_print_info(KERN_DEFAULT);
279 	print_pstate(regs);
280 
281 	if (!user_mode(regs)) {
282 		printk("pc : %pS\n", (void *)regs->pc);
283 		printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
284 	} else {
285 		printk("pc : %016llx\n", regs->pc);
286 		printk("lr : %016llx\n", lr);
287 	}
288 
289 	printk("sp : %016llx\n", sp);
290 
291 	if (system_uses_irq_prio_masking())
292 		printk("pmr_save: %08llx\n", regs->pmr_save);
293 
294 	i = top_reg;
295 
296 	while (i >= 0) {
297 		printk("x%-2d: %016llx ", i, regs->regs[i]);
298 		i--;
299 
300 		if (i % 2 == 0) {
301 			pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
302 			i--;
303 		}
304 
305 		pr_cont("\n");
306 	}
307 }
308 
309 void show_regs(struct pt_regs *regs)
310 {
311 	__show_regs(regs);
312 	dump_backtrace(regs, NULL, KERN_DEFAULT);
313 }
314 
315 static void tls_thread_flush(void)
316 {
317 	write_sysreg(0, tpidr_el0);
318 
319 	if (is_compat_task()) {
320 		current->thread.uw.tp_value = 0;
321 
322 		/*
323 		 * We need to ensure ordering between the shadow state and the
324 		 * hardware state, so that we don't corrupt the hardware state
325 		 * with a stale shadow state during context switch.
326 		 */
327 		barrier();
328 		write_sysreg(0, tpidrro_el0);
329 	}
330 }
331 
332 static void flush_tagged_addr_state(void)
333 {
334 	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
335 		clear_thread_flag(TIF_TAGGED_ADDR);
336 }
337 
338 void flush_thread(void)
339 {
340 	fpsimd_flush_thread();
341 	tls_thread_flush();
342 	flush_ptrace_hw_breakpoint(current);
343 	flush_tagged_addr_state();
344 }
345 
346 void release_thread(struct task_struct *dead_task)
347 {
348 }
349 
350 void arch_release_task_struct(struct task_struct *tsk)
351 {
352 	fpsimd_release_task(tsk);
353 }
354 
355 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
356 {
357 	if (current->mm)
358 		fpsimd_preserve_current_state();
359 	*dst = *src;
360 
361 	/* We rely on the above assignment to initialize dst's thread_flags: */
362 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
363 
364 	/*
365 	 * Detach src's sve_state (if any) from dst so that it does not
366 	 * get erroneously used or freed prematurely.  dst's sve_state
367 	 * will be allocated on demand later on if dst uses SVE.
368 	 * For consistency, also clear TIF_SVE here: this could be done
369 	 * later in copy_process(), but to avoid tripping up future
370 	 * maintainers it is best not to leave TIF_SVE and sve_state in
371 	 * an inconsistent state, even temporarily.
372 	 */
373 	dst->thread.sve_state = NULL;
374 	clear_tsk_thread_flag(dst, TIF_SVE);
375 
376 	/* clear any pending asynchronous tag fault raised by the parent */
377 	clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
378 
379 	return 0;
380 }
381 
382 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
383 
384 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
385 		unsigned long stk_sz, struct task_struct *p, unsigned long tls)
386 {
387 	struct pt_regs *childregs = task_pt_regs(p);
388 
389 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
390 
391 	/*
392 	 * In case p was allocated the same task_struct pointer as some
393 	 * other recently-exited task, make sure p is disassociated from
394 	 * any cpu that may have run that now-exited task recently.
395 	 * Otherwise we could erroneously skip reloading the FPSIMD
396 	 * registers for p.
397 	 */
398 	fpsimd_flush_task_state(p);
399 
400 	ptrauth_thread_init_kernel(p);
401 
402 	if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) {
403 		*childregs = *current_pt_regs();
404 		childregs->regs[0] = 0;
405 
406 		/*
407 		 * Read the current TLS pointer from tpidr_el0 as it may be
408 		 * out-of-sync with the saved value.
409 		 */
410 		*task_user_tls(p) = read_sysreg(tpidr_el0);
411 
412 		if (stack_start) {
413 			if (is_compat_thread(task_thread_info(p)))
414 				childregs->compat_sp = stack_start;
415 			else
416 				childregs->sp = stack_start;
417 		}
418 
419 		/*
420 		 * If a TLS pointer was passed to clone, use it for the new
421 		 * thread.
422 		 */
423 		if (clone_flags & CLONE_SETTLS)
424 			p->thread.uw.tp_value = tls;
425 	} else {
426 		/*
427 		 * A kthread has no context to ERET to, so ensure any buggy
428 		 * ERET is treated as an illegal exception return.
429 		 *
430 		 * When a user task is created from a kthread, childregs will
431 		 * be initialized by start_thread() or start_compat_thread().
432 		 */
433 		memset(childregs, 0, sizeof(struct pt_regs));
434 		childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
435 
436 		p->thread.cpu_context.x19 = stack_start;
437 		p->thread.cpu_context.x20 = stk_sz;
438 	}
439 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
440 	p->thread.cpu_context.sp = (unsigned long)childregs;
441 
442 	ptrace_hw_copy_thread(p);
443 
444 	return 0;
445 }
446 
447 void tls_preserve_current_state(void)
448 {
449 	*task_user_tls(current) = read_sysreg(tpidr_el0);
450 }
451 
452 static void tls_thread_switch(struct task_struct *next)
453 {
454 	tls_preserve_current_state();
455 
456 	if (is_compat_thread(task_thread_info(next)))
457 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
458 	else if (!arm64_kernel_unmapped_at_el0())
459 		write_sysreg(0, tpidrro_el0);
460 
461 	write_sysreg(*task_user_tls(next), tpidr_el0);
462 }
463 
464 /*
465  * Force SSBS state on context-switch, since it may be lost after migrating
466  * from a CPU which treats the bit as RES0 in a heterogeneous system.
467  */
468 static void ssbs_thread_switch(struct task_struct *next)
469 {
470 	/*
471 	 * Nothing to do for kernel threads, but 'regs' may be junk
472 	 * (e.g. idle task) so check the flags and bail early.
473 	 */
474 	if (unlikely(next->flags & PF_KTHREAD))
475 		return;
476 
477 	/*
478 	 * If all CPUs implement the SSBS extension, then we just need to
479 	 * context-switch the PSTATE field.
480 	 */
481 	if (cpus_have_const_cap(ARM64_SSBS))
482 		return;
483 
484 	spectre_v4_enable_task_mitigation(next);
485 }
486 
487 /*
488  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
489  * shadow copy so that we can restore this upon entry from userspace.
490  *
491  * This is *only* for exception entry from EL0, and is not valid until we
492  * __switch_to() a user task.
493  */
494 DEFINE_PER_CPU(struct task_struct *, __entry_task);
495 
496 static void entry_task_switch(struct task_struct *next)
497 {
498 	__this_cpu_write(__entry_task, next);
499 }
500 
501 /*
502  * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
503  * Assuming the virtual counter is enabled at the beginning of times:
504  *
505  * - disable access when switching from a 64bit task to a 32bit task
506  * - enable access when switching from a 32bit task to a 64bit task
507  */
508 static void erratum_1418040_thread_switch(struct task_struct *prev,
509 					  struct task_struct *next)
510 {
511 	bool prev32, next32;
512 	u64 val;
513 
514 	if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040))
515 		return;
516 
517 	prev32 = is_compat_thread(task_thread_info(prev));
518 	next32 = is_compat_thread(task_thread_info(next));
519 
520 	if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
521 		return;
522 
523 	val = read_sysreg(cntkctl_el1);
524 
525 	if (!next32)
526 		val |= ARCH_TIMER_USR_VCT_ACCESS_EN;
527 	else
528 		val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
529 
530 	write_sysreg(val, cntkctl_el1);
531 }
532 
533 static void update_sctlr_el1(u64 sctlr)
534 {
535 	/*
536 	 * EnIA must not be cleared while in the kernel as this is necessary for
537 	 * in-kernel PAC. It will be cleared on kernel exit if needed.
538 	 */
539 	sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
540 
541 	/* ISB required for the kernel uaccess routines when setting TCF0. */
542 	isb();
543 }
544 
545 void set_task_sctlr_el1(u64 sctlr)
546 {
547 	/*
548 	 * __switch_to() checks current->thread.sctlr as an
549 	 * optimisation. Disable preemption so that it does not see
550 	 * the variable update before the SCTLR_EL1 one.
551 	 */
552 	preempt_disable();
553 	current->thread.sctlr_user = sctlr;
554 	update_sctlr_el1(sctlr);
555 	preempt_enable();
556 }
557 
558 /*
559  * Thread switching.
560  */
561 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
562 				struct task_struct *next)
563 {
564 	struct task_struct *last;
565 
566 	fpsimd_thread_switch(next);
567 	tls_thread_switch(next);
568 	hw_breakpoint_thread_switch(next);
569 	contextidr_thread_switch(next);
570 	entry_task_switch(next);
571 	ssbs_thread_switch(next);
572 	erratum_1418040_thread_switch(prev, next);
573 	ptrauth_thread_switch_user(next);
574 
575 	/*
576 	 * Complete any pending TLB or cache maintenance on this CPU in case
577 	 * the thread migrates to a different CPU.
578 	 * This full barrier is also required by the membarrier system
579 	 * call.
580 	 */
581 	dsb(ish);
582 
583 	/*
584 	 * MTE thread switching must happen after the DSB above to ensure that
585 	 * any asynchronous tag check faults have been logged in the TFSR*_EL1
586 	 * registers.
587 	 */
588 	mte_thread_switch(next);
589 	/* avoid expensive SCTLR_EL1 accesses if no change */
590 	if (prev->thread.sctlr_user != next->thread.sctlr_user)
591 		update_sctlr_el1(next->thread.sctlr_user);
592 
593 	/* the actual thread switch */
594 	last = cpu_switch_to(prev, next);
595 
596 	return last;
597 }
598 
599 unsigned long get_wchan(struct task_struct *p)
600 {
601 	struct stackframe frame;
602 	unsigned long stack_page, ret = 0;
603 	int count = 0;
604 	if (!p || p == current || p->state == TASK_RUNNING)
605 		return 0;
606 
607 	stack_page = (unsigned long)try_get_task_stack(p);
608 	if (!stack_page)
609 		return 0;
610 
611 	start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
612 
613 	do {
614 		if (unwind_frame(p, &frame))
615 			goto out;
616 		if (!in_sched_functions(frame.pc)) {
617 			ret = frame.pc;
618 			goto out;
619 		}
620 	} while (count++ < 16);
621 
622 out:
623 	put_task_stack(p);
624 	return ret;
625 }
626 
627 unsigned long arch_align_stack(unsigned long sp)
628 {
629 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
630 		sp -= get_random_int() & ~PAGE_MASK;
631 	return sp & ~0xf;
632 }
633 
634 /*
635  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
636  */
637 void arch_setup_new_exec(void)
638 {
639 	current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
640 
641 	ptrauth_thread_init_user();
642 	mte_thread_init_user();
643 
644 	if (task_spec_ssb_noexec(current)) {
645 		arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
646 					 PR_SPEC_ENABLE);
647 	}
648 }
649 
650 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
651 /*
652  * Control the relaxed ABI allowing tagged user addresses into the kernel.
653  */
654 static unsigned int tagged_addr_disabled;
655 
656 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
657 {
658 	unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
659 	struct thread_info *ti = task_thread_info(task);
660 
661 	if (is_compat_thread(ti))
662 		return -EINVAL;
663 
664 	if (system_supports_mte())
665 		valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK;
666 
667 	if (arg & ~valid_mask)
668 		return -EINVAL;
669 
670 	/*
671 	 * Do not allow the enabling of the tagged address ABI if globally
672 	 * disabled via sysctl abi.tagged_addr_disabled.
673 	 */
674 	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
675 		return -EINVAL;
676 
677 	if (set_mte_ctrl(task, arg) != 0)
678 		return -EINVAL;
679 
680 	update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
681 
682 	return 0;
683 }
684 
685 long get_tagged_addr_ctrl(struct task_struct *task)
686 {
687 	long ret = 0;
688 	struct thread_info *ti = task_thread_info(task);
689 
690 	if (is_compat_thread(ti))
691 		return -EINVAL;
692 
693 	if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
694 		ret = PR_TAGGED_ADDR_ENABLE;
695 
696 	ret |= get_mte_ctrl(task);
697 
698 	return ret;
699 }
700 
701 /*
702  * Global sysctl to disable the tagged user addresses support. This control
703  * only prevents the tagged address ABI enabling via prctl() and does not
704  * disable it for tasks that already opted in to the relaxed ABI.
705  */
706 
707 static struct ctl_table tagged_addr_sysctl_table[] = {
708 	{
709 		.procname	= "tagged_addr_disabled",
710 		.mode		= 0644,
711 		.data		= &tagged_addr_disabled,
712 		.maxlen		= sizeof(int),
713 		.proc_handler	= proc_dointvec_minmax,
714 		.extra1		= SYSCTL_ZERO,
715 		.extra2		= SYSCTL_ONE,
716 	},
717 	{ }
718 };
719 
720 static int __init tagged_addr_init(void)
721 {
722 	if (!register_sysctl("abi", tagged_addr_sysctl_table))
723 		return -EINVAL;
724 	return 0;
725 }
726 
727 core_initcall(tagged_addr_init);
728 #endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
729 
730 asmlinkage void __sched arm64_preempt_schedule_irq(void)
731 {
732 	lockdep_assert_irqs_disabled();
733 
734 	/*
735 	 * Preempting a task from an IRQ means we leave copies of PSTATE
736 	 * on the stack. cpufeature's enable calls may modify PSTATE, but
737 	 * resuming one of these preempted tasks would undo those changes.
738 	 *
739 	 * Only allow a task to be preempted once cpufeatures have been
740 	 * enabled.
741 	 */
742 	if (system_capabilities_finalized())
743 		preempt_schedule_irq();
744 }
745 
746 #ifdef CONFIG_BINFMT_ELF
747 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
748 			 bool has_interp, bool is_interp)
749 {
750 	/*
751 	 * For dynamically linked executables the interpreter is
752 	 * responsible for setting PROT_BTI on everything except
753 	 * itself.
754 	 */
755 	if (is_interp != has_interp)
756 		return prot;
757 
758 	if (!(state->flags & ARM64_ELF_BTI))
759 		return prot;
760 
761 	if (prot & PROT_EXEC)
762 		prot |= PROT_BTI;
763 
764 	return prot;
765 }
766 #endif
767