xref: /linux/arch/arm64/kernel/process.c (revision 666ed8bfd1de3b091cf32ca03b651757dd86cfff)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/process.c
4  *
5  * Original Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <stdarg.h>
11 
12 #include <linux/compat.h>
13 #include <linux/efi.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/sched/task.h>
18 #include <linux/sched/task_stack.h>
19 #include <linux/kernel.h>
20 #include <linux/lockdep.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/sysctl.h>
24 #include <linux/unistd.h>
25 #include <linux/user.h>
26 #include <linux/delay.h>
27 #include <linux/reboot.h>
28 #include <linux/interrupt.h>
29 #include <linux/init.h>
30 #include <linux/cpu.h>
31 #include <linux/elfcore.h>
32 #include <linux/pm.h>
33 #include <linux/tick.h>
34 #include <linux/utsname.h>
35 #include <linux/uaccess.h>
36 #include <linux/random.h>
37 #include <linux/hw_breakpoint.h>
38 #include <linux/personality.h>
39 #include <linux/notifier.h>
40 #include <trace/events/power.h>
41 #include <linux/percpu.h>
42 #include <linux/thread_info.h>
43 #include <linux/prctl.h>
44 
45 #include <asm/alternative.h>
46 #include <asm/arch_gicv3.h>
47 #include <asm/compat.h>
48 #include <asm/cpufeature.h>
49 #include <asm/cacheflush.h>
50 #include <asm/exec.h>
51 #include <asm/fpsimd.h>
52 #include <asm/mmu_context.h>
53 #include <asm/processor.h>
54 #include <asm/pointer_auth.h>
55 #include <asm/stacktrace.h>
56 
57 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
58 #include <linux/stackprotector.h>
59 unsigned long __stack_chk_guard __read_mostly;
60 EXPORT_SYMBOL(__stack_chk_guard);
61 #endif
62 
63 /*
64  * Function pointers to optional machine specific functions
65  */
66 void (*pm_power_off)(void);
67 EXPORT_SYMBOL_GPL(pm_power_off);
68 
69 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
70 
71 static void __cpu_do_idle(void)
72 {
73 	dsb(sy);
74 	wfi();
75 }
76 
77 static void __cpu_do_idle_irqprio(void)
78 {
79 	unsigned long pmr;
80 	unsigned long daif_bits;
81 
82 	daif_bits = read_sysreg(daif);
83 	write_sysreg(daif_bits | PSR_I_BIT, daif);
84 
85 	/*
86 	 * Unmask PMR before going idle to make sure interrupts can
87 	 * be raised.
88 	 */
89 	pmr = gic_read_pmr();
90 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
91 
92 	__cpu_do_idle();
93 
94 	gic_write_pmr(pmr);
95 	write_sysreg(daif_bits, daif);
96 }
97 
98 /*
99  *	cpu_do_idle()
100  *
101  *	Idle the processor (wait for interrupt).
102  *
103  *	If the CPU supports priority masking we must do additional work to
104  *	ensure that interrupts are not masked at the PMR (because the core will
105  *	not wake up if we block the wake up signal in the interrupt controller).
106  */
107 void cpu_do_idle(void)
108 {
109 	if (system_uses_irq_prio_masking())
110 		__cpu_do_idle_irqprio();
111 	else
112 		__cpu_do_idle();
113 }
114 
115 /*
116  * This is our default idle handler.
117  */
118 void arch_cpu_idle(void)
119 {
120 	/*
121 	 * This should do all the clock switching and wait for interrupt
122 	 * tricks
123 	 */
124 	trace_cpu_idle_rcuidle(1, smp_processor_id());
125 	cpu_do_idle();
126 	local_irq_enable();
127 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
128 }
129 
130 #ifdef CONFIG_HOTPLUG_CPU
131 void arch_cpu_idle_dead(void)
132 {
133        cpu_die();
134 }
135 #endif
136 
137 /*
138  * Called by kexec, immediately prior to machine_kexec().
139  *
140  * This must completely disable all secondary CPUs; simply causing those CPUs
141  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
142  * kexec'd kernel to use any and all RAM as it sees fit, without having to
143  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
144  * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
145  */
146 void machine_shutdown(void)
147 {
148 	smp_shutdown_nonboot_cpus(reboot_cpu);
149 }
150 
151 /*
152  * Halting simply requires that the secondary CPUs stop performing any
153  * activity (executing tasks, handling interrupts). smp_send_stop()
154  * achieves this.
155  */
156 void machine_halt(void)
157 {
158 	local_irq_disable();
159 	smp_send_stop();
160 	while (1);
161 }
162 
163 /*
164  * Power-off simply requires that the secondary CPUs stop performing any
165  * activity (executing tasks, handling interrupts). smp_send_stop()
166  * achieves this. When the system power is turned off, it will take all CPUs
167  * with it.
168  */
169 void machine_power_off(void)
170 {
171 	local_irq_disable();
172 	smp_send_stop();
173 	if (pm_power_off)
174 		pm_power_off();
175 }
176 
177 /*
178  * Restart requires that the secondary CPUs stop performing any activity
179  * while the primary CPU resets the system. Systems with multiple CPUs must
180  * provide a HW restart implementation, to ensure that all CPUs reset at once.
181  * This is required so that any code running after reset on the primary CPU
182  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
183  * executing pre-reset code, and using RAM that the primary CPU's code wishes
184  * to use. Implementing such co-ordination would be essentially impossible.
185  */
186 void machine_restart(char *cmd)
187 {
188 	/* Disable interrupts first */
189 	local_irq_disable();
190 	smp_send_stop();
191 
192 	/*
193 	 * UpdateCapsule() depends on the system being reset via
194 	 * ResetSystem().
195 	 */
196 	if (efi_enabled(EFI_RUNTIME_SERVICES))
197 		efi_reboot(reboot_mode, NULL);
198 
199 	/* Now call the architecture specific reboot code. */
200 	if (arm_pm_restart)
201 		arm_pm_restart(reboot_mode, cmd);
202 	else
203 		do_kernel_restart(cmd);
204 
205 	/*
206 	 * Whoops - the architecture was unable to reboot.
207 	 */
208 	printk("Reboot failed -- System halted\n");
209 	while (1);
210 }
211 
212 static void print_pstate(struct pt_regs *regs)
213 {
214 	u64 pstate = regs->pstate;
215 
216 	if (compat_user_mode(regs)) {
217 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
218 			pstate,
219 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
220 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
221 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
222 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
223 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
224 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
225 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
226 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
227 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
228 			pstate & PSR_AA32_F_BIT ? 'F' : 'f');
229 	} else {
230 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n",
231 			pstate,
232 			pstate & PSR_N_BIT ? 'N' : 'n',
233 			pstate & PSR_Z_BIT ? 'Z' : 'z',
234 			pstate & PSR_C_BIT ? 'C' : 'c',
235 			pstate & PSR_V_BIT ? 'V' : 'v',
236 			pstate & PSR_D_BIT ? 'D' : 'd',
237 			pstate & PSR_A_BIT ? 'A' : 'a',
238 			pstate & PSR_I_BIT ? 'I' : 'i',
239 			pstate & PSR_F_BIT ? 'F' : 'f',
240 			pstate & PSR_PAN_BIT ? '+' : '-',
241 			pstate & PSR_UAO_BIT ? '+' : '-');
242 	}
243 }
244 
245 void __show_regs(struct pt_regs *regs)
246 {
247 	int i, top_reg;
248 	u64 lr, sp;
249 
250 	if (compat_user_mode(regs)) {
251 		lr = regs->compat_lr;
252 		sp = regs->compat_sp;
253 		top_reg = 12;
254 	} else {
255 		lr = regs->regs[30];
256 		sp = regs->sp;
257 		top_reg = 29;
258 	}
259 
260 	show_regs_print_info(KERN_DEFAULT);
261 	print_pstate(regs);
262 
263 	if (!user_mode(regs)) {
264 		printk("pc : %pS\n", (void *)regs->pc);
265 		printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
266 	} else {
267 		printk("pc : %016llx\n", regs->pc);
268 		printk("lr : %016llx\n", lr);
269 	}
270 
271 	printk("sp : %016llx\n", sp);
272 
273 	if (system_uses_irq_prio_masking())
274 		printk("pmr_save: %08llx\n", regs->pmr_save);
275 
276 	i = top_reg;
277 
278 	while (i >= 0) {
279 		printk("x%-2d: %016llx ", i, regs->regs[i]);
280 		i--;
281 
282 		if (i % 2 == 0) {
283 			pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
284 			i--;
285 		}
286 
287 		pr_cont("\n");
288 	}
289 }
290 
291 void show_regs(struct pt_regs * regs)
292 {
293 	__show_regs(regs);
294 	dump_backtrace(regs, NULL);
295 }
296 
297 static void tls_thread_flush(void)
298 {
299 	write_sysreg(0, tpidr_el0);
300 
301 	if (is_compat_task()) {
302 		current->thread.uw.tp_value = 0;
303 
304 		/*
305 		 * We need to ensure ordering between the shadow state and the
306 		 * hardware state, so that we don't corrupt the hardware state
307 		 * with a stale shadow state during context switch.
308 		 */
309 		barrier();
310 		write_sysreg(0, tpidrro_el0);
311 	}
312 }
313 
314 static void flush_tagged_addr_state(void)
315 {
316 	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
317 		clear_thread_flag(TIF_TAGGED_ADDR);
318 }
319 
320 void flush_thread(void)
321 {
322 	fpsimd_flush_thread();
323 	tls_thread_flush();
324 	flush_ptrace_hw_breakpoint(current);
325 	flush_tagged_addr_state();
326 }
327 
328 void release_thread(struct task_struct *dead_task)
329 {
330 }
331 
332 void arch_release_task_struct(struct task_struct *tsk)
333 {
334 	fpsimd_release_task(tsk);
335 }
336 
337 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
338 {
339 	if (current->mm)
340 		fpsimd_preserve_current_state();
341 	*dst = *src;
342 
343 	/* We rely on the above assignment to initialize dst's thread_flags: */
344 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
345 
346 	/*
347 	 * Detach src's sve_state (if any) from dst so that it does not
348 	 * get erroneously used or freed prematurely.  dst's sve_state
349 	 * will be allocated on demand later on if dst uses SVE.
350 	 * For consistency, also clear TIF_SVE here: this could be done
351 	 * later in copy_process(), but to avoid tripping up future
352 	 * maintainers it is best not to leave TIF_SVE and sve_state in
353 	 * an inconsistent state, even temporarily.
354 	 */
355 	dst->thread.sve_state = NULL;
356 	clear_tsk_thread_flag(dst, TIF_SVE);
357 
358 	return 0;
359 }
360 
361 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
362 
363 int copy_thread_tls(unsigned long clone_flags, unsigned long stack_start,
364 		unsigned long stk_sz, struct task_struct *p, unsigned long tls)
365 {
366 	struct pt_regs *childregs = task_pt_regs(p);
367 
368 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
369 
370 	/*
371 	 * In case p was allocated the same task_struct pointer as some
372 	 * other recently-exited task, make sure p is disassociated from
373 	 * any cpu that may have run that now-exited task recently.
374 	 * Otherwise we could erroneously skip reloading the FPSIMD
375 	 * registers for p.
376 	 */
377 	fpsimd_flush_task_state(p);
378 
379 	ptrauth_thread_init_kernel(p);
380 
381 	if (likely(!(p->flags & PF_KTHREAD))) {
382 		*childregs = *current_pt_regs();
383 		childregs->regs[0] = 0;
384 
385 		/*
386 		 * Read the current TLS pointer from tpidr_el0 as it may be
387 		 * out-of-sync with the saved value.
388 		 */
389 		*task_user_tls(p) = read_sysreg(tpidr_el0);
390 
391 		if (stack_start) {
392 			if (is_compat_thread(task_thread_info(p)))
393 				childregs->compat_sp = stack_start;
394 			else
395 				childregs->sp = stack_start;
396 		}
397 
398 		/*
399 		 * If a TLS pointer was passed to clone, use it for the new
400 		 * thread.
401 		 */
402 		if (clone_flags & CLONE_SETTLS)
403 			p->thread.uw.tp_value = tls;
404 	} else {
405 		memset(childregs, 0, sizeof(struct pt_regs));
406 		childregs->pstate = PSR_MODE_EL1h;
407 		if (IS_ENABLED(CONFIG_ARM64_UAO) &&
408 		    cpus_have_const_cap(ARM64_HAS_UAO))
409 			childregs->pstate |= PSR_UAO_BIT;
410 
411 		if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE)
412 			set_ssbs_bit(childregs);
413 
414 		if (system_uses_irq_prio_masking())
415 			childregs->pmr_save = GIC_PRIO_IRQON;
416 
417 		p->thread.cpu_context.x19 = stack_start;
418 		p->thread.cpu_context.x20 = stk_sz;
419 	}
420 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
421 	p->thread.cpu_context.sp = (unsigned long)childregs;
422 
423 	ptrace_hw_copy_thread(p);
424 
425 	return 0;
426 }
427 
428 void tls_preserve_current_state(void)
429 {
430 	*task_user_tls(current) = read_sysreg(tpidr_el0);
431 }
432 
433 static void tls_thread_switch(struct task_struct *next)
434 {
435 	tls_preserve_current_state();
436 
437 	if (is_compat_thread(task_thread_info(next)))
438 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
439 	else if (!arm64_kernel_unmapped_at_el0())
440 		write_sysreg(0, tpidrro_el0);
441 
442 	write_sysreg(*task_user_tls(next), tpidr_el0);
443 }
444 
445 /* Restore the UAO state depending on next's addr_limit */
446 void uao_thread_switch(struct task_struct *next)
447 {
448 	if (IS_ENABLED(CONFIG_ARM64_UAO)) {
449 		if (task_thread_info(next)->addr_limit == KERNEL_DS)
450 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
451 		else
452 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
453 	}
454 }
455 
456 /*
457  * Force SSBS state on context-switch, since it may be lost after migrating
458  * from a CPU which treats the bit as RES0 in a heterogeneous system.
459  */
460 static void ssbs_thread_switch(struct task_struct *next)
461 {
462 	struct pt_regs *regs = task_pt_regs(next);
463 
464 	/*
465 	 * Nothing to do for kernel threads, but 'regs' may be junk
466 	 * (e.g. idle task) so check the flags and bail early.
467 	 */
468 	if (unlikely(next->flags & PF_KTHREAD))
469 		return;
470 
471 	/*
472 	 * If all CPUs implement the SSBS extension, then we just need to
473 	 * context-switch the PSTATE field.
474 	 */
475 	if (cpu_have_feature(cpu_feature(SSBS)))
476 		return;
477 
478 	/* If the mitigation is enabled, then we leave SSBS clear. */
479 	if ((arm64_get_ssbd_state() == ARM64_SSBD_FORCE_ENABLE) ||
480 	    test_tsk_thread_flag(next, TIF_SSBD))
481 		return;
482 
483 	if (compat_user_mode(regs))
484 		set_compat_ssbs_bit(regs);
485 	else if (user_mode(regs))
486 		set_ssbs_bit(regs);
487 }
488 
489 /*
490  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
491  * shadow copy so that we can restore this upon entry from userspace.
492  *
493  * This is *only* for exception entry from EL0, and is not valid until we
494  * __switch_to() a user task.
495  */
496 DEFINE_PER_CPU(struct task_struct *, __entry_task);
497 
498 static void entry_task_switch(struct task_struct *next)
499 {
500 	__this_cpu_write(__entry_task, next);
501 }
502 
503 /*
504  * Thread switching.
505  */
506 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
507 				struct task_struct *next)
508 {
509 	struct task_struct *last;
510 
511 	fpsimd_thread_switch(next);
512 	tls_thread_switch(next);
513 	hw_breakpoint_thread_switch(next);
514 	contextidr_thread_switch(next);
515 	entry_task_switch(next);
516 	uao_thread_switch(next);
517 	ssbs_thread_switch(next);
518 
519 	/*
520 	 * Complete any pending TLB or cache maintenance on this CPU in case
521 	 * the thread migrates to a different CPU.
522 	 * This full barrier is also required by the membarrier system
523 	 * call.
524 	 */
525 	dsb(ish);
526 
527 	/* the actual thread switch */
528 	last = cpu_switch_to(prev, next);
529 
530 	return last;
531 }
532 
533 unsigned long get_wchan(struct task_struct *p)
534 {
535 	struct stackframe frame;
536 	unsigned long stack_page, ret = 0;
537 	int count = 0;
538 	if (!p || p == current || p->state == TASK_RUNNING)
539 		return 0;
540 
541 	stack_page = (unsigned long)try_get_task_stack(p);
542 	if (!stack_page)
543 		return 0;
544 
545 	start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
546 
547 	do {
548 		if (unwind_frame(p, &frame))
549 			goto out;
550 		if (!in_sched_functions(frame.pc)) {
551 			ret = frame.pc;
552 			goto out;
553 		}
554 	} while (count ++ < 16);
555 
556 out:
557 	put_task_stack(p);
558 	return ret;
559 }
560 
561 unsigned long arch_align_stack(unsigned long sp)
562 {
563 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
564 		sp -= get_random_int() & ~PAGE_MASK;
565 	return sp & ~0xf;
566 }
567 
568 /*
569  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
570  */
571 void arch_setup_new_exec(void)
572 {
573 	current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
574 
575 	ptrauth_thread_init_user(current);
576 }
577 
578 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
579 /*
580  * Control the relaxed ABI allowing tagged user addresses into the kernel.
581  */
582 static unsigned int tagged_addr_disabled;
583 
584 long set_tagged_addr_ctrl(unsigned long arg)
585 {
586 	if (is_compat_task())
587 		return -EINVAL;
588 	if (arg & ~PR_TAGGED_ADDR_ENABLE)
589 		return -EINVAL;
590 
591 	/*
592 	 * Do not allow the enabling of the tagged address ABI if globally
593 	 * disabled via sysctl abi.tagged_addr_disabled.
594 	 */
595 	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
596 		return -EINVAL;
597 
598 	update_thread_flag(TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
599 
600 	return 0;
601 }
602 
603 long get_tagged_addr_ctrl(void)
604 {
605 	if (is_compat_task())
606 		return -EINVAL;
607 
608 	if (test_thread_flag(TIF_TAGGED_ADDR))
609 		return PR_TAGGED_ADDR_ENABLE;
610 
611 	return 0;
612 }
613 
614 /*
615  * Global sysctl to disable the tagged user addresses support. This control
616  * only prevents the tagged address ABI enabling via prctl() and does not
617  * disable it for tasks that already opted in to the relaxed ABI.
618  */
619 
620 static struct ctl_table tagged_addr_sysctl_table[] = {
621 	{
622 		.procname	= "tagged_addr_disabled",
623 		.mode		= 0644,
624 		.data		= &tagged_addr_disabled,
625 		.maxlen		= sizeof(int),
626 		.proc_handler	= proc_dointvec_minmax,
627 		.extra1		= SYSCTL_ZERO,
628 		.extra2		= SYSCTL_ONE,
629 	},
630 	{ }
631 };
632 
633 static int __init tagged_addr_init(void)
634 {
635 	if (!register_sysctl("abi", tagged_addr_sysctl_table))
636 		return -EINVAL;
637 	return 0;
638 }
639 
640 core_initcall(tagged_addr_init);
641 #endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
642 
643 asmlinkage void __sched arm64_preempt_schedule_irq(void)
644 {
645 	lockdep_assert_irqs_disabled();
646 
647 	/*
648 	 * Preempting a task from an IRQ means we leave copies of PSTATE
649 	 * on the stack. cpufeature's enable calls may modify PSTATE, but
650 	 * resuming one of these preempted tasks would undo those changes.
651 	 *
652 	 * Only allow a task to be preempted once cpufeatures have been
653 	 * enabled.
654 	 */
655 	if (system_capabilities_finalized())
656 		preempt_schedule_irq();
657 }
658