1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/process.c 4 * 5 * Original Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 #include <linux/compat.h> 10 #include <linux/efi.h> 11 #include <linux/elf.h> 12 #include <linux/export.h> 13 #include <linux/sched.h> 14 #include <linux/sched/debug.h> 15 #include <linux/sched/task.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/kernel.h> 18 #include <linux/mman.h> 19 #include <linux/mm.h> 20 #include <linux/nospec.h> 21 #include <linux/stddef.h> 22 #include <linux/sysctl.h> 23 #include <linux/unistd.h> 24 #include <linux/user.h> 25 #include <linux/delay.h> 26 #include <linux/reboot.h> 27 #include <linux/interrupt.h> 28 #include <linux/init.h> 29 #include <linux/cpu.h> 30 #include <linux/elfcore.h> 31 #include <linux/pm.h> 32 #include <linux/tick.h> 33 #include <linux/utsname.h> 34 #include <linux/uaccess.h> 35 #include <linux/random.h> 36 #include <linux/hw_breakpoint.h> 37 #include <linux/personality.h> 38 #include <linux/notifier.h> 39 #include <trace/events/power.h> 40 #include <linux/percpu.h> 41 #include <linux/thread_info.h> 42 #include <linux/prctl.h> 43 #include <linux/stacktrace.h> 44 45 #include <asm/alternative.h> 46 #include <asm/arch_timer.h> 47 #include <asm/compat.h> 48 #include <asm/cpufeature.h> 49 #include <asm/cacheflush.h> 50 #include <asm/exec.h> 51 #include <asm/fpsimd.h> 52 #include <asm/gcs.h> 53 #include <asm/mmu_context.h> 54 #include <asm/mte.h> 55 #include <asm/processor.h> 56 #include <asm/pointer_auth.h> 57 #include <asm/stacktrace.h> 58 #include <asm/switch_to.h> 59 #include <asm/system_misc.h> 60 61 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) 62 #include <linux/stackprotector.h> 63 unsigned long __stack_chk_guard __ro_after_init; 64 EXPORT_SYMBOL(__stack_chk_guard); 65 #endif 66 67 /* 68 * Function pointers to optional machine specific functions 69 */ 70 void (*pm_power_off)(void); 71 EXPORT_SYMBOL_GPL(pm_power_off); 72 73 #ifdef CONFIG_HOTPLUG_CPU 74 void __noreturn arch_cpu_idle_dead(void) 75 { 76 cpu_die(); 77 } 78 #endif 79 80 /* 81 * Called by kexec, immediately prior to machine_kexec(). 82 * 83 * This must completely disable all secondary CPUs; simply causing those CPUs 84 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 85 * kexec'd kernel to use any and all RAM as it sees fit, without having to 86 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 87 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this. 88 */ 89 void machine_shutdown(void) 90 { 91 smp_shutdown_nonboot_cpus(reboot_cpu); 92 } 93 94 /* 95 * Halting simply requires that the secondary CPUs stop performing any 96 * activity (executing tasks, handling interrupts). smp_send_stop() 97 * achieves this. 98 */ 99 void machine_halt(void) 100 { 101 local_irq_disable(); 102 smp_send_stop(); 103 while (1); 104 } 105 106 /* 107 * Power-off simply requires that the secondary CPUs stop performing any 108 * activity (executing tasks, handling interrupts). smp_send_stop() 109 * achieves this. When the system power is turned off, it will take all CPUs 110 * with it. 111 */ 112 void machine_power_off(void) 113 { 114 local_irq_disable(); 115 smp_send_stop(); 116 do_kernel_power_off(); 117 } 118 119 /* 120 * Restart requires that the secondary CPUs stop performing any activity 121 * while the primary CPU resets the system. Systems with multiple CPUs must 122 * provide a HW restart implementation, to ensure that all CPUs reset at once. 123 * This is required so that any code running after reset on the primary CPU 124 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 125 * executing pre-reset code, and using RAM that the primary CPU's code wishes 126 * to use. Implementing such co-ordination would be essentially impossible. 127 */ 128 void machine_restart(char *cmd) 129 { 130 /* Disable interrupts first */ 131 local_irq_disable(); 132 smp_send_stop(); 133 134 /* 135 * UpdateCapsule() depends on the system being reset via 136 * ResetSystem(). 137 */ 138 if (efi_enabled(EFI_RUNTIME_SERVICES)) 139 efi_reboot(reboot_mode, NULL); 140 141 /* Now call the architecture specific reboot code. */ 142 do_kernel_restart(cmd); 143 144 /* 145 * Whoops - the architecture was unable to reboot. 146 */ 147 printk("Reboot failed -- System halted\n"); 148 while (1); 149 } 150 151 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str 152 static const char *const btypes[] = { 153 bstr(NONE, "--"), 154 bstr( JC, "jc"), 155 bstr( C, "-c"), 156 bstr( J , "j-") 157 }; 158 #undef bstr 159 160 static void print_pstate(struct pt_regs *regs) 161 { 162 u64 pstate = regs->pstate; 163 164 if (compat_user_mode(regs)) { 165 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n", 166 pstate, 167 pstate & PSR_AA32_N_BIT ? 'N' : 'n', 168 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', 169 pstate & PSR_AA32_C_BIT ? 'C' : 'c', 170 pstate & PSR_AA32_V_BIT ? 'V' : 'v', 171 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', 172 pstate & PSR_AA32_T_BIT ? "T32" : "A32", 173 pstate & PSR_AA32_E_BIT ? "BE" : "LE", 174 pstate & PSR_AA32_A_BIT ? 'A' : 'a', 175 pstate & PSR_AA32_I_BIT ? 'I' : 'i', 176 pstate & PSR_AA32_F_BIT ? 'F' : 'f', 177 pstate & PSR_AA32_DIT_BIT ? '+' : '-', 178 pstate & PSR_AA32_SSBS_BIT ? '+' : '-'); 179 } else { 180 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >> 181 PSR_BTYPE_SHIFT]; 182 183 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n", 184 pstate, 185 pstate & PSR_N_BIT ? 'N' : 'n', 186 pstate & PSR_Z_BIT ? 'Z' : 'z', 187 pstate & PSR_C_BIT ? 'C' : 'c', 188 pstate & PSR_V_BIT ? 'V' : 'v', 189 pstate & PSR_D_BIT ? 'D' : 'd', 190 pstate & PSR_A_BIT ? 'A' : 'a', 191 pstate & PSR_I_BIT ? 'I' : 'i', 192 pstate & PSR_F_BIT ? 'F' : 'f', 193 pstate & PSR_PAN_BIT ? '+' : '-', 194 pstate & PSR_UAO_BIT ? '+' : '-', 195 pstate & PSR_TCO_BIT ? '+' : '-', 196 pstate & PSR_DIT_BIT ? '+' : '-', 197 pstate & PSR_SSBS_BIT ? '+' : '-', 198 btype_str); 199 } 200 } 201 202 void __show_regs(struct pt_regs *regs) 203 { 204 int i, top_reg; 205 u64 lr, sp; 206 207 if (compat_user_mode(regs)) { 208 lr = regs->compat_lr; 209 sp = regs->compat_sp; 210 top_reg = 12; 211 } else { 212 lr = regs->regs[30]; 213 sp = regs->sp; 214 top_reg = 29; 215 } 216 217 show_regs_print_info(KERN_DEFAULT); 218 print_pstate(regs); 219 220 if (!user_mode(regs)) { 221 printk("pc : %pS\n", (void *)regs->pc); 222 printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr)); 223 } else { 224 printk("pc : %016llx\n", regs->pc); 225 printk("lr : %016llx\n", lr); 226 } 227 228 printk("sp : %016llx\n", sp); 229 230 if (system_uses_irq_prio_masking()) 231 printk("pmr: %08x\n", regs->pmr); 232 233 i = top_reg; 234 235 while (i >= 0) { 236 printk("x%-2d: %016llx", i, regs->regs[i]); 237 238 while (i-- % 3) 239 pr_cont(" x%-2d: %016llx", i, regs->regs[i]); 240 241 pr_cont("\n"); 242 } 243 } 244 245 void show_regs(struct pt_regs *regs) 246 { 247 __show_regs(regs); 248 dump_backtrace(regs, NULL, KERN_DEFAULT); 249 } 250 251 static void tls_thread_flush(void) 252 { 253 write_sysreg(0, tpidr_el0); 254 if (system_supports_tpidr2()) 255 write_sysreg_s(0, SYS_TPIDR2_EL0); 256 257 if (is_compat_task()) { 258 current->thread.uw.tp_value = 0; 259 260 /* 261 * We need to ensure ordering between the shadow state and the 262 * hardware state, so that we don't corrupt the hardware state 263 * with a stale shadow state during context switch. 264 */ 265 barrier(); 266 write_sysreg(0, tpidrro_el0); 267 } 268 } 269 270 static void flush_tagged_addr_state(void) 271 { 272 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) 273 clear_thread_flag(TIF_TAGGED_ADDR); 274 } 275 276 static void flush_poe(void) 277 { 278 if (!system_supports_poe()) 279 return; 280 281 write_sysreg_s(POR_EL0_INIT, SYS_POR_EL0); 282 } 283 284 #ifdef CONFIG_ARM64_GCS 285 286 static void flush_gcs(void) 287 { 288 if (!system_supports_gcs()) 289 return; 290 291 gcs_free(current); 292 current->thread.gcs_el0_mode = 0; 293 write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1); 294 write_sysreg_s(0, SYS_GCSPR_EL0); 295 } 296 297 static int copy_thread_gcs(struct task_struct *p, 298 const struct kernel_clone_args *args) 299 { 300 unsigned long gcs; 301 302 if (!system_supports_gcs()) 303 return 0; 304 305 p->thread.gcs_base = 0; 306 p->thread.gcs_size = 0; 307 308 gcs = gcs_alloc_thread_stack(p, args); 309 if (IS_ERR_VALUE(gcs)) 310 return PTR_ERR((void *)gcs); 311 312 p->thread.gcs_el0_mode = current->thread.gcs_el0_mode; 313 p->thread.gcs_el0_locked = current->thread.gcs_el0_locked; 314 315 return 0; 316 } 317 318 #else 319 320 static void flush_gcs(void) { } 321 static int copy_thread_gcs(struct task_struct *p, 322 const struct kernel_clone_args *args) 323 { 324 return 0; 325 } 326 327 #endif 328 329 void flush_thread(void) 330 { 331 fpsimd_flush_thread(); 332 tls_thread_flush(); 333 flush_ptrace_hw_breakpoint(current); 334 flush_tagged_addr_state(); 335 flush_poe(); 336 flush_gcs(); 337 } 338 339 void arch_release_task_struct(struct task_struct *tsk) 340 { 341 fpsimd_release_task(tsk); 342 gcs_free(tsk); 343 } 344 345 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 346 { 347 if (current->mm) 348 fpsimd_preserve_current_state(); 349 *dst = *src; 350 351 /* 352 * Detach src's sve_state (if any) from dst so that it does not 353 * get erroneously used or freed prematurely. dst's copies 354 * will be allocated on demand later on if dst uses SVE. 355 * For consistency, also clear TIF_SVE here: this could be done 356 * later in copy_process(), but to avoid tripping up future 357 * maintainers it is best not to leave TIF flags and buffers in 358 * an inconsistent state, even temporarily. 359 */ 360 dst->thread.sve_state = NULL; 361 clear_tsk_thread_flag(dst, TIF_SVE); 362 363 /* 364 * In the unlikely event that we create a new thread with ZA 365 * enabled we should retain the ZA and ZT state so duplicate 366 * it here. This may be shortly freed if we exec() or if 367 * CLONE_SETTLS but it's simpler to do it here. To avoid 368 * confusing the rest of the code ensure that we have a 369 * sve_state allocated whenever sme_state is allocated. 370 */ 371 if (thread_za_enabled(&src->thread)) { 372 dst->thread.sve_state = kzalloc(sve_state_size(src), 373 GFP_KERNEL); 374 if (!dst->thread.sve_state) 375 return -ENOMEM; 376 377 dst->thread.sme_state = kmemdup(src->thread.sme_state, 378 sme_state_size(src), 379 GFP_KERNEL); 380 if (!dst->thread.sme_state) { 381 kfree(dst->thread.sve_state); 382 dst->thread.sve_state = NULL; 383 return -ENOMEM; 384 } 385 } else { 386 dst->thread.sme_state = NULL; 387 clear_tsk_thread_flag(dst, TIF_SME); 388 } 389 390 dst->thread.fp_type = FP_STATE_FPSIMD; 391 392 /* clear any pending asynchronous tag fault raised by the parent */ 393 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT); 394 395 return 0; 396 } 397 398 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 399 400 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) 401 { 402 unsigned long clone_flags = args->flags; 403 unsigned long stack_start = args->stack; 404 unsigned long tls = args->tls; 405 struct pt_regs *childregs = task_pt_regs(p); 406 int ret; 407 408 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 409 410 /* 411 * In case p was allocated the same task_struct pointer as some 412 * other recently-exited task, make sure p is disassociated from 413 * any cpu that may have run that now-exited task recently. 414 * Otherwise we could erroneously skip reloading the FPSIMD 415 * registers for p. 416 */ 417 fpsimd_flush_task_state(p); 418 419 ptrauth_thread_init_kernel(p); 420 421 if (likely(!args->fn)) { 422 *childregs = *current_pt_regs(); 423 childregs->regs[0] = 0; 424 425 /* 426 * Read the current TLS pointer from tpidr_el0 as it may be 427 * out-of-sync with the saved value. 428 */ 429 *task_user_tls(p) = read_sysreg(tpidr_el0); 430 if (system_supports_tpidr2()) 431 p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0); 432 433 if (system_supports_poe()) 434 p->thread.por_el0 = read_sysreg_s(SYS_POR_EL0); 435 436 if (stack_start) { 437 if (is_compat_thread(task_thread_info(p))) 438 childregs->compat_sp = stack_start; 439 else 440 childregs->sp = stack_start; 441 } 442 443 /* 444 * If a TLS pointer was passed to clone, use it for the new 445 * thread. We also reset TPIDR2 if it's in use. 446 */ 447 if (clone_flags & CLONE_SETTLS) { 448 p->thread.uw.tp_value = tls; 449 p->thread.tpidr2_el0 = 0; 450 } 451 452 ret = copy_thread_gcs(p, args); 453 if (ret != 0) 454 return ret; 455 } else { 456 /* 457 * A kthread has no context to ERET to, so ensure any buggy 458 * ERET is treated as an illegal exception return. 459 * 460 * When a user task is created from a kthread, childregs will 461 * be initialized by start_thread() or start_compat_thread(). 462 */ 463 memset(childregs, 0, sizeof(struct pt_regs)); 464 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT; 465 childregs->stackframe.type = FRAME_META_TYPE_FINAL; 466 467 p->thread.cpu_context.x19 = (unsigned long)args->fn; 468 p->thread.cpu_context.x20 = (unsigned long)args->fn_arg; 469 470 if (system_supports_poe()) 471 p->thread.por_el0 = POR_EL0_INIT; 472 } 473 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 474 p->thread.cpu_context.sp = (unsigned long)childregs; 475 /* 476 * For the benefit of the unwinder, set up childregs->stackframe 477 * as the final frame for the new task. 478 */ 479 p->thread.cpu_context.fp = (unsigned long)&childregs->stackframe; 480 481 ptrace_hw_copy_thread(p); 482 483 return 0; 484 } 485 486 void tls_preserve_current_state(void) 487 { 488 *task_user_tls(current) = read_sysreg(tpidr_el0); 489 if (system_supports_tpidr2() && !is_compat_task()) 490 current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0); 491 } 492 493 static void tls_thread_switch(struct task_struct *next) 494 { 495 tls_preserve_current_state(); 496 497 if (is_compat_thread(task_thread_info(next))) 498 write_sysreg(next->thread.uw.tp_value, tpidrro_el0); 499 else 500 write_sysreg(0, tpidrro_el0); 501 502 write_sysreg(*task_user_tls(next), tpidr_el0); 503 if (system_supports_tpidr2()) 504 write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0); 505 } 506 507 /* 508 * Force SSBS state on context-switch, since it may be lost after migrating 509 * from a CPU which treats the bit as RES0 in a heterogeneous system. 510 */ 511 static void ssbs_thread_switch(struct task_struct *next) 512 { 513 /* 514 * Nothing to do for kernel threads, but 'regs' may be junk 515 * (e.g. idle task) so check the flags and bail early. 516 */ 517 if (unlikely(next->flags & PF_KTHREAD)) 518 return; 519 520 /* 521 * If all CPUs implement the SSBS extension, then we just need to 522 * context-switch the PSTATE field. 523 */ 524 if (alternative_has_cap_unlikely(ARM64_SSBS)) 525 return; 526 527 spectre_v4_enable_task_mitigation(next); 528 } 529 530 /* 531 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 532 * shadow copy so that we can restore this upon entry from userspace. 533 * 534 * This is *only* for exception entry from EL0, and is not valid until we 535 * __switch_to() a user task. 536 */ 537 DEFINE_PER_CPU(struct task_struct *, __entry_task); 538 539 static void entry_task_switch(struct task_struct *next) 540 { 541 __this_cpu_write(__entry_task, next); 542 } 543 544 #ifdef CONFIG_ARM64_GCS 545 546 void gcs_preserve_current_state(void) 547 { 548 current->thread.gcspr_el0 = read_sysreg_s(SYS_GCSPR_EL0); 549 } 550 551 static void gcs_thread_switch(struct task_struct *next) 552 { 553 if (!system_supports_gcs()) 554 return; 555 556 /* GCSPR_EL0 is always readable */ 557 gcs_preserve_current_state(); 558 write_sysreg_s(next->thread.gcspr_el0, SYS_GCSPR_EL0); 559 560 if (current->thread.gcs_el0_mode != next->thread.gcs_el0_mode) 561 gcs_set_el0_mode(next); 562 563 /* 564 * Ensure that GCS memory effects of the 'prev' thread are 565 * ordered before other memory accesses with release semantics 566 * (or preceded by a DMB) on the current PE. In addition, any 567 * memory accesses with acquire semantics (or succeeded by a 568 * DMB) are ordered before GCS memory effects of the 'next' 569 * thread. This will ensure that the GCS memory effects are 570 * visible to other PEs in case of migration. 571 */ 572 if (task_gcs_el0_enabled(current) || task_gcs_el0_enabled(next)) 573 gcsb_dsync(); 574 } 575 576 #else 577 578 static void gcs_thread_switch(struct task_struct *next) 579 { 580 } 581 582 #endif 583 584 /* 585 * Handle sysreg updates for ARM erratum 1418040 which affects the 32bit view of 586 * CNTVCT, various other errata which require trapping all CNTVCT{,_EL0} 587 * accesses and prctl(PR_SET_TSC). Ensure access is disabled iff a workaround is 588 * required or PR_TSC_SIGSEGV is set. 589 */ 590 static void update_cntkctl_el1(struct task_struct *next) 591 { 592 struct thread_info *ti = task_thread_info(next); 593 594 if (test_ti_thread_flag(ti, TIF_TSC_SIGSEGV) || 595 has_erratum_handler(read_cntvct_el0) || 596 (IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) && 597 this_cpu_has_cap(ARM64_WORKAROUND_1418040) && 598 is_compat_thread(ti))) 599 sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0); 600 else 601 sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN); 602 } 603 604 static void cntkctl_thread_switch(struct task_struct *prev, 605 struct task_struct *next) 606 { 607 if ((read_ti_thread_flags(task_thread_info(prev)) & 608 (_TIF_32BIT | _TIF_TSC_SIGSEGV)) != 609 (read_ti_thread_flags(task_thread_info(next)) & 610 (_TIF_32BIT | _TIF_TSC_SIGSEGV))) 611 update_cntkctl_el1(next); 612 } 613 614 static int do_set_tsc_mode(unsigned int val) 615 { 616 bool tsc_sigsegv; 617 618 if (val == PR_TSC_SIGSEGV) 619 tsc_sigsegv = true; 620 else if (val == PR_TSC_ENABLE) 621 tsc_sigsegv = false; 622 else 623 return -EINVAL; 624 625 preempt_disable(); 626 update_thread_flag(TIF_TSC_SIGSEGV, tsc_sigsegv); 627 update_cntkctl_el1(current); 628 preempt_enable(); 629 630 return 0; 631 } 632 633 static void permission_overlay_switch(struct task_struct *next) 634 { 635 if (!system_supports_poe()) 636 return; 637 638 current->thread.por_el0 = read_sysreg_s(SYS_POR_EL0); 639 if (current->thread.por_el0 != next->thread.por_el0) { 640 write_sysreg_s(next->thread.por_el0, SYS_POR_EL0); 641 } 642 } 643 644 /* 645 * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore 646 * this function must be called with preemption disabled and the update to 647 * sctlr_user must be made in the same preemption disabled block so that 648 * __switch_to() does not see the variable update before the SCTLR_EL1 one. 649 */ 650 void update_sctlr_el1(u64 sctlr) 651 { 652 /* 653 * EnIA must not be cleared while in the kernel as this is necessary for 654 * in-kernel PAC. It will be cleared on kernel exit if needed. 655 */ 656 sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr); 657 658 /* ISB required for the kernel uaccess routines when setting TCF0. */ 659 isb(); 660 } 661 662 /* 663 * Thread switching. 664 */ 665 __notrace_funcgraph __sched 666 struct task_struct *__switch_to(struct task_struct *prev, 667 struct task_struct *next) 668 { 669 struct task_struct *last; 670 671 fpsimd_thread_switch(next); 672 tls_thread_switch(next); 673 hw_breakpoint_thread_switch(next); 674 contextidr_thread_switch(next); 675 entry_task_switch(next); 676 ssbs_thread_switch(next); 677 cntkctl_thread_switch(prev, next); 678 ptrauth_thread_switch_user(next); 679 permission_overlay_switch(next); 680 gcs_thread_switch(next); 681 682 /* 683 * Complete any pending TLB or cache maintenance on this CPU in case 684 * the thread migrates to a different CPU. 685 * This full barrier is also required by the membarrier system 686 * call. 687 */ 688 dsb(ish); 689 690 /* 691 * MTE thread switching must happen after the DSB above to ensure that 692 * any asynchronous tag check faults have been logged in the TFSR*_EL1 693 * registers. 694 */ 695 mte_thread_switch(next); 696 /* avoid expensive SCTLR_EL1 accesses if no change */ 697 if (prev->thread.sctlr_user != next->thread.sctlr_user) 698 update_sctlr_el1(next->thread.sctlr_user); 699 700 /* the actual thread switch */ 701 last = cpu_switch_to(prev, next); 702 703 return last; 704 } 705 706 struct wchan_info { 707 unsigned long pc; 708 int count; 709 }; 710 711 static bool get_wchan_cb(void *arg, unsigned long pc) 712 { 713 struct wchan_info *wchan_info = arg; 714 715 if (!in_sched_functions(pc)) { 716 wchan_info->pc = pc; 717 return false; 718 } 719 return wchan_info->count++ < 16; 720 } 721 722 unsigned long __get_wchan(struct task_struct *p) 723 { 724 struct wchan_info wchan_info = { 725 .pc = 0, 726 .count = 0, 727 }; 728 729 if (!try_get_task_stack(p)) 730 return 0; 731 732 arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL); 733 734 put_task_stack(p); 735 736 return wchan_info.pc; 737 } 738 739 unsigned long arch_align_stack(unsigned long sp) 740 { 741 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 742 sp -= get_random_u32_below(PAGE_SIZE); 743 return sp & ~0xf; 744 } 745 746 #ifdef CONFIG_COMPAT 747 int compat_elf_check_arch(const struct elf32_hdr *hdr) 748 { 749 if (!system_supports_32bit_el0()) 750 return false; 751 752 if ((hdr)->e_machine != EM_ARM) 753 return false; 754 755 if (!((hdr)->e_flags & EF_ARM_EABI_MASK)) 756 return false; 757 758 /* 759 * Prevent execve() of a 32-bit program from a deadline task 760 * if the restricted affinity mask would be inadmissible on an 761 * asymmetric system. 762 */ 763 return !static_branch_unlikely(&arm64_mismatched_32bit_el0) || 764 !dl_task_check_affinity(current, system_32bit_el0_cpumask()); 765 } 766 #endif 767 768 /* 769 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 770 */ 771 void arch_setup_new_exec(void) 772 { 773 unsigned long mmflags = 0; 774 775 if (is_compat_task()) { 776 mmflags = MMCF_AARCH32; 777 778 /* 779 * Restrict the CPU affinity mask for a 32-bit task so that 780 * it contains only 32-bit-capable CPUs. 781 * 782 * From the perspective of the task, this looks similar to 783 * what would happen if the 64-bit-only CPUs were hot-unplugged 784 * at the point of execve(), although we try a bit harder to 785 * honour the cpuset hierarchy. 786 */ 787 if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) 788 force_compatible_cpus_allowed_ptr(current); 789 } else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) { 790 relax_compatible_cpus_allowed_ptr(current); 791 } 792 793 current->mm->context.flags = mmflags; 794 ptrauth_thread_init_user(); 795 mte_thread_init_user(); 796 do_set_tsc_mode(PR_TSC_ENABLE); 797 798 if (task_spec_ssb_noexec(current)) { 799 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS, 800 PR_SPEC_ENABLE); 801 } 802 } 803 804 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 805 /* 806 * Control the relaxed ABI allowing tagged user addresses into the kernel. 807 */ 808 static unsigned int tagged_addr_disabled; 809 810 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg) 811 { 812 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE; 813 struct thread_info *ti = task_thread_info(task); 814 815 if (is_compat_thread(ti)) 816 return -EINVAL; 817 818 if (system_supports_mte()) 819 valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \ 820 | PR_MTE_TAG_MASK; 821 822 if (arg & ~valid_mask) 823 return -EINVAL; 824 825 /* 826 * Do not allow the enabling of the tagged address ABI if globally 827 * disabled via sysctl abi.tagged_addr_disabled. 828 */ 829 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled) 830 return -EINVAL; 831 832 if (set_mte_ctrl(task, arg) != 0) 833 return -EINVAL; 834 835 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE); 836 837 return 0; 838 } 839 840 long get_tagged_addr_ctrl(struct task_struct *task) 841 { 842 long ret = 0; 843 struct thread_info *ti = task_thread_info(task); 844 845 if (is_compat_thread(ti)) 846 return -EINVAL; 847 848 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR)) 849 ret = PR_TAGGED_ADDR_ENABLE; 850 851 ret |= get_mte_ctrl(task); 852 853 return ret; 854 } 855 856 /* 857 * Global sysctl to disable the tagged user addresses support. This control 858 * only prevents the tagged address ABI enabling via prctl() and does not 859 * disable it for tasks that already opted in to the relaxed ABI. 860 */ 861 862 static struct ctl_table tagged_addr_sysctl_table[] = { 863 { 864 .procname = "tagged_addr_disabled", 865 .mode = 0644, 866 .data = &tagged_addr_disabled, 867 .maxlen = sizeof(int), 868 .proc_handler = proc_dointvec_minmax, 869 .extra1 = SYSCTL_ZERO, 870 .extra2 = SYSCTL_ONE, 871 }, 872 }; 873 874 static int __init tagged_addr_init(void) 875 { 876 if (!register_sysctl("abi", tagged_addr_sysctl_table)) 877 return -EINVAL; 878 return 0; 879 } 880 881 core_initcall(tagged_addr_init); 882 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */ 883 884 #ifdef CONFIG_BINFMT_ELF 885 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state, 886 bool has_interp, bool is_interp) 887 { 888 /* 889 * For dynamically linked executables the interpreter is 890 * responsible for setting PROT_BTI on everything except 891 * itself. 892 */ 893 if (is_interp != has_interp) 894 return prot; 895 896 if (!(state->flags & ARM64_ELF_BTI)) 897 return prot; 898 899 if (prot & PROT_EXEC) 900 prot |= PROT_BTI; 901 902 return prot; 903 } 904 #endif 905 906 int get_tsc_mode(unsigned long adr) 907 { 908 unsigned int val; 909 910 if (is_compat_task()) 911 return -EINVAL; 912 913 if (test_thread_flag(TIF_TSC_SIGSEGV)) 914 val = PR_TSC_SIGSEGV; 915 else 916 val = PR_TSC_ENABLE; 917 918 return put_user(val, (unsigned int __user *)adr); 919 } 920 921 int set_tsc_mode(unsigned int val) 922 { 923 if (is_compat_task()) 924 return -EINVAL; 925 926 return do_set_tsc_mode(val); 927 } 928