xref: /linux/arch/arm64/kernel/process.c (revision 98838d95075a5295f3478ceba18bcccf472e30f4)
1 /*
2  * Based on arch/arm/kernel/process.c
3  *
4  * Original Copyright (C) 1995  Linus Torvalds
5  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
6  * Copyright (C) 2012 ARM Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <stdarg.h>
22 
23 #include <linux/compat.h>
24 #include <linux/efi.h>
25 #include <linux/export.h>
26 #include <linux/sched.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/stddef.h>
30 #include <linux/unistd.h>
31 #include <linux/user.h>
32 #include <linux/delay.h>
33 #include <linux/reboot.h>
34 #include <linux/interrupt.h>
35 #include <linux/kallsyms.h>
36 #include <linux/init.h>
37 #include <linux/cpu.h>
38 #include <linux/elfcore.h>
39 #include <linux/pm.h>
40 #include <linux/tick.h>
41 #include <linux/utsname.h>
42 #include <linux/uaccess.h>
43 #include <linux/random.h>
44 #include <linux/hw_breakpoint.h>
45 #include <linux/personality.h>
46 #include <linux/notifier.h>
47 #include <trace/events/power.h>
48 
49 #include <asm/alternative.h>
50 #include <asm/compat.h>
51 #include <asm/cacheflush.h>
52 #include <asm/exec.h>
53 #include <asm/fpsimd.h>
54 #include <asm/mmu_context.h>
55 #include <asm/processor.h>
56 #include <asm/stacktrace.h>
57 
58 #ifdef CONFIG_CC_STACKPROTECTOR
59 #include <linux/stackprotector.h>
60 unsigned long __stack_chk_guard __read_mostly;
61 EXPORT_SYMBOL(__stack_chk_guard);
62 #endif
63 
64 /*
65  * Function pointers to optional machine specific functions
66  */
67 void (*pm_power_off)(void);
68 EXPORT_SYMBOL_GPL(pm_power_off);
69 
70 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
71 
72 /*
73  * This is our default idle handler.
74  */
75 void arch_cpu_idle(void)
76 {
77 	/*
78 	 * This should do all the clock switching and wait for interrupt
79 	 * tricks
80 	 */
81 	trace_cpu_idle_rcuidle(1, smp_processor_id());
82 	cpu_do_idle();
83 	local_irq_enable();
84 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
85 }
86 
87 #ifdef CONFIG_HOTPLUG_CPU
88 void arch_cpu_idle_dead(void)
89 {
90        cpu_die();
91 }
92 #endif
93 
94 /*
95  * Called by kexec, immediately prior to machine_kexec().
96  *
97  * This must completely disable all secondary CPUs; simply causing those CPUs
98  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
99  * kexec'd kernel to use any and all RAM as it sees fit, without having to
100  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
101  * functionality embodied in disable_nonboot_cpus() to achieve this.
102  */
103 void machine_shutdown(void)
104 {
105 	disable_nonboot_cpus();
106 }
107 
108 /*
109  * Halting simply requires that the secondary CPUs stop performing any
110  * activity (executing tasks, handling interrupts). smp_send_stop()
111  * achieves this.
112  */
113 void machine_halt(void)
114 {
115 	local_irq_disable();
116 	smp_send_stop();
117 	while (1);
118 }
119 
120 /*
121  * Power-off simply requires that the secondary CPUs stop performing any
122  * activity (executing tasks, handling interrupts). smp_send_stop()
123  * achieves this. When the system power is turned off, it will take all CPUs
124  * with it.
125  */
126 void machine_power_off(void)
127 {
128 	local_irq_disable();
129 	smp_send_stop();
130 	if (pm_power_off)
131 		pm_power_off();
132 }
133 
134 /*
135  * Restart requires that the secondary CPUs stop performing any activity
136  * while the primary CPU resets the system. Systems with multiple CPUs must
137  * provide a HW restart implementation, to ensure that all CPUs reset at once.
138  * This is required so that any code running after reset on the primary CPU
139  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
140  * executing pre-reset code, and using RAM that the primary CPU's code wishes
141  * to use. Implementing such co-ordination would be essentially impossible.
142  */
143 void machine_restart(char *cmd)
144 {
145 	/* Disable interrupts first */
146 	local_irq_disable();
147 	smp_send_stop();
148 
149 	/*
150 	 * UpdateCapsule() depends on the system being reset via
151 	 * ResetSystem().
152 	 */
153 	if (efi_enabled(EFI_RUNTIME_SERVICES))
154 		efi_reboot(reboot_mode, NULL);
155 
156 	/* Now call the architecture specific reboot code. */
157 	if (arm_pm_restart)
158 		arm_pm_restart(reboot_mode, cmd);
159 	else
160 		do_kernel_restart(cmd);
161 
162 	/*
163 	 * Whoops - the architecture was unable to reboot.
164 	 */
165 	printk("Reboot failed -- System halted\n");
166 	while (1);
167 }
168 
169 void __show_regs(struct pt_regs *regs)
170 {
171 	int i, top_reg;
172 	u64 lr, sp;
173 
174 	if (compat_user_mode(regs)) {
175 		lr = regs->compat_lr;
176 		sp = regs->compat_sp;
177 		top_reg = 12;
178 	} else {
179 		lr = regs->regs[30];
180 		sp = regs->sp;
181 		top_reg = 29;
182 	}
183 
184 	show_regs_print_info(KERN_DEFAULT);
185 	print_symbol("PC is at %s\n", instruction_pointer(regs));
186 	print_symbol("LR is at %s\n", lr);
187 	printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n",
188 	       regs->pc, lr, regs->pstate);
189 	printk("sp : %016llx\n", sp);
190 
191 	i = top_reg;
192 
193 	while (i >= 0) {
194 		printk("x%-2d: %016llx ", i, regs->regs[i]);
195 		i--;
196 
197 		if (i % 2 == 0) {
198 			pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
199 			i--;
200 		}
201 
202 		pr_cont("\n");
203 	}
204 	printk("\n");
205 }
206 
207 void show_regs(struct pt_regs * regs)
208 {
209 	printk("\n");
210 	__show_regs(regs);
211 }
212 
213 static void tls_thread_flush(void)
214 {
215 	write_sysreg(0, tpidr_el0);
216 
217 	if (is_compat_task()) {
218 		current->thread.tp_value = 0;
219 
220 		/*
221 		 * We need to ensure ordering between the shadow state and the
222 		 * hardware state, so that we don't corrupt the hardware state
223 		 * with a stale shadow state during context switch.
224 		 */
225 		barrier();
226 		write_sysreg(0, tpidrro_el0);
227 	}
228 }
229 
230 void flush_thread(void)
231 {
232 	fpsimd_flush_thread();
233 	tls_thread_flush();
234 	flush_ptrace_hw_breakpoint(current);
235 }
236 
237 void release_thread(struct task_struct *dead_task)
238 {
239 }
240 
241 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
242 {
243 	if (current->mm)
244 		fpsimd_preserve_current_state();
245 	*dst = *src;
246 	return 0;
247 }
248 
249 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
250 
251 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
252 		unsigned long stk_sz, struct task_struct *p)
253 {
254 	struct pt_regs *childregs = task_pt_regs(p);
255 
256 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
257 
258 	if (likely(!(p->flags & PF_KTHREAD))) {
259 		*childregs = *current_pt_regs();
260 		childregs->regs[0] = 0;
261 
262 		/*
263 		 * Read the current TLS pointer from tpidr_el0 as it may be
264 		 * out-of-sync with the saved value.
265 		 */
266 		*task_user_tls(p) = read_sysreg(tpidr_el0);
267 
268 		if (stack_start) {
269 			if (is_compat_thread(task_thread_info(p)))
270 				childregs->compat_sp = stack_start;
271 			else
272 				childregs->sp = stack_start;
273 		}
274 
275 		/*
276 		 * If a TLS pointer was passed to clone (4th argument), use it
277 		 * for the new thread.
278 		 */
279 		if (clone_flags & CLONE_SETTLS)
280 			p->thread.tp_value = childregs->regs[3];
281 	} else {
282 		memset(childregs, 0, sizeof(struct pt_regs));
283 		childregs->pstate = PSR_MODE_EL1h;
284 		if (IS_ENABLED(CONFIG_ARM64_UAO) &&
285 		    cpus_have_cap(ARM64_HAS_UAO))
286 			childregs->pstate |= PSR_UAO_BIT;
287 		p->thread.cpu_context.x19 = stack_start;
288 		p->thread.cpu_context.x20 = stk_sz;
289 	}
290 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
291 	p->thread.cpu_context.sp = (unsigned long)childregs;
292 
293 	ptrace_hw_copy_thread(p);
294 
295 	return 0;
296 }
297 
298 static void tls_thread_switch(struct task_struct *next)
299 {
300 	unsigned long tpidr, tpidrro;
301 
302 	tpidr = read_sysreg(tpidr_el0);
303 	*task_user_tls(current) = tpidr;
304 
305 	tpidr = *task_user_tls(next);
306 	tpidrro = is_compat_thread(task_thread_info(next)) ?
307 		  next->thread.tp_value : 0;
308 
309 	write_sysreg(tpidr, tpidr_el0);
310 	write_sysreg(tpidrro, tpidrro_el0);
311 }
312 
313 /* Restore the UAO state depending on next's addr_limit */
314 void uao_thread_switch(struct task_struct *next)
315 {
316 	if (IS_ENABLED(CONFIG_ARM64_UAO)) {
317 		if (task_thread_info(next)->addr_limit == KERNEL_DS)
318 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
319 		else
320 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
321 	}
322 }
323 
324 /*
325  * Thread switching.
326  */
327 struct task_struct *__switch_to(struct task_struct *prev,
328 				struct task_struct *next)
329 {
330 	struct task_struct *last;
331 
332 	fpsimd_thread_switch(next);
333 	tls_thread_switch(next);
334 	hw_breakpoint_thread_switch(next);
335 	contextidr_thread_switch(next);
336 	uao_thread_switch(next);
337 
338 	/*
339 	 * Complete any pending TLB or cache maintenance on this CPU in case
340 	 * the thread migrates to a different CPU.
341 	 */
342 	dsb(ish);
343 
344 	/* the actual thread switch */
345 	last = cpu_switch_to(prev, next);
346 
347 	return last;
348 }
349 
350 unsigned long get_wchan(struct task_struct *p)
351 {
352 	struct stackframe frame;
353 	unsigned long stack_page;
354 	int count = 0;
355 	if (!p || p == current || p->state == TASK_RUNNING)
356 		return 0;
357 
358 	frame.fp = thread_saved_fp(p);
359 	frame.sp = thread_saved_sp(p);
360 	frame.pc = thread_saved_pc(p);
361 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
362 	frame.graph = p->curr_ret_stack;
363 #endif
364 	stack_page = (unsigned long)task_stack_page(p);
365 	do {
366 		if (frame.sp < stack_page ||
367 		    frame.sp >= stack_page + THREAD_SIZE ||
368 		    unwind_frame(p, &frame))
369 			return 0;
370 		if (!in_sched_functions(frame.pc))
371 			return frame.pc;
372 	} while (count ++ < 16);
373 	return 0;
374 }
375 
376 unsigned long arch_align_stack(unsigned long sp)
377 {
378 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
379 		sp -= get_random_int() & ~PAGE_MASK;
380 	return sp & ~0xf;
381 }
382 
383 unsigned long arch_randomize_brk(struct mm_struct *mm)
384 {
385 	if (is_compat_task())
386 		return randomize_page(mm->brk, 0x02000000);
387 	else
388 		return randomize_page(mm->brk, 0x40000000);
389 }
390