1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/process.c 4 * 5 * Original Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 10 #include <stdarg.h> 11 12 #include <linux/compat.h> 13 #include <linux/efi.h> 14 #include <linux/elf.h> 15 #include <linux/export.h> 16 #include <linux/sched.h> 17 #include <linux/sched/debug.h> 18 #include <linux/sched/task.h> 19 #include <linux/sched/task_stack.h> 20 #include <linux/kernel.h> 21 #include <linux/lockdep.h> 22 #include <linux/mman.h> 23 #include <linux/mm.h> 24 #include <linux/nospec.h> 25 #include <linux/stddef.h> 26 #include <linux/sysctl.h> 27 #include <linux/unistd.h> 28 #include <linux/user.h> 29 #include <linux/delay.h> 30 #include <linux/reboot.h> 31 #include <linux/interrupt.h> 32 #include <linux/init.h> 33 #include <linux/cpu.h> 34 #include <linux/elfcore.h> 35 #include <linux/pm.h> 36 #include <linux/tick.h> 37 #include <linux/utsname.h> 38 #include <linux/uaccess.h> 39 #include <linux/random.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/personality.h> 42 #include <linux/notifier.h> 43 #include <trace/events/power.h> 44 #include <linux/percpu.h> 45 #include <linux/thread_info.h> 46 #include <linux/prctl.h> 47 48 #include <asm/alternative.h> 49 #include <asm/arch_gicv3.h> 50 #include <asm/compat.h> 51 #include <asm/cpufeature.h> 52 #include <asm/cacheflush.h> 53 #include <asm/exec.h> 54 #include <asm/fpsimd.h> 55 #include <asm/mmu_context.h> 56 #include <asm/mte.h> 57 #include <asm/processor.h> 58 #include <asm/pointer_auth.h> 59 #include <asm/stacktrace.h> 60 #include <asm/switch_to.h> 61 #include <asm/system_misc.h> 62 63 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) 64 #include <linux/stackprotector.h> 65 unsigned long __stack_chk_guard __read_mostly; 66 EXPORT_SYMBOL(__stack_chk_guard); 67 #endif 68 69 /* 70 * Function pointers to optional machine specific functions 71 */ 72 void (*pm_power_off)(void); 73 EXPORT_SYMBOL_GPL(pm_power_off); 74 75 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd); 76 77 static void noinstr __cpu_do_idle(void) 78 { 79 dsb(sy); 80 wfi(); 81 } 82 83 static void noinstr __cpu_do_idle_irqprio(void) 84 { 85 unsigned long pmr; 86 unsigned long daif_bits; 87 88 daif_bits = read_sysreg(daif); 89 write_sysreg(daif_bits | PSR_I_BIT | PSR_F_BIT, daif); 90 91 /* 92 * Unmask PMR before going idle to make sure interrupts can 93 * be raised. 94 */ 95 pmr = gic_read_pmr(); 96 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 97 98 __cpu_do_idle(); 99 100 gic_write_pmr(pmr); 101 write_sysreg(daif_bits, daif); 102 } 103 104 /* 105 * cpu_do_idle() 106 * 107 * Idle the processor (wait for interrupt). 108 * 109 * If the CPU supports priority masking we must do additional work to 110 * ensure that interrupts are not masked at the PMR (because the core will 111 * not wake up if we block the wake up signal in the interrupt controller). 112 */ 113 void noinstr cpu_do_idle(void) 114 { 115 if (system_uses_irq_prio_masking()) 116 __cpu_do_idle_irqprio(); 117 else 118 __cpu_do_idle(); 119 } 120 121 /* 122 * This is our default idle handler. 123 */ 124 void noinstr arch_cpu_idle(void) 125 { 126 /* 127 * This should do all the clock switching and wait for interrupt 128 * tricks 129 */ 130 cpu_do_idle(); 131 raw_local_irq_enable(); 132 } 133 134 #ifdef CONFIG_HOTPLUG_CPU 135 void arch_cpu_idle_dead(void) 136 { 137 cpu_die(); 138 } 139 #endif 140 141 /* 142 * Called by kexec, immediately prior to machine_kexec(). 143 * 144 * This must completely disable all secondary CPUs; simply causing those CPUs 145 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 146 * kexec'd kernel to use any and all RAM as it sees fit, without having to 147 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 148 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this. 149 */ 150 void machine_shutdown(void) 151 { 152 smp_shutdown_nonboot_cpus(reboot_cpu); 153 } 154 155 /* 156 * Halting simply requires that the secondary CPUs stop performing any 157 * activity (executing tasks, handling interrupts). smp_send_stop() 158 * achieves this. 159 */ 160 void machine_halt(void) 161 { 162 local_irq_disable(); 163 smp_send_stop(); 164 while (1); 165 } 166 167 /* 168 * Power-off simply requires that the secondary CPUs stop performing any 169 * activity (executing tasks, handling interrupts). smp_send_stop() 170 * achieves this. When the system power is turned off, it will take all CPUs 171 * with it. 172 */ 173 void machine_power_off(void) 174 { 175 local_irq_disable(); 176 smp_send_stop(); 177 if (pm_power_off) 178 pm_power_off(); 179 } 180 181 /* 182 * Restart requires that the secondary CPUs stop performing any activity 183 * while the primary CPU resets the system. Systems with multiple CPUs must 184 * provide a HW restart implementation, to ensure that all CPUs reset at once. 185 * This is required so that any code running after reset on the primary CPU 186 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 187 * executing pre-reset code, and using RAM that the primary CPU's code wishes 188 * to use. Implementing such co-ordination would be essentially impossible. 189 */ 190 void machine_restart(char *cmd) 191 { 192 /* Disable interrupts first */ 193 local_irq_disable(); 194 smp_send_stop(); 195 196 /* 197 * UpdateCapsule() depends on the system being reset via 198 * ResetSystem(). 199 */ 200 if (efi_enabled(EFI_RUNTIME_SERVICES)) 201 efi_reboot(reboot_mode, NULL); 202 203 /* Now call the architecture specific reboot code. */ 204 if (arm_pm_restart) 205 arm_pm_restart(reboot_mode, cmd); 206 else 207 do_kernel_restart(cmd); 208 209 /* 210 * Whoops - the architecture was unable to reboot. 211 */ 212 printk("Reboot failed -- System halted\n"); 213 while (1); 214 } 215 216 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str 217 static const char *const btypes[] = { 218 bstr(NONE, "--"), 219 bstr( JC, "jc"), 220 bstr( C, "-c"), 221 bstr( J , "j-") 222 }; 223 #undef bstr 224 225 static void print_pstate(struct pt_regs *regs) 226 { 227 u64 pstate = regs->pstate; 228 229 if (compat_user_mode(regs)) { 230 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n", 231 pstate, 232 pstate & PSR_AA32_N_BIT ? 'N' : 'n', 233 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', 234 pstate & PSR_AA32_C_BIT ? 'C' : 'c', 235 pstate & PSR_AA32_V_BIT ? 'V' : 'v', 236 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', 237 pstate & PSR_AA32_T_BIT ? "T32" : "A32", 238 pstate & PSR_AA32_E_BIT ? "BE" : "LE", 239 pstate & PSR_AA32_A_BIT ? 'A' : 'a', 240 pstate & PSR_AA32_I_BIT ? 'I' : 'i', 241 pstate & PSR_AA32_F_BIT ? 'F' : 'f'); 242 } else { 243 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >> 244 PSR_BTYPE_SHIFT]; 245 246 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO BTYPE=%s)\n", 247 pstate, 248 pstate & PSR_N_BIT ? 'N' : 'n', 249 pstate & PSR_Z_BIT ? 'Z' : 'z', 250 pstate & PSR_C_BIT ? 'C' : 'c', 251 pstate & PSR_V_BIT ? 'V' : 'v', 252 pstate & PSR_D_BIT ? 'D' : 'd', 253 pstate & PSR_A_BIT ? 'A' : 'a', 254 pstate & PSR_I_BIT ? 'I' : 'i', 255 pstate & PSR_F_BIT ? 'F' : 'f', 256 pstate & PSR_PAN_BIT ? '+' : '-', 257 pstate & PSR_UAO_BIT ? '+' : '-', 258 pstate & PSR_TCO_BIT ? '+' : '-', 259 btype_str); 260 } 261 } 262 263 void __show_regs(struct pt_regs *regs) 264 { 265 int i, top_reg; 266 u64 lr, sp; 267 268 if (compat_user_mode(regs)) { 269 lr = regs->compat_lr; 270 sp = regs->compat_sp; 271 top_reg = 12; 272 } else { 273 lr = regs->regs[30]; 274 sp = regs->sp; 275 top_reg = 29; 276 } 277 278 show_regs_print_info(KERN_DEFAULT); 279 print_pstate(regs); 280 281 if (!user_mode(regs)) { 282 printk("pc : %pS\n", (void *)regs->pc); 283 printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr)); 284 } else { 285 printk("pc : %016llx\n", regs->pc); 286 printk("lr : %016llx\n", lr); 287 } 288 289 printk("sp : %016llx\n", sp); 290 291 if (system_uses_irq_prio_masking()) 292 printk("pmr_save: %08llx\n", regs->pmr_save); 293 294 i = top_reg; 295 296 while (i >= 0) { 297 printk("x%-2d: %016llx", i, regs->regs[i]); 298 299 while (i-- % 3) 300 pr_cont(" x%-2d: %016llx", i, regs->regs[i]); 301 302 pr_cont("\n"); 303 } 304 } 305 306 void show_regs(struct pt_regs *regs) 307 { 308 __show_regs(regs); 309 dump_backtrace(regs, NULL, KERN_DEFAULT); 310 } 311 312 static void tls_thread_flush(void) 313 { 314 write_sysreg(0, tpidr_el0); 315 316 if (is_compat_task()) { 317 current->thread.uw.tp_value = 0; 318 319 /* 320 * We need to ensure ordering between the shadow state and the 321 * hardware state, so that we don't corrupt the hardware state 322 * with a stale shadow state during context switch. 323 */ 324 barrier(); 325 write_sysreg(0, tpidrro_el0); 326 } 327 } 328 329 static void flush_tagged_addr_state(void) 330 { 331 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) 332 clear_thread_flag(TIF_TAGGED_ADDR); 333 } 334 335 void flush_thread(void) 336 { 337 fpsimd_flush_thread(); 338 tls_thread_flush(); 339 flush_ptrace_hw_breakpoint(current); 340 flush_tagged_addr_state(); 341 } 342 343 void release_thread(struct task_struct *dead_task) 344 { 345 } 346 347 void arch_release_task_struct(struct task_struct *tsk) 348 { 349 fpsimd_release_task(tsk); 350 } 351 352 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 353 { 354 if (current->mm) 355 fpsimd_preserve_current_state(); 356 *dst = *src; 357 358 /* We rely on the above assignment to initialize dst's thread_flags: */ 359 BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK)); 360 361 /* 362 * Detach src's sve_state (if any) from dst so that it does not 363 * get erroneously used or freed prematurely. dst's sve_state 364 * will be allocated on demand later on if dst uses SVE. 365 * For consistency, also clear TIF_SVE here: this could be done 366 * later in copy_process(), but to avoid tripping up future 367 * maintainers it is best not to leave TIF_SVE and sve_state in 368 * an inconsistent state, even temporarily. 369 */ 370 dst->thread.sve_state = NULL; 371 clear_tsk_thread_flag(dst, TIF_SVE); 372 373 /* clear any pending asynchronous tag fault raised by the parent */ 374 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT); 375 376 return 0; 377 } 378 379 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 380 381 int copy_thread(unsigned long clone_flags, unsigned long stack_start, 382 unsigned long stk_sz, struct task_struct *p, unsigned long tls) 383 { 384 struct pt_regs *childregs = task_pt_regs(p); 385 386 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 387 388 /* 389 * In case p was allocated the same task_struct pointer as some 390 * other recently-exited task, make sure p is disassociated from 391 * any cpu that may have run that now-exited task recently. 392 * Otherwise we could erroneously skip reloading the FPSIMD 393 * registers for p. 394 */ 395 fpsimd_flush_task_state(p); 396 397 ptrauth_thread_init_kernel(p); 398 399 if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) { 400 *childregs = *current_pt_regs(); 401 childregs->regs[0] = 0; 402 403 /* 404 * Read the current TLS pointer from tpidr_el0 as it may be 405 * out-of-sync with the saved value. 406 */ 407 *task_user_tls(p) = read_sysreg(tpidr_el0); 408 409 if (stack_start) { 410 if (is_compat_thread(task_thread_info(p))) 411 childregs->compat_sp = stack_start; 412 else 413 childregs->sp = stack_start; 414 } 415 416 /* 417 * If a TLS pointer was passed to clone, use it for the new 418 * thread. 419 */ 420 if (clone_flags & CLONE_SETTLS) 421 p->thread.uw.tp_value = tls; 422 } else { 423 /* 424 * A kthread has no context to ERET to, so ensure any buggy 425 * ERET is treated as an illegal exception return. 426 * 427 * When a user task is created from a kthread, childregs will 428 * be initialized by start_thread() or start_compat_thread(). 429 */ 430 memset(childregs, 0, sizeof(struct pt_regs)); 431 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT; 432 433 p->thread.cpu_context.x19 = stack_start; 434 p->thread.cpu_context.x20 = stk_sz; 435 } 436 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 437 p->thread.cpu_context.sp = (unsigned long)childregs; 438 439 ptrace_hw_copy_thread(p); 440 441 return 0; 442 } 443 444 void tls_preserve_current_state(void) 445 { 446 *task_user_tls(current) = read_sysreg(tpidr_el0); 447 } 448 449 static void tls_thread_switch(struct task_struct *next) 450 { 451 tls_preserve_current_state(); 452 453 if (is_compat_thread(task_thread_info(next))) 454 write_sysreg(next->thread.uw.tp_value, tpidrro_el0); 455 else if (!arm64_kernel_unmapped_at_el0()) 456 write_sysreg(0, tpidrro_el0); 457 458 write_sysreg(*task_user_tls(next), tpidr_el0); 459 } 460 461 /* 462 * Force SSBS state on context-switch, since it may be lost after migrating 463 * from a CPU which treats the bit as RES0 in a heterogeneous system. 464 */ 465 static void ssbs_thread_switch(struct task_struct *next) 466 { 467 /* 468 * Nothing to do for kernel threads, but 'regs' may be junk 469 * (e.g. idle task) so check the flags and bail early. 470 */ 471 if (unlikely(next->flags & PF_KTHREAD)) 472 return; 473 474 /* 475 * If all CPUs implement the SSBS extension, then we just need to 476 * context-switch the PSTATE field. 477 */ 478 if (cpus_have_const_cap(ARM64_SSBS)) 479 return; 480 481 spectre_v4_enable_task_mitigation(next); 482 } 483 484 /* 485 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 486 * shadow copy so that we can restore this upon entry from userspace. 487 * 488 * This is *only* for exception entry from EL0, and is not valid until we 489 * __switch_to() a user task. 490 */ 491 DEFINE_PER_CPU(struct task_struct *, __entry_task); 492 493 static void entry_task_switch(struct task_struct *next) 494 { 495 __this_cpu_write(__entry_task, next); 496 } 497 498 /* 499 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT. 500 * Assuming the virtual counter is enabled at the beginning of times: 501 * 502 * - disable access when switching from a 64bit task to a 32bit task 503 * - enable access when switching from a 32bit task to a 64bit task 504 */ 505 static void erratum_1418040_thread_switch(struct task_struct *prev, 506 struct task_struct *next) 507 { 508 bool prev32, next32; 509 u64 val; 510 511 if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040)) 512 return; 513 514 prev32 = is_compat_thread(task_thread_info(prev)); 515 next32 = is_compat_thread(task_thread_info(next)); 516 517 if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040)) 518 return; 519 520 val = read_sysreg(cntkctl_el1); 521 522 if (!next32) 523 val |= ARCH_TIMER_USR_VCT_ACCESS_EN; 524 else 525 val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN; 526 527 write_sysreg(val, cntkctl_el1); 528 } 529 530 static void update_sctlr_el1(u64 sctlr) 531 { 532 /* 533 * EnIA must not be cleared while in the kernel as this is necessary for 534 * in-kernel PAC. It will be cleared on kernel exit if needed. 535 */ 536 sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr); 537 538 /* ISB required for the kernel uaccess routines when setting TCF0. */ 539 isb(); 540 } 541 542 void set_task_sctlr_el1(u64 sctlr) 543 { 544 /* 545 * __switch_to() checks current->thread.sctlr as an 546 * optimisation. Disable preemption so that it does not see 547 * the variable update before the SCTLR_EL1 one. 548 */ 549 preempt_disable(); 550 current->thread.sctlr_user = sctlr; 551 update_sctlr_el1(sctlr); 552 preempt_enable(); 553 } 554 555 /* 556 * Thread switching. 557 */ 558 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev, 559 struct task_struct *next) 560 { 561 struct task_struct *last; 562 563 fpsimd_thread_switch(next); 564 tls_thread_switch(next); 565 hw_breakpoint_thread_switch(next); 566 contextidr_thread_switch(next); 567 entry_task_switch(next); 568 ssbs_thread_switch(next); 569 erratum_1418040_thread_switch(prev, next); 570 ptrauth_thread_switch_user(next); 571 572 /* 573 * Complete any pending TLB or cache maintenance on this CPU in case 574 * the thread migrates to a different CPU. 575 * This full barrier is also required by the membarrier system 576 * call. 577 */ 578 dsb(ish); 579 580 /* 581 * MTE thread switching must happen after the DSB above to ensure that 582 * any asynchronous tag check faults have been logged in the TFSR*_EL1 583 * registers. 584 */ 585 mte_thread_switch(next); 586 /* avoid expensive SCTLR_EL1 accesses if no change */ 587 if (prev->thread.sctlr_user != next->thread.sctlr_user) 588 update_sctlr_el1(next->thread.sctlr_user); 589 590 /* the actual thread switch */ 591 last = cpu_switch_to(prev, next); 592 593 return last; 594 } 595 596 unsigned long get_wchan(struct task_struct *p) 597 { 598 struct stackframe frame; 599 unsigned long stack_page, ret = 0; 600 int count = 0; 601 if (!p || p == current || p->state == TASK_RUNNING) 602 return 0; 603 604 stack_page = (unsigned long)try_get_task_stack(p); 605 if (!stack_page) 606 return 0; 607 608 start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p)); 609 610 do { 611 if (unwind_frame(p, &frame)) 612 goto out; 613 if (!in_sched_functions(frame.pc)) { 614 ret = frame.pc; 615 goto out; 616 } 617 } while (count++ < 16); 618 619 out: 620 put_task_stack(p); 621 return ret; 622 } 623 624 unsigned long arch_align_stack(unsigned long sp) 625 { 626 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 627 sp -= get_random_int() & ~PAGE_MASK; 628 return sp & ~0xf; 629 } 630 631 /* 632 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 633 */ 634 void arch_setup_new_exec(void) 635 { 636 current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0; 637 638 ptrauth_thread_init_user(); 639 mte_thread_init_user(); 640 641 if (task_spec_ssb_noexec(current)) { 642 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS, 643 PR_SPEC_ENABLE); 644 } 645 } 646 647 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 648 /* 649 * Control the relaxed ABI allowing tagged user addresses into the kernel. 650 */ 651 static unsigned int tagged_addr_disabled; 652 653 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg) 654 { 655 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE; 656 struct thread_info *ti = task_thread_info(task); 657 658 if (is_compat_thread(ti)) 659 return -EINVAL; 660 661 if (system_supports_mte()) 662 valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK; 663 664 if (arg & ~valid_mask) 665 return -EINVAL; 666 667 /* 668 * Do not allow the enabling of the tagged address ABI if globally 669 * disabled via sysctl abi.tagged_addr_disabled. 670 */ 671 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled) 672 return -EINVAL; 673 674 if (set_mte_ctrl(task, arg) != 0) 675 return -EINVAL; 676 677 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE); 678 679 return 0; 680 } 681 682 long get_tagged_addr_ctrl(struct task_struct *task) 683 { 684 long ret = 0; 685 struct thread_info *ti = task_thread_info(task); 686 687 if (is_compat_thread(ti)) 688 return -EINVAL; 689 690 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR)) 691 ret = PR_TAGGED_ADDR_ENABLE; 692 693 ret |= get_mte_ctrl(task); 694 695 return ret; 696 } 697 698 /* 699 * Global sysctl to disable the tagged user addresses support. This control 700 * only prevents the tagged address ABI enabling via prctl() and does not 701 * disable it for tasks that already opted in to the relaxed ABI. 702 */ 703 704 static struct ctl_table tagged_addr_sysctl_table[] = { 705 { 706 .procname = "tagged_addr_disabled", 707 .mode = 0644, 708 .data = &tagged_addr_disabled, 709 .maxlen = sizeof(int), 710 .proc_handler = proc_dointvec_minmax, 711 .extra1 = SYSCTL_ZERO, 712 .extra2 = SYSCTL_ONE, 713 }, 714 { } 715 }; 716 717 static int __init tagged_addr_init(void) 718 { 719 if (!register_sysctl("abi", tagged_addr_sysctl_table)) 720 return -EINVAL; 721 return 0; 722 } 723 724 core_initcall(tagged_addr_init); 725 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */ 726 727 asmlinkage void __sched arm64_preempt_schedule_irq(void) 728 { 729 lockdep_assert_irqs_disabled(); 730 731 /* 732 * Preempting a task from an IRQ means we leave copies of PSTATE 733 * on the stack. cpufeature's enable calls may modify PSTATE, but 734 * resuming one of these preempted tasks would undo those changes. 735 * 736 * Only allow a task to be preempted once cpufeatures have been 737 * enabled. 738 */ 739 if (system_capabilities_finalized()) 740 preempt_schedule_irq(); 741 } 742 743 #ifdef CONFIG_BINFMT_ELF 744 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state, 745 bool has_interp, bool is_interp) 746 { 747 /* 748 * For dynamically linked executables the interpreter is 749 * responsible for setting PROT_BTI on everything except 750 * itself. 751 */ 752 if (is_interp != has_interp) 753 return prot; 754 755 if (!(state->flags & ARM64_ELF_BTI)) 756 return prot; 757 758 if (prot & PROT_EXEC) 759 prot |= PROT_BTI; 760 761 return prot; 762 } 763 #endif 764