xref: /linux/arch/arm64/kernel/process.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/process.c
4  *
5  * Original Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 #include <linux/compat.h>
10 #include <linux/efi.h>
11 #include <linux/elf.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/mman.h>
19 #include <linux/mm.h>
20 #include <linux/nospec.h>
21 #include <linux/stddef.h>
22 #include <linux/sysctl.h>
23 #include <linux/unistd.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
31 #include <linux/pm.h>
32 #include <linux/tick.h>
33 #include <linux/utsname.h>
34 #include <linux/uaccess.h>
35 #include <linux/random.h>
36 #include <linux/hw_breakpoint.h>
37 #include <linux/personality.h>
38 #include <linux/notifier.h>
39 #include <trace/events/power.h>
40 #include <linux/percpu.h>
41 #include <linux/thread_info.h>
42 #include <linux/prctl.h>
43 #include <linux/stacktrace.h>
44 
45 #include <asm/alternative.h>
46 #include <asm/arch_timer.h>
47 #include <asm/compat.h>
48 #include <asm/cpufeature.h>
49 #include <asm/cacheflush.h>
50 #include <asm/exec.h>
51 #include <asm/fpsimd.h>
52 #include <asm/mmu_context.h>
53 #include <asm/mte.h>
54 #include <asm/processor.h>
55 #include <asm/pointer_auth.h>
56 #include <asm/stacktrace.h>
57 #include <asm/switch_to.h>
58 #include <asm/system_misc.h>
59 
60 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
61 #include <linux/stackprotector.h>
62 unsigned long __stack_chk_guard __ro_after_init;
63 EXPORT_SYMBOL(__stack_chk_guard);
64 #endif
65 
66 /*
67  * Function pointers to optional machine specific functions
68  */
69 void (*pm_power_off)(void);
70 EXPORT_SYMBOL_GPL(pm_power_off);
71 
72 #ifdef CONFIG_HOTPLUG_CPU
73 void __noreturn arch_cpu_idle_dead(void)
74 {
75        cpu_die();
76 }
77 #endif
78 
79 /*
80  * Called by kexec, immediately prior to machine_kexec().
81  *
82  * This must completely disable all secondary CPUs; simply causing those CPUs
83  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
84  * kexec'd kernel to use any and all RAM as it sees fit, without having to
85  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
86  * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
87  */
88 void machine_shutdown(void)
89 {
90 	smp_shutdown_nonboot_cpus(reboot_cpu);
91 }
92 
93 /*
94  * Halting simply requires that the secondary CPUs stop performing any
95  * activity (executing tasks, handling interrupts). smp_send_stop()
96  * achieves this.
97  */
98 void machine_halt(void)
99 {
100 	local_irq_disable();
101 	smp_send_stop();
102 	while (1);
103 }
104 
105 /*
106  * Power-off simply requires that the secondary CPUs stop performing any
107  * activity (executing tasks, handling interrupts). smp_send_stop()
108  * achieves this. When the system power is turned off, it will take all CPUs
109  * with it.
110  */
111 void machine_power_off(void)
112 {
113 	local_irq_disable();
114 	smp_send_stop();
115 	do_kernel_power_off();
116 }
117 
118 /*
119  * Restart requires that the secondary CPUs stop performing any activity
120  * while the primary CPU resets the system. Systems with multiple CPUs must
121  * provide a HW restart implementation, to ensure that all CPUs reset at once.
122  * This is required so that any code running after reset on the primary CPU
123  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
124  * executing pre-reset code, and using RAM that the primary CPU's code wishes
125  * to use. Implementing such co-ordination would be essentially impossible.
126  */
127 void machine_restart(char *cmd)
128 {
129 	/* Disable interrupts first */
130 	local_irq_disable();
131 	smp_send_stop();
132 
133 	/*
134 	 * UpdateCapsule() depends on the system being reset via
135 	 * ResetSystem().
136 	 */
137 	if (efi_enabled(EFI_RUNTIME_SERVICES))
138 		efi_reboot(reboot_mode, NULL);
139 
140 	/* Now call the architecture specific reboot code. */
141 	do_kernel_restart(cmd);
142 
143 	/*
144 	 * Whoops - the architecture was unable to reboot.
145 	 */
146 	printk("Reboot failed -- System halted\n");
147 	while (1);
148 }
149 
150 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
151 static const char *const btypes[] = {
152 	bstr(NONE, "--"),
153 	bstr(  JC, "jc"),
154 	bstr(   C, "-c"),
155 	bstr(  J , "j-")
156 };
157 #undef bstr
158 
159 static void print_pstate(struct pt_regs *regs)
160 {
161 	u64 pstate = regs->pstate;
162 
163 	if (compat_user_mode(regs)) {
164 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
165 			pstate,
166 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
167 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
168 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
169 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
170 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
171 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
172 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
173 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
174 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
175 			pstate & PSR_AA32_F_BIT ? 'F' : 'f',
176 			pstate & PSR_AA32_DIT_BIT ? '+' : '-',
177 			pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
178 	} else {
179 		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
180 					       PSR_BTYPE_SHIFT];
181 
182 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
183 			pstate,
184 			pstate & PSR_N_BIT ? 'N' : 'n',
185 			pstate & PSR_Z_BIT ? 'Z' : 'z',
186 			pstate & PSR_C_BIT ? 'C' : 'c',
187 			pstate & PSR_V_BIT ? 'V' : 'v',
188 			pstate & PSR_D_BIT ? 'D' : 'd',
189 			pstate & PSR_A_BIT ? 'A' : 'a',
190 			pstate & PSR_I_BIT ? 'I' : 'i',
191 			pstate & PSR_F_BIT ? 'F' : 'f',
192 			pstate & PSR_PAN_BIT ? '+' : '-',
193 			pstate & PSR_UAO_BIT ? '+' : '-',
194 			pstate & PSR_TCO_BIT ? '+' : '-',
195 			pstate & PSR_DIT_BIT ? '+' : '-',
196 			pstate & PSR_SSBS_BIT ? '+' : '-',
197 			btype_str);
198 	}
199 }
200 
201 void __show_regs(struct pt_regs *regs)
202 {
203 	int i, top_reg;
204 	u64 lr, sp;
205 
206 	if (compat_user_mode(regs)) {
207 		lr = regs->compat_lr;
208 		sp = regs->compat_sp;
209 		top_reg = 12;
210 	} else {
211 		lr = regs->regs[30];
212 		sp = regs->sp;
213 		top_reg = 29;
214 	}
215 
216 	show_regs_print_info(KERN_DEFAULT);
217 	print_pstate(regs);
218 
219 	if (!user_mode(regs)) {
220 		printk("pc : %pS\n", (void *)regs->pc);
221 		printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr));
222 	} else {
223 		printk("pc : %016llx\n", regs->pc);
224 		printk("lr : %016llx\n", lr);
225 	}
226 
227 	printk("sp : %016llx\n", sp);
228 
229 	if (system_uses_irq_prio_masking())
230 		printk("pmr_save: %08llx\n", regs->pmr_save);
231 
232 	i = top_reg;
233 
234 	while (i >= 0) {
235 		printk("x%-2d: %016llx", i, regs->regs[i]);
236 
237 		while (i-- % 3)
238 			pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
239 
240 		pr_cont("\n");
241 	}
242 }
243 
244 void show_regs(struct pt_regs *regs)
245 {
246 	__show_regs(regs);
247 	dump_backtrace(regs, NULL, KERN_DEFAULT);
248 }
249 
250 static void tls_thread_flush(void)
251 {
252 	write_sysreg(0, tpidr_el0);
253 	if (system_supports_tpidr2())
254 		write_sysreg_s(0, SYS_TPIDR2_EL0);
255 
256 	if (is_compat_task()) {
257 		current->thread.uw.tp_value = 0;
258 
259 		/*
260 		 * We need to ensure ordering between the shadow state and the
261 		 * hardware state, so that we don't corrupt the hardware state
262 		 * with a stale shadow state during context switch.
263 		 */
264 		barrier();
265 		write_sysreg(0, tpidrro_el0);
266 	}
267 }
268 
269 static void flush_tagged_addr_state(void)
270 {
271 	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
272 		clear_thread_flag(TIF_TAGGED_ADDR);
273 }
274 
275 static void flush_poe(void)
276 {
277 	if (!system_supports_poe())
278 		return;
279 
280 	write_sysreg_s(POR_EL0_INIT, SYS_POR_EL0);
281 }
282 
283 void flush_thread(void)
284 {
285 	fpsimd_flush_thread();
286 	tls_thread_flush();
287 	flush_ptrace_hw_breakpoint(current);
288 	flush_tagged_addr_state();
289 	flush_poe();
290 }
291 
292 void arch_release_task_struct(struct task_struct *tsk)
293 {
294 	fpsimd_release_task(tsk);
295 }
296 
297 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
298 {
299 	if (current->mm)
300 		fpsimd_preserve_current_state();
301 	*dst = *src;
302 
303 	/*
304 	 * Detach src's sve_state (if any) from dst so that it does not
305 	 * get erroneously used or freed prematurely.  dst's copies
306 	 * will be allocated on demand later on if dst uses SVE.
307 	 * For consistency, also clear TIF_SVE here: this could be done
308 	 * later in copy_process(), but to avoid tripping up future
309 	 * maintainers it is best not to leave TIF flags and buffers in
310 	 * an inconsistent state, even temporarily.
311 	 */
312 	dst->thread.sve_state = NULL;
313 	clear_tsk_thread_flag(dst, TIF_SVE);
314 
315 	/*
316 	 * In the unlikely event that we create a new thread with ZA
317 	 * enabled we should retain the ZA and ZT state so duplicate
318 	 * it here.  This may be shortly freed if we exec() or if
319 	 * CLONE_SETTLS but it's simpler to do it here. To avoid
320 	 * confusing the rest of the code ensure that we have a
321 	 * sve_state allocated whenever sme_state is allocated.
322 	 */
323 	if (thread_za_enabled(&src->thread)) {
324 		dst->thread.sve_state = kzalloc(sve_state_size(src),
325 						GFP_KERNEL);
326 		if (!dst->thread.sve_state)
327 			return -ENOMEM;
328 
329 		dst->thread.sme_state = kmemdup(src->thread.sme_state,
330 						sme_state_size(src),
331 						GFP_KERNEL);
332 		if (!dst->thread.sme_state) {
333 			kfree(dst->thread.sve_state);
334 			dst->thread.sve_state = NULL;
335 			return -ENOMEM;
336 		}
337 	} else {
338 		dst->thread.sme_state = NULL;
339 		clear_tsk_thread_flag(dst, TIF_SME);
340 	}
341 
342 	dst->thread.fp_type = FP_STATE_FPSIMD;
343 
344 	/* clear any pending asynchronous tag fault raised by the parent */
345 	clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
346 
347 	return 0;
348 }
349 
350 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
351 
352 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
353 {
354 	unsigned long clone_flags = args->flags;
355 	unsigned long stack_start = args->stack;
356 	unsigned long tls = args->tls;
357 	struct pt_regs *childregs = task_pt_regs(p);
358 
359 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
360 
361 	/*
362 	 * In case p was allocated the same task_struct pointer as some
363 	 * other recently-exited task, make sure p is disassociated from
364 	 * any cpu that may have run that now-exited task recently.
365 	 * Otherwise we could erroneously skip reloading the FPSIMD
366 	 * registers for p.
367 	 */
368 	fpsimd_flush_task_state(p);
369 
370 	ptrauth_thread_init_kernel(p);
371 
372 	if (likely(!args->fn)) {
373 		*childregs = *current_pt_regs();
374 		childregs->regs[0] = 0;
375 
376 		/*
377 		 * Read the current TLS pointer from tpidr_el0 as it may be
378 		 * out-of-sync with the saved value.
379 		 */
380 		*task_user_tls(p) = read_sysreg(tpidr_el0);
381 		if (system_supports_tpidr2())
382 			p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
383 
384 		if (system_supports_poe())
385 			p->thread.por_el0 = read_sysreg_s(SYS_POR_EL0);
386 
387 		if (stack_start) {
388 			if (is_compat_thread(task_thread_info(p)))
389 				childregs->compat_sp = stack_start;
390 			else
391 				childregs->sp = stack_start;
392 		}
393 
394 		/*
395 		 * If a TLS pointer was passed to clone, use it for the new
396 		 * thread.  We also reset TPIDR2 if it's in use.
397 		 */
398 		if (clone_flags & CLONE_SETTLS) {
399 			p->thread.uw.tp_value = tls;
400 			p->thread.tpidr2_el0 = 0;
401 		}
402 	} else {
403 		/*
404 		 * A kthread has no context to ERET to, so ensure any buggy
405 		 * ERET is treated as an illegal exception return.
406 		 *
407 		 * When a user task is created from a kthread, childregs will
408 		 * be initialized by start_thread() or start_compat_thread().
409 		 */
410 		memset(childregs, 0, sizeof(struct pt_regs));
411 		childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
412 
413 		p->thread.cpu_context.x19 = (unsigned long)args->fn;
414 		p->thread.cpu_context.x20 = (unsigned long)args->fn_arg;
415 	}
416 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
417 	p->thread.cpu_context.sp = (unsigned long)childregs;
418 	/*
419 	 * For the benefit of the unwinder, set up childregs->stackframe
420 	 * as the final frame for the new task.
421 	 */
422 	p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
423 
424 	ptrace_hw_copy_thread(p);
425 
426 	return 0;
427 }
428 
429 void tls_preserve_current_state(void)
430 {
431 	*task_user_tls(current) = read_sysreg(tpidr_el0);
432 	if (system_supports_tpidr2() && !is_compat_task())
433 		current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
434 }
435 
436 static void tls_thread_switch(struct task_struct *next)
437 {
438 	tls_preserve_current_state();
439 
440 	if (is_compat_thread(task_thread_info(next)))
441 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
442 	else if (!arm64_kernel_unmapped_at_el0())
443 		write_sysreg(0, tpidrro_el0);
444 
445 	write_sysreg(*task_user_tls(next), tpidr_el0);
446 	if (system_supports_tpidr2())
447 		write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0);
448 }
449 
450 /*
451  * Force SSBS state on context-switch, since it may be lost after migrating
452  * from a CPU which treats the bit as RES0 in a heterogeneous system.
453  */
454 static void ssbs_thread_switch(struct task_struct *next)
455 {
456 	/*
457 	 * Nothing to do for kernel threads, but 'regs' may be junk
458 	 * (e.g. idle task) so check the flags and bail early.
459 	 */
460 	if (unlikely(next->flags & PF_KTHREAD))
461 		return;
462 
463 	/*
464 	 * If all CPUs implement the SSBS extension, then we just need to
465 	 * context-switch the PSTATE field.
466 	 */
467 	if (alternative_has_cap_unlikely(ARM64_SSBS))
468 		return;
469 
470 	spectre_v4_enable_task_mitigation(next);
471 }
472 
473 /*
474  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
475  * shadow copy so that we can restore this upon entry from userspace.
476  *
477  * This is *only* for exception entry from EL0, and is not valid until we
478  * __switch_to() a user task.
479  */
480 DEFINE_PER_CPU(struct task_struct *, __entry_task);
481 
482 static void entry_task_switch(struct task_struct *next)
483 {
484 	__this_cpu_write(__entry_task, next);
485 }
486 
487 /*
488  * Handle sysreg updates for ARM erratum 1418040 which affects the 32bit view of
489  * CNTVCT, various other errata which require trapping all CNTVCT{,_EL0}
490  * accesses and prctl(PR_SET_TSC). Ensure access is disabled iff a workaround is
491  * required or PR_TSC_SIGSEGV is set.
492  */
493 static void update_cntkctl_el1(struct task_struct *next)
494 {
495 	struct thread_info *ti = task_thread_info(next);
496 
497 	if (test_ti_thread_flag(ti, TIF_TSC_SIGSEGV) ||
498 	    has_erratum_handler(read_cntvct_el0) ||
499 	    (IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) &&
500 	     this_cpu_has_cap(ARM64_WORKAROUND_1418040) &&
501 	     is_compat_thread(ti)))
502 		sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0);
503 	else
504 		sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN);
505 }
506 
507 static void cntkctl_thread_switch(struct task_struct *prev,
508 				  struct task_struct *next)
509 {
510 	if ((read_ti_thread_flags(task_thread_info(prev)) &
511 	     (_TIF_32BIT | _TIF_TSC_SIGSEGV)) !=
512 	    (read_ti_thread_flags(task_thread_info(next)) &
513 	     (_TIF_32BIT | _TIF_TSC_SIGSEGV)))
514 		update_cntkctl_el1(next);
515 }
516 
517 static int do_set_tsc_mode(unsigned int val)
518 {
519 	bool tsc_sigsegv;
520 
521 	if (val == PR_TSC_SIGSEGV)
522 		tsc_sigsegv = true;
523 	else if (val == PR_TSC_ENABLE)
524 		tsc_sigsegv = false;
525 	else
526 		return -EINVAL;
527 
528 	preempt_disable();
529 	update_thread_flag(TIF_TSC_SIGSEGV, tsc_sigsegv);
530 	update_cntkctl_el1(current);
531 	preempt_enable();
532 
533 	return 0;
534 }
535 
536 static void permission_overlay_switch(struct task_struct *next)
537 {
538 	if (!system_supports_poe())
539 		return;
540 
541 	current->thread.por_el0 = read_sysreg_s(SYS_POR_EL0);
542 	if (current->thread.por_el0 != next->thread.por_el0) {
543 		write_sysreg_s(next->thread.por_el0, SYS_POR_EL0);
544 	}
545 }
546 
547 /*
548  * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
549  * this function must be called with preemption disabled and the update to
550  * sctlr_user must be made in the same preemption disabled block so that
551  * __switch_to() does not see the variable update before the SCTLR_EL1 one.
552  */
553 void update_sctlr_el1(u64 sctlr)
554 {
555 	/*
556 	 * EnIA must not be cleared while in the kernel as this is necessary for
557 	 * in-kernel PAC. It will be cleared on kernel exit if needed.
558 	 */
559 	sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
560 
561 	/* ISB required for the kernel uaccess routines when setting TCF0. */
562 	isb();
563 }
564 
565 /*
566  * Thread switching.
567  */
568 __notrace_funcgraph __sched
569 struct task_struct *__switch_to(struct task_struct *prev,
570 				struct task_struct *next)
571 {
572 	struct task_struct *last;
573 
574 	fpsimd_thread_switch(next);
575 	tls_thread_switch(next);
576 	hw_breakpoint_thread_switch(next);
577 	contextidr_thread_switch(next);
578 	entry_task_switch(next);
579 	ssbs_thread_switch(next);
580 	cntkctl_thread_switch(prev, next);
581 	ptrauth_thread_switch_user(next);
582 	permission_overlay_switch(next);
583 
584 	/*
585 	 * Complete any pending TLB or cache maintenance on this CPU in case
586 	 * the thread migrates to a different CPU.
587 	 * This full barrier is also required by the membarrier system
588 	 * call.
589 	 */
590 	dsb(ish);
591 
592 	/*
593 	 * MTE thread switching must happen after the DSB above to ensure that
594 	 * any asynchronous tag check faults have been logged in the TFSR*_EL1
595 	 * registers.
596 	 */
597 	mte_thread_switch(next);
598 	/* avoid expensive SCTLR_EL1 accesses if no change */
599 	if (prev->thread.sctlr_user != next->thread.sctlr_user)
600 		update_sctlr_el1(next->thread.sctlr_user);
601 
602 	/* the actual thread switch */
603 	last = cpu_switch_to(prev, next);
604 
605 	return last;
606 }
607 
608 struct wchan_info {
609 	unsigned long	pc;
610 	int		count;
611 };
612 
613 static bool get_wchan_cb(void *arg, unsigned long pc)
614 {
615 	struct wchan_info *wchan_info = arg;
616 
617 	if (!in_sched_functions(pc)) {
618 		wchan_info->pc = pc;
619 		return false;
620 	}
621 	return wchan_info->count++ < 16;
622 }
623 
624 unsigned long __get_wchan(struct task_struct *p)
625 {
626 	struct wchan_info wchan_info = {
627 		.pc = 0,
628 		.count = 0,
629 	};
630 
631 	if (!try_get_task_stack(p))
632 		return 0;
633 
634 	arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL);
635 
636 	put_task_stack(p);
637 
638 	return wchan_info.pc;
639 }
640 
641 unsigned long arch_align_stack(unsigned long sp)
642 {
643 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
644 		sp -= get_random_u32_below(PAGE_SIZE);
645 	return sp & ~0xf;
646 }
647 
648 #ifdef CONFIG_COMPAT
649 int compat_elf_check_arch(const struct elf32_hdr *hdr)
650 {
651 	if (!system_supports_32bit_el0())
652 		return false;
653 
654 	if ((hdr)->e_machine != EM_ARM)
655 		return false;
656 
657 	if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
658 		return false;
659 
660 	/*
661 	 * Prevent execve() of a 32-bit program from a deadline task
662 	 * if the restricted affinity mask would be inadmissible on an
663 	 * asymmetric system.
664 	 */
665 	return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
666 	       !dl_task_check_affinity(current, system_32bit_el0_cpumask());
667 }
668 #endif
669 
670 /*
671  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
672  */
673 void arch_setup_new_exec(void)
674 {
675 	unsigned long mmflags = 0;
676 
677 	if (is_compat_task()) {
678 		mmflags = MMCF_AARCH32;
679 
680 		/*
681 		 * Restrict the CPU affinity mask for a 32-bit task so that
682 		 * it contains only 32-bit-capable CPUs.
683 		 *
684 		 * From the perspective of the task, this looks similar to
685 		 * what would happen if the 64-bit-only CPUs were hot-unplugged
686 		 * at the point of execve(), although we try a bit harder to
687 		 * honour the cpuset hierarchy.
688 		 */
689 		if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
690 			force_compatible_cpus_allowed_ptr(current);
691 	} else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
692 		relax_compatible_cpus_allowed_ptr(current);
693 	}
694 
695 	current->mm->context.flags = mmflags;
696 	ptrauth_thread_init_user();
697 	mte_thread_init_user();
698 	do_set_tsc_mode(PR_TSC_ENABLE);
699 
700 	if (task_spec_ssb_noexec(current)) {
701 		arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
702 					 PR_SPEC_ENABLE);
703 	}
704 }
705 
706 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
707 /*
708  * Control the relaxed ABI allowing tagged user addresses into the kernel.
709  */
710 static unsigned int tagged_addr_disabled;
711 
712 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
713 {
714 	unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
715 	struct thread_info *ti = task_thread_info(task);
716 
717 	if (is_compat_thread(ti))
718 		return -EINVAL;
719 
720 	if (system_supports_mte())
721 		valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \
722 			| PR_MTE_TAG_MASK;
723 
724 	if (arg & ~valid_mask)
725 		return -EINVAL;
726 
727 	/*
728 	 * Do not allow the enabling of the tagged address ABI if globally
729 	 * disabled via sysctl abi.tagged_addr_disabled.
730 	 */
731 	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
732 		return -EINVAL;
733 
734 	if (set_mte_ctrl(task, arg) != 0)
735 		return -EINVAL;
736 
737 	update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
738 
739 	return 0;
740 }
741 
742 long get_tagged_addr_ctrl(struct task_struct *task)
743 {
744 	long ret = 0;
745 	struct thread_info *ti = task_thread_info(task);
746 
747 	if (is_compat_thread(ti))
748 		return -EINVAL;
749 
750 	if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
751 		ret = PR_TAGGED_ADDR_ENABLE;
752 
753 	ret |= get_mte_ctrl(task);
754 
755 	return ret;
756 }
757 
758 /*
759  * Global sysctl to disable the tagged user addresses support. This control
760  * only prevents the tagged address ABI enabling via prctl() and does not
761  * disable it for tasks that already opted in to the relaxed ABI.
762  */
763 
764 static struct ctl_table tagged_addr_sysctl_table[] = {
765 	{
766 		.procname	= "tagged_addr_disabled",
767 		.mode		= 0644,
768 		.data		= &tagged_addr_disabled,
769 		.maxlen		= sizeof(int),
770 		.proc_handler	= proc_dointvec_minmax,
771 		.extra1		= SYSCTL_ZERO,
772 		.extra2		= SYSCTL_ONE,
773 	},
774 };
775 
776 static int __init tagged_addr_init(void)
777 {
778 	if (!register_sysctl("abi", tagged_addr_sysctl_table))
779 		return -EINVAL;
780 	return 0;
781 }
782 
783 core_initcall(tagged_addr_init);
784 #endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
785 
786 #ifdef CONFIG_BINFMT_ELF
787 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
788 			 bool has_interp, bool is_interp)
789 {
790 	/*
791 	 * For dynamically linked executables the interpreter is
792 	 * responsible for setting PROT_BTI on everything except
793 	 * itself.
794 	 */
795 	if (is_interp != has_interp)
796 		return prot;
797 
798 	if (!(state->flags & ARM64_ELF_BTI))
799 		return prot;
800 
801 	if (prot & PROT_EXEC)
802 		prot |= PROT_BTI;
803 
804 	return prot;
805 }
806 #endif
807 
808 int get_tsc_mode(unsigned long adr)
809 {
810 	unsigned int val;
811 
812 	if (is_compat_task())
813 		return -EINVAL;
814 
815 	if (test_thread_flag(TIF_TSC_SIGSEGV))
816 		val = PR_TSC_SIGSEGV;
817 	else
818 		val = PR_TSC_ENABLE;
819 
820 	return put_user(val, (unsigned int __user *)adr);
821 }
822 
823 int set_tsc_mode(unsigned int val)
824 {
825 	if (is_compat_task())
826 		return -EINVAL;
827 
828 	return do_set_tsc_mode(val);
829 }
830