xref: /linux/arch/arm64/kernel/process.c (revision 87c9c16317882dd6dbbc07e349bc3223e14f3244)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/process.c
4  *
5  * Original Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <stdarg.h>
11 
12 #include <linux/compat.h>
13 #include <linux/efi.h>
14 #include <linux/elf.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/sched/debug.h>
18 #include <linux/sched/task.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/kernel.h>
21 #include <linux/lockdep.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/nospec.h>
25 #include <linux/stddef.h>
26 #include <linux/sysctl.h>
27 #include <linux/unistd.h>
28 #include <linux/user.h>
29 #include <linux/delay.h>
30 #include <linux/reboot.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/cpu.h>
34 #include <linux/elfcore.h>
35 #include <linux/pm.h>
36 #include <linux/tick.h>
37 #include <linux/utsname.h>
38 #include <linux/uaccess.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/personality.h>
42 #include <linux/notifier.h>
43 #include <trace/events/power.h>
44 #include <linux/percpu.h>
45 #include <linux/thread_info.h>
46 #include <linux/prctl.h>
47 
48 #include <asm/alternative.h>
49 #include <asm/arch_gicv3.h>
50 #include <asm/compat.h>
51 #include <asm/cpufeature.h>
52 #include <asm/cacheflush.h>
53 #include <asm/exec.h>
54 #include <asm/fpsimd.h>
55 #include <asm/mmu_context.h>
56 #include <asm/mte.h>
57 #include <asm/processor.h>
58 #include <asm/pointer_auth.h>
59 #include <asm/stacktrace.h>
60 #include <asm/switch_to.h>
61 #include <asm/system_misc.h>
62 
63 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
64 #include <linux/stackprotector.h>
65 unsigned long __stack_chk_guard __read_mostly;
66 EXPORT_SYMBOL(__stack_chk_guard);
67 #endif
68 
69 /*
70  * Function pointers to optional machine specific functions
71  */
72 void (*pm_power_off)(void);
73 EXPORT_SYMBOL_GPL(pm_power_off);
74 
75 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
76 
77 static void noinstr __cpu_do_idle(void)
78 {
79 	dsb(sy);
80 	wfi();
81 }
82 
83 static void noinstr __cpu_do_idle_irqprio(void)
84 {
85 	unsigned long pmr;
86 	unsigned long daif_bits;
87 
88 	daif_bits = read_sysreg(daif);
89 	write_sysreg(daif_bits | PSR_I_BIT | PSR_F_BIT, daif);
90 
91 	/*
92 	 * Unmask PMR before going idle to make sure interrupts can
93 	 * be raised.
94 	 */
95 	pmr = gic_read_pmr();
96 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
97 
98 	__cpu_do_idle();
99 
100 	gic_write_pmr(pmr);
101 	write_sysreg(daif_bits, daif);
102 }
103 
104 /*
105  *	cpu_do_idle()
106  *
107  *	Idle the processor (wait for interrupt).
108  *
109  *	If the CPU supports priority masking we must do additional work to
110  *	ensure that interrupts are not masked at the PMR (because the core will
111  *	not wake up if we block the wake up signal in the interrupt controller).
112  */
113 void noinstr cpu_do_idle(void)
114 {
115 	if (system_uses_irq_prio_masking())
116 		__cpu_do_idle_irqprio();
117 	else
118 		__cpu_do_idle();
119 }
120 
121 /*
122  * This is our default idle handler.
123  */
124 void noinstr arch_cpu_idle(void)
125 {
126 	/*
127 	 * This should do all the clock switching and wait for interrupt
128 	 * tricks
129 	 */
130 	cpu_do_idle();
131 	raw_local_irq_enable();
132 }
133 
134 #ifdef CONFIG_HOTPLUG_CPU
135 void arch_cpu_idle_dead(void)
136 {
137        cpu_die();
138 }
139 #endif
140 
141 /*
142  * Called by kexec, immediately prior to machine_kexec().
143  *
144  * This must completely disable all secondary CPUs; simply causing those CPUs
145  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
146  * kexec'd kernel to use any and all RAM as it sees fit, without having to
147  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
148  * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
149  */
150 void machine_shutdown(void)
151 {
152 	smp_shutdown_nonboot_cpus(reboot_cpu);
153 }
154 
155 /*
156  * Halting simply requires that the secondary CPUs stop performing any
157  * activity (executing tasks, handling interrupts). smp_send_stop()
158  * achieves this.
159  */
160 void machine_halt(void)
161 {
162 	local_irq_disable();
163 	smp_send_stop();
164 	while (1);
165 }
166 
167 /*
168  * Power-off simply requires that the secondary CPUs stop performing any
169  * activity (executing tasks, handling interrupts). smp_send_stop()
170  * achieves this. When the system power is turned off, it will take all CPUs
171  * with it.
172  */
173 void machine_power_off(void)
174 {
175 	local_irq_disable();
176 	smp_send_stop();
177 	if (pm_power_off)
178 		pm_power_off();
179 }
180 
181 /*
182  * Restart requires that the secondary CPUs stop performing any activity
183  * while the primary CPU resets the system. Systems with multiple CPUs must
184  * provide a HW restart implementation, to ensure that all CPUs reset at once.
185  * This is required so that any code running after reset on the primary CPU
186  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
187  * executing pre-reset code, and using RAM that the primary CPU's code wishes
188  * to use. Implementing such co-ordination would be essentially impossible.
189  */
190 void machine_restart(char *cmd)
191 {
192 	/* Disable interrupts first */
193 	local_irq_disable();
194 	smp_send_stop();
195 
196 	/*
197 	 * UpdateCapsule() depends on the system being reset via
198 	 * ResetSystem().
199 	 */
200 	if (efi_enabled(EFI_RUNTIME_SERVICES))
201 		efi_reboot(reboot_mode, NULL);
202 
203 	/* Now call the architecture specific reboot code. */
204 	if (arm_pm_restart)
205 		arm_pm_restart(reboot_mode, cmd);
206 	else
207 		do_kernel_restart(cmd);
208 
209 	/*
210 	 * Whoops - the architecture was unable to reboot.
211 	 */
212 	printk("Reboot failed -- System halted\n");
213 	while (1);
214 }
215 
216 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
217 static const char *const btypes[] = {
218 	bstr(NONE, "--"),
219 	bstr(  JC, "jc"),
220 	bstr(   C, "-c"),
221 	bstr(  J , "j-")
222 };
223 #undef bstr
224 
225 static void print_pstate(struct pt_regs *regs)
226 {
227 	u64 pstate = regs->pstate;
228 
229 	if (compat_user_mode(regs)) {
230 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
231 			pstate,
232 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
233 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
234 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
235 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
236 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
237 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
238 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
239 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
240 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
241 			pstate & PSR_AA32_F_BIT ? 'F' : 'f');
242 	} else {
243 		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
244 					       PSR_BTYPE_SHIFT];
245 
246 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO BTYPE=%s)\n",
247 			pstate,
248 			pstate & PSR_N_BIT ? 'N' : 'n',
249 			pstate & PSR_Z_BIT ? 'Z' : 'z',
250 			pstate & PSR_C_BIT ? 'C' : 'c',
251 			pstate & PSR_V_BIT ? 'V' : 'v',
252 			pstate & PSR_D_BIT ? 'D' : 'd',
253 			pstate & PSR_A_BIT ? 'A' : 'a',
254 			pstate & PSR_I_BIT ? 'I' : 'i',
255 			pstate & PSR_F_BIT ? 'F' : 'f',
256 			pstate & PSR_PAN_BIT ? '+' : '-',
257 			pstate & PSR_UAO_BIT ? '+' : '-',
258 			pstate & PSR_TCO_BIT ? '+' : '-',
259 			btype_str);
260 	}
261 }
262 
263 void __show_regs(struct pt_regs *regs)
264 {
265 	int i, top_reg;
266 	u64 lr, sp;
267 
268 	if (compat_user_mode(regs)) {
269 		lr = regs->compat_lr;
270 		sp = regs->compat_sp;
271 		top_reg = 12;
272 	} else {
273 		lr = regs->regs[30];
274 		sp = regs->sp;
275 		top_reg = 29;
276 	}
277 
278 	show_regs_print_info(KERN_DEFAULT);
279 	print_pstate(regs);
280 
281 	if (!user_mode(regs)) {
282 		printk("pc : %pS\n", (void *)regs->pc);
283 		printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
284 	} else {
285 		printk("pc : %016llx\n", regs->pc);
286 		printk("lr : %016llx\n", lr);
287 	}
288 
289 	printk("sp : %016llx\n", sp);
290 
291 	if (system_uses_irq_prio_masking())
292 		printk("pmr_save: %08llx\n", regs->pmr_save);
293 
294 	i = top_reg;
295 
296 	while (i >= 0) {
297 		printk("x%-2d: %016llx", i, regs->regs[i]);
298 
299 		while (i-- % 3)
300 			pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
301 
302 		pr_cont("\n");
303 	}
304 }
305 
306 void show_regs(struct pt_regs *regs)
307 {
308 	__show_regs(regs);
309 	dump_backtrace(regs, NULL, KERN_DEFAULT);
310 }
311 
312 static void tls_thread_flush(void)
313 {
314 	write_sysreg(0, tpidr_el0);
315 
316 	if (is_compat_task()) {
317 		current->thread.uw.tp_value = 0;
318 
319 		/*
320 		 * We need to ensure ordering between the shadow state and the
321 		 * hardware state, so that we don't corrupt the hardware state
322 		 * with a stale shadow state during context switch.
323 		 */
324 		barrier();
325 		write_sysreg(0, tpidrro_el0);
326 	}
327 }
328 
329 static void flush_tagged_addr_state(void)
330 {
331 	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
332 		clear_thread_flag(TIF_TAGGED_ADDR);
333 }
334 
335 void flush_thread(void)
336 {
337 	fpsimd_flush_thread();
338 	tls_thread_flush();
339 	flush_ptrace_hw_breakpoint(current);
340 	flush_tagged_addr_state();
341 }
342 
343 void release_thread(struct task_struct *dead_task)
344 {
345 }
346 
347 void arch_release_task_struct(struct task_struct *tsk)
348 {
349 	fpsimd_release_task(tsk);
350 }
351 
352 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
353 {
354 	if (current->mm)
355 		fpsimd_preserve_current_state();
356 	*dst = *src;
357 
358 	/* We rely on the above assignment to initialize dst's thread_flags: */
359 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
360 
361 	/*
362 	 * Detach src's sve_state (if any) from dst so that it does not
363 	 * get erroneously used or freed prematurely.  dst's sve_state
364 	 * will be allocated on demand later on if dst uses SVE.
365 	 * For consistency, also clear TIF_SVE here: this could be done
366 	 * later in copy_process(), but to avoid tripping up future
367 	 * maintainers it is best not to leave TIF_SVE and sve_state in
368 	 * an inconsistent state, even temporarily.
369 	 */
370 	dst->thread.sve_state = NULL;
371 	clear_tsk_thread_flag(dst, TIF_SVE);
372 
373 	/* clear any pending asynchronous tag fault raised by the parent */
374 	clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
375 
376 	return 0;
377 }
378 
379 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
380 
381 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
382 		unsigned long stk_sz, struct task_struct *p, unsigned long tls)
383 {
384 	struct pt_regs *childregs = task_pt_regs(p);
385 
386 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
387 
388 	/*
389 	 * In case p was allocated the same task_struct pointer as some
390 	 * other recently-exited task, make sure p is disassociated from
391 	 * any cpu that may have run that now-exited task recently.
392 	 * Otherwise we could erroneously skip reloading the FPSIMD
393 	 * registers for p.
394 	 */
395 	fpsimd_flush_task_state(p);
396 
397 	ptrauth_thread_init_kernel(p);
398 
399 	if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) {
400 		*childregs = *current_pt_regs();
401 		childregs->regs[0] = 0;
402 
403 		/*
404 		 * Read the current TLS pointer from tpidr_el0 as it may be
405 		 * out-of-sync with the saved value.
406 		 */
407 		*task_user_tls(p) = read_sysreg(tpidr_el0);
408 
409 		if (stack_start) {
410 			if (is_compat_thread(task_thread_info(p)))
411 				childregs->compat_sp = stack_start;
412 			else
413 				childregs->sp = stack_start;
414 		}
415 
416 		/*
417 		 * If a TLS pointer was passed to clone, use it for the new
418 		 * thread.
419 		 */
420 		if (clone_flags & CLONE_SETTLS)
421 			p->thread.uw.tp_value = tls;
422 	} else {
423 		/*
424 		 * A kthread has no context to ERET to, so ensure any buggy
425 		 * ERET is treated as an illegal exception return.
426 		 *
427 		 * When a user task is created from a kthread, childregs will
428 		 * be initialized by start_thread() or start_compat_thread().
429 		 */
430 		memset(childregs, 0, sizeof(struct pt_regs));
431 		childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
432 
433 		p->thread.cpu_context.x19 = stack_start;
434 		p->thread.cpu_context.x20 = stk_sz;
435 	}
436 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
437 	p->thread.cpu_context.sp = (unsigned long)childregs;
438 
439 	ptrace_hw_copy_thread(p);
440 
441 	return 0;
442 }
443 
444 void tls_preserve_current_state(void)
445 {
446 	*task_user_tls(current) = read_sysreg(tpidr_el0);
447 }
448 
449 static void tls_thread_switch(struct task_struct *next)
450 {
451 	tls_preserve_current_state();
452 
453 	if (is_compat_thread(task_thread_info(next)))
454 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
455 	else if (!arm64_kernel_unmapped_at_el0())
456 		write_sysreg(0, tpidrro_el0);
457 
458 	write_sysreg(*task_user_tls(next), tpidr_el0);
459 }
460 
461 /*
462  * Force SSBS state on context-switch, since it may be lost after migrating
463  * from a CPU which treats the bit as RES0 in a heterogeneous system.
464  */
465 static void ssbs_thread_switch(struct task_struct *next)
466 {
467 	/*
468 	 * Nothing to do for kernel threads, but 'regs' may be junk
469 	 * (e.g. idle task) so check the flags and bail early.
470 	 */
471 	if (unlikely(next->flags & PF_KTHREAD))
472 		return;
473 
474 	/*
475 	 * If all CPUs implement the SSBS extension, then we just need to
476 	 * context-switch the PSTATE field.
477 	 */
478 	if (cpus_have_const_cap(ARM64_SSBS))
479 		return;
480 
481 	spectre_v4_enable_task_mitigation(next);
482 }
483 
484 /*
485  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
486  * shadow copy so that we can restore this upon entry from userspace.
487  *
488  * This is *only* for exception entry from EL0, and is not valid until we
489  * __switch_to() a user task.
490  */
491 DEFINE_PER_CPU(struct task_struct *, __entry_task);
492 
493 static void entry_task_switch(struct task_struct *next)
494 {
495 	__this_cpu_write(__entry_task, next);
496 }
497 
498 /*
499  * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
500  * Assuming the virtual counter is enabled at the beginning of times:
501  *
502  * - disable access when switching from a 64bit task to a 32bit task
503  * - enable access when switching from a 32bit task to a 64bit task
504  */
505 static void erratum_1418040_thread_switch(struct task_struct *prev,
506 					  struct task_struct *next)
507 {
508 	bool prev32, next32;
509 	u64 val;
510 
511 	if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040))
512 		return;
513 
514 	prev32 = is_compat_thread(task_thread_info(prev));
515 	next32 = is_compat_thread(task_thread_info(next));
516 
517 	if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
518 		return;
519 
520 	val = read_sysreg(cntkctl_el1);
521 
522 	if (!next32)
523 		val |= ARCH_TIMER_USR_VCT_ACCESS_EN;
524 	else
525 		val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
526 
527 	write_sysreg(val, cntkctl_el1);
528 }
529 
530 static void update_sctlr_el1(u64 sctlr)
531 {
532 	/*
533 	 * EnIA must not be cleared while in the kernel as this is necessary for
534 	 * in-kernel PAC. It will be cleared on kernel exit if needed.
535 	 */
536 	sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
537 
538 	/* ISB required for the kernel uaccess routines when setting TCF0. */
539 	isb();
540 }
541 
542 void set_task_sctlr_el1(u64 sctlr)
543 {
544 	/*
545 	 * __switch_to() checks current->thread.sctlr as an
546 	 * optimisation. Disable preemption so that it does not see
547 	 * the variable update before the SCTLR_EL1 one.
548 	 */
549 	preempt_disable();
550 	current->thread.sctlr_user = sctlr;
551 	update_sctlr_el1(sctlr);
552 	preempt_enable();
553 }
554 
555 /*
556  * Thread switching.
557  */
558 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
559 				struct task_struct *next)
560 {
561 	struct task_struct *last;
562 
563 	fpsimd_thread_switch(next);
564 	tls_thread_switch(next);
565 	hw_breakpoint_thread_switch(next);
566 	contextidr_thread_switch(next);
567 	entry_task_switch(next);
568 	ssbs_thread_switch(next);
569 	erratum_1418040_thread_switch(prev, next);
570 	ptrauth_thread_switch_user(next);
571 
572 	/*
573 	 * Complete any pending TLB or cache maintenance on this CPU in case
574 	 * the thread migrates to a different CPU.
575 	 * This full barrier is also required by the membarrier system
576 	 * call.
577 	 */
578 	dsb(ish);
579 
580 	/*
581 	 * MTE thread switching must happen after the DSB above to ensure that
582 	 * any asynchronous tag check faults have been logged in the TFSR*_EL1
583 	 * registers.
584 	 */
585 	mte_thread_switch(next);
586 	/* avoid expensive SCTLR_EL1 accesses if no change */
587 	if (prev->thread.sctlr_user != next->thread.sctlr_user)
588 		update_sctlr_el1(next->thread.sctlr_user);
589 
590 	/* the actual thread switch */
591 	last = cpu_switch_to(prev, next);
592 
593 	return last;
594 }
595 
596 unsigned long get_wchan(struct task_struct *p)
597 {
598 	struct stackframe frame;
599 	unsigned long stack_page, ret = 0;
600 	int count = 0;
601 	if (!p || p == current || p->state == TASK_RUNNING)
602 		return 0;
603 
604 	stack_page = (unsigned long)try_get_task_stack(p);
605 	if (!stack_page)
606 		return 0;
607 
608 	start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
609 
610 	do {
611 		if (unwind_frame(p, &frame))
612 			goto out;
613 		if (!in_sched_functions(frame.pc)) {
614 			ret = frame.pc;
615 			goto out;
616 		}
617 	} while (count++ < 16);
618 
619 out:
620 	put_task_stack(p);
621 	return ret;
622 }
623 
624 unsigned long arch_align_stack(unsigned long sp)
625 {
626 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
627 		sp -= get_random_int() & ~PAGE_MASK;
628 	return sp & ~0xf;
629 }
630 
631 /*
632  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
633  */
634 void arch_setup_new_exec(void)
635 {
636 	current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
637 
638 	ptrauth_thread_init_user();
639 	mte_thread_init_user();
640 
641 	if (task_spec_ssb_noexec(current)) {
642 		arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
643 					 PR_SPEC_ENABLE);
644 	}
645 }
646 
647 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
648 /*
649  * Control the relaxed ABI allowing tagged user addresses into the kernel.
650  */
651 static unsigned int tagged_addr_disabled;
652 
653 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
654 {
655 	unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
656 	struct thread_info *ti = task_thread_info(task);
657 
658 	if (is_compat_thread(ti))
659 		return -EINVAL;
660 
661 	if (system_supports_mte())
662 		valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK;
663 
664 	if (arg & ~valid_mask)
665 		return -EINVAL;
666 
667 	/*
668 	 * Do not allow the enabling of the tagged address ABI if globally
669 	 * disabled via sysctl abi.tagged_addr_disabled.
670 	 */
671 	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
672 		return -EINVAL;
673 
674 	if (set_mte_ctrl(task, arg) != 0)
675 		return -EINVAL;
676 
677 	update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
678 
679 	return 0;
680 }
681 
682 long get_tagged_addr_ctrl(struct task_struct *task)
683 {
684 	long ret = 0;
685 	struct thread_info *ti = task_thread_info(task);
686 
687 	if (is_compat_thread(ti))
688 		return -EINVAL;
689 
690 	if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
691 		ret = PR_TAGGED_ADDR_ENABLE;
692 
693 	ret |= get_mte_ctrl(task);
694 
695 	return ret;
696 }
697 
698 /*
699  * Global sysctl to disable the tagged user addresses support. This control
700  * only prevents the tagged address ABI enabling via prctl() and does not
701  * disable it for tasks that already opted in to the relaxed ABI.
702  */
703 
704 static struct ctl_table tagged_addr_sysctl_table[] = {
705 	{
706 		.procname	= "tagged_addr_disabled",
707 		.mode		= 0644,
708 		.data		= &tagged_addr_disabled,
709 		.maxlen		= sizeof(int),
710 		.proc_handler	= proc_dointvec_minmax,
711 		.extra1		= SYSCTL_ZERO,
712 		.extra2		= SYSCTL_ONE,
713 	},
714 	{ }
715 };
716 
717 static int __init tagged_addr_init(void)
718 {
719 	if (!register_sysctl("abi", tagged_addr_sysctl_table))
720 		return -EINVAL;
721 	return 0;
722 }
723 
724 core_initcall(tagged_addr_init);
725 #endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
726 
727 asmlinkage void __sched arm64_preempt_schedule_irq(void)
728 {
729 	lockdep_assert_irqs_disabled();
730 
731 	/*
732 	 * Preempting a task from an IRQ means we leave copies of PSTATE
733 	 * on the stack. cpufeature's enable calls may modify PSTATE, but
734 	 * resuming one of these preempted tasks would undo those changes.
735 	 *
736 	 * Only allow a task to be preempted once cpufeatures have been
737 	 * enabled.
738 	 */
739 	if (system_capabilities_finalized())
740 		preempt_schedule_irq();
741 }
742 
743 #ifdef CONFIG_BINFMT_ELF
744 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
745 			 bool has_interp, bool is_interp)
746 {
747 	/*
748 	 * For dynamically linked executables the interpreter is
749 	 * responsible for setting PROT_BTI on everything except
750 	 * itself.
751 	 */
752 	if (is_interp != has_interp)
753 		return prot;
754 
755 	if (!(state->flags & ARM64_ELF_BTI))
756 		return prot;
757 
758 	if (prot & PROT_EXEC)
759 		prot |= PROT_BTI;
760 
761 	return prot;
762 }
763 #endif
764