xref: /linux/arch/arm64/kernel/process.c (revision 39f75da7bcc829ddc4d40bb60d0e95520de7898b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/process.c
4  *
5  * Original Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 #include <linux/compat.h>
10 #include <linux/efi.h>
11 #include <linux/elf.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/mman.h>
19 #include <linux/mm.h>
20 #include <linux/nospec.h>
21 #include <linux/stddef.h>
22 #include <linux/sysctl.h>
23 #include <linux/unistd.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
31 #include <linux/pm.h>
32 #include <linux/tick.h>
33 #include <linux/utsname.h>
34 #include <linux/uaccess.h>
35 #include <linux/random.h>
36 #include <linux/hw_breakpoint.h>
37 #include <linux/personality.h>
38 #include <linux/notifier.h>
39 #include <trace/events/power.h>
40 #include <linux/percpu.h>
41 #include <linux/thread_info.h>
42 #include <linux/prctl.h>
43 
44 #include <asm/alternative.h>
45 #include <asm/compat.h>
46 #include <asm/cpufeature.h>
47 #include <asm/cacheflush.h>
48 #include <asm/exec.h>
49 #include <asm/fpsimd.h>
50 #include <asm/mmu_context.h>
51 #include <asm/mte.h>
52 #include <asm/processor.h>
53 #include <asm/pointer_auth.h>
54 #include <asm/stacktrace.h>
55 #include <asm/switch_to.h>
56 #include <asm/system_misc.h>
57 
58 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
59 #include <linux/stackprotector.h>
60 unsigned long __stack_chk_guard __read_mostly;
61 EXPORT_SYMBOL(__stack_chk_guard);
62 #endif
63 
64 /*
65  * Function pointers to optional machine specific functions
66  */
67 void (*pm_power_off)(void);
68 EXPORT_SYMBOL_GPL(pm_power_off);
69 
70 #ifdef CONFIG_HOTPLUG_CPU
71 void arch_cpu_idle_dead(void)
72 {
73        cpu_die();
74 }
75 #endif
76 
77 /*
78  * Called by kexec, immediately prior to machine_kexec().
79  *
80  * This must completely disable all secondary CPUs; simply causing those CPUs
81  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
82  * kexec'd kernel to use any and all RAM as it sees fit, without having to
83  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
84  * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
85  */
86 void machine_shutdown(void)
87 {
88 	smp_shutdown_nonboot_cpus(reboot_cpu);
89 }
90 
91 /*
92  * Halting simply requires that the secondary CPUs stop performing any
93  * activity (executing tasks, handling interrupts). smp_send_stop()
94  * achieves this.
95  */
96 void machine_halt(void)
97 {
98 	local_irq_disable();
99 	smp_send_stop();
100 	while (1);
101 }
102 
103 /*
104  * Power-off simply requires that the secondary CPUs stop performing any
105  * activity (executing tasks, handling interrupts). smp_send_stop()
106  * achieves this. When the system power is turned off, it will take all CPUs
107  * with it.
108  */
109 void machine_power_off(void)
110 {
111 	local_irq_disable();
112 	smp_send_stop();
113 	if (pm_power_off)
114 		pm_power_off();
115 }
116 
117 /*
118  * Restart requires that the secondary CPUs stop performing any activity
119  * while the primary CPU resets the system. Systems with multiple CPUs must
120  * provide a HW restart implementation, to ensure that all CPUs reset at once.
121  * This is required so that any code running after reset on the primary CPU
122  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
123  * executing pre-reset code, and using RAM that the primary CPU's code wishes
124  * to use. Implementing such co-ordination would be essentially impossible.
125  */
126 void machine_restart(char *cmd)
127 {
128 	/* Disable interrupts first */
129 	local_irq_disable();
130 	smp_send_stop();
131 
132 	/*
133 	 * UpdateCapsule() depends on the system being reset via
134 	 * ResetSystem().
135 	 */
136 	if (efi_enabled(EFI_RUNTIME_SERVICES))
137 		efi_reboot(reboot_mode, NULL);
138 
139 	/* Now call the architecture specific reboot code. */
140 	do_kernel_restart(cmd);
141 
142 	/*
143 	 * Whoops - the architecture was unable to reboot.
144 	 */
145 	printk("Reboot failed -- System halted\n");
146 	while (1);
147 }
148 
149 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
150 static const char *const btypes[] = {
151 	bstr(NONE, "--"),
152 	bstr(  JC, "jc"),
153 	bstr(   C, "-c"),
154 	bstr(  J , "j-")
155 };
156 #undef bstr
157 
158 static void print_pstate(struct pt_regs *regs)
159 {
160 	u64 pstate = regs->pstate;
161 
162 	if (compat_user_mode(regs)) {
163 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
164 			pstate,
165 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
166 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
167 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
168 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
169 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
170 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
171 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
172 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
173 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
174 			pstate & PSR_AA32_F_BIT ? 'F' : 'f');
175 	} else {
176 		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
177 					       PSR_BTYPE_SHIFT];
178 
179 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO BTYPE=%s)\n",
180 			pstate,
181 			pstate & PSR_N_BIT ? 'N' : 'n',
182 			pstate & PSR_Z_BIT ? 'Z' : 'z',
183 			pstate & PSR_C_BIT ? 'C' : 'c',
184 			pstate & PSR_V_BIT ? 'V' : 'v',
185 			pstate & PSR_D_BIT ? 'D' : 'd',
186 			pstate & PSR_A_BIT ? 'A' : 'a',
187 			pstate & PSR_I_BIT ? 'I' : 'i',
188 			pstate & PSR_F_BIT ? 'F' : 'f',
189 			pstate & PSR_PAN_BIT ? '+' : '-',
190 			pstate & PSR_UAO_BIT ? '+' : '-',
191 			pstate & PSR_TCO_BIT ? '+' : '-',
192 			btype_str);
193 	}
194 }
195 
196 void __show_regs(struct pt_regs *regs)
197 {
198 	int i, top_reg;
199 	u64 lr, sp;
200 
201 	if (compat_user_mode(regs)) {
202 		lr = regs->compat_lr;
203 		sp = regs->compat_sp;
204 		top_reg = 12;
205 	} else {
206 		lr = regs->regs[30];
207 		sp = regs->sp;
208 		top_reg = 29;
209 	}
210 
211 	show_regs_print_info(KERN_DEFAULT);
212 	print_pstate(regs);
213 
214 	if (!user_mode(regs)) {
215 		printk("pc : %pS\n", (void *)regs->pc);
216 		printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
217 	} else {
218 		printk("pc : %016llx\n", regs->pc);
219 		printk("lr : %016llx\n", lr);
220 	}
221 
222 	printk("sp : %016llx\n", sp);
223 
224 	if (system_uses_irq_prio_masking())
225 		printk("pmr_save: %08llx\n", regs->pmr_save);
226 
227 	i = top_reg;
228 
229 	while (i >= 0) {
230 		printk("x%-2d: %016llx", i, regs->regs[i]);
231 
232 		while (i-- % 3)
233 			pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
234 
235 		pr_cont("\n");
236 	}
237 }
238 
239 void show_regs(struct pt_regs *regs)
240 {
241 	__show_regs(regs);
242 	dump_backtrace(regs, NULL, KERN_DEFAULT);
243 }
244 
245 static void tls_thread_flush(void)
246 {
247 	write_sysreg(0, tpidr_el0);
248 
249 	if (is_compat_task()) {
250 		current->thread.uw.tp_value = 0;
251 
252 		/*
253 		 * We need to ensure ordering between the shadow state and the
254 		 * hardware state, so that we don't corrupt the hardware state
255 		 * with a stale shadow state during context switch.
256 		 */
257 		barrier();
258 		write_sysreg(0, tpidrro_el0);
259 	}
260 }
261 
262 static void flush_tagged_addr_state(void)
263 {
264 	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
265 		clear_thread_flag(TIF_TAGGED_ADDR);
266 }
267 
268 void flush_thread(void)
269 {
270 	fpsimd_flush_thread();
271 	tls_thread_flush();
272 	flush_ptrace_hw_breakpoint(current);
273 	flush_tagged_addr_state();
274 }
275 
276 void release_thread(struct task_struct *dead_task)
277 {
278 }
279 
280 void arch_release_task_struct(struct task_struct *tsk)
281 {
282 	fpsimd_release_task(tsk);
283 }
284 
285 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
286 {
287 	if (current->mm)
288 		fpsimd_preserve_current_state();
289 	*dst = *src;
290 
291 	/* We rely on the above assignment to initialize dst's thread_flags: */
292 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
293 
294 	/*
295 	 * Detach src's sve_state (if any) from dst so that it does not
296 	 * get erroneously used or freed prematurely.  dst's sve_state
297 	 * will be allocated on demand later on if dst uses SVE.
298 	 * For consistency, also clear TIF_SVE here: this could be done
299 	 * later in copy_process(), but to avoid tripping up future
300 	 * maintainers it is best not to leave TIF_SVE and sve_state in
301 	 * an inconsistent state, even temporarily.
302 	 */
303 	dst->thread.sve_state = NULL;
304 	clear_tsk_thread_flag(dst, TIF_SVE);
305 
306 	/* clear any pending asynchronous tag fault raised by the parent */
307 	clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
308 
309 	return 0;
310 }
311 
312 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
313 
314 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
315 		unsigned long stk_sz, struct task_struct *p, unsigned long tls)
316 {
317 	struct pt_regs *childregs = task_pt_regs(p);
318 
319 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
320 
321 	/*
322 	 * In case p was allocated the same task_struct pointer as some
323 	 * other recently-exited task, make sure p is disassociated from
324 	 * any cpu that may have run that now-exited task recently.
325 	 * Otherwise we could erroneously skip reloading the FPSIMD
326 	 * registers for p.
327 	 */
328 	fpsimd_flush_task_state(p);
329 
330 	ptrauth_thread_init_kernel(p);
331 
332 	if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) {
333 		*childregs = *current_pt_regs();
334 		childregs->regs[0] = 0;
335 
336 		/*
337 		 * Read the current TLS pointer from tpidr_el0 as it may be
338 		 * out-of-sync with the saved value.
339 		 */
340 		*task_user_tls(p) = read_sysreg(tpidr_el0);
341 
342 		if (stack_start) {
343 			if (is_compat_thread(task_thread_info(p)))
344 				childregs->compat_sp = stack_start;
345 			else
346 				childregs->sp = stack_start;
347 		}
348 
349 		/*
350 		 * If a TLS pointer was passed to clone, use it for the new
351 		 * thread.
352 		 */
353 		if (clone_flags & CLONE_SETTLS)
354 			p->thread.uw.tp_value = tls;
355 	} else {
356 		/*
357 		 * A kthread has no context to ERET to, so ensure any buggy
358 		 * ERET is treated as an illegal exception return.
359 		 *
360 		 * When a user task is created from a kthread, childregs will
361 		 * be initialized by start_thread() or start_compat_thread().
362 		 */
363 		memset(childregs, 0, sizeof(struct pt_regs));
364 		childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
365 
366 		p->thread.cpu_context.x19 = stack_start;
367 		p->thread.cpu_context.x20 = stk_sz;
368 	}
369 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
370 	p->thread.cpu_context.sp = (unsigned long)childregs;
371 	/*
372 	 * For the benefit of the unwinder, set up childregs->stackframe
373 	 * as the final frame for the new task.
374 	 */
375 	p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
376 
377 	ptrace_hw_copy_thread(p);
378 
379 	return 0;
380 }
381 
382 void tls_preserve_current_state(void)
383 {
384 	*task_user_tls(current) = read_sysreg(tpidr_el0);
385 }
386 
387 static void tls_thread_switch(struct task_struct *next)
388 {
389 	tls_preserve_current_state();
390 
391 	if (is_compat_thread(task_thread_info(next)))
392 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
393 	else if (!arm64_kernel_unmapped_at_el0())
394 		write_sysreg(0, tpidrro_el0);
395 
396 	write_sysreg(*task_user_tls(next), tpidr_el0);
397 }
398 
399 /*
400  * Force SSBS state on context-switch, since it may be lost after migrating
401  * from a CPU which treats the bit as RES0 in a heterogeneous system.
402  */
403 static void ssbs_thread_switch(struct task_struct *next)
404 {
405 	/*
406 	 * Nothing to do for kernel threads, but 'regs' may be junk
407 	 * (e.g. idle task) so check the flags and bail early.
408 	 */
409 	if (unlikely(next->flags & PF_KTHREAD))
410 		return;
411 
412 	/*
413 	 * If all CPUs implement the SSBS extension, then we just need to
414 	 * context-switch the PSTATE field.
415 	 */
416 	if (cpus_have_const_cap(ARM64_SSBS))
417 		return;
418 
419 	spectre_v4_enable_task_mitigation(next);
420 }
421 
422 /*
423  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
424  * shadow copy so that we can restore this upon entry from userspace.
425  *
426  * This is *only* for exception entry from EL0, and is not valid until we
427  * __switch_to() a user task.
428  */
429 DEFINE_PER_CPU(struct task_struct *, __entry_task);
430 
431 static void entry_task_switch(struct task_struct *next)
432 {
433 	__this_cpu_write(__entry_task, next);
434 }
435 
436 /*
437  * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
438  * Assuming the virtual counter is enabled at the beginning of times:
439  *
440  * - disable access when switching from a 64bit task to a 32bit task
441  * - enable access when switching from a 32bit task to a 64bit task
442  */
443 static void erratum_1418040_thread_switch(struct task_struct *prev,
444 					  struct task_struct *next)
445 {
446 	bool prev32, next32;
447 	u64 val;
448 
449 	if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040))
450 		return;
451 
452 	prev32 = is_compat_thread(task_thread_info(prev));
453 	next32 = is_compat_thread(task_thread_info(next));
454 
455 	if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
456 		return;
457 
458 	val = read_sysreg(cntkctl_el1);
459 
460 	if (!next32)
461 		val |= ARCH_TIMER_USR_VCT_ACCESS_EN;
462 	else
463 		val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
464 
465 	write_sysreg(val, cntkctl_el1);
466 }
467 
468 static void compat_thread_switch(struct task_struct *next)
469 {
470 	if (!is_compat_thread(task_thread_info(next)))
471 		return;
472 
473 	if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
474 		set_tsk_thread_flag(next, TIF_NOTIFY_RESUME);
475 }
476 
477 static void update_sctlr_el1(u64 sctlr)
478 {
479 	/*
480 	 * EnIA must not be cleared while in the kernel as this is necessary for
481 	 * in-kernel PAC. It will be cleared on kernel exit if needed.
482 	 */
483 	sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
484 
485 	/* ISB required for the kernel uaccess routines when setting TCF0. */
486 	isb();
487 }
488 
489 void set_task_sctlr_el1(u64 sctlr)
490 {
491 	/*
492 	 * __switch_to() checks current->thread.sctlr as an
493 	 * optimisation. Disable preemption so that it does not see
494 	 * the variable update before the SCTLR_EL1 one.
495 	 */
496 	preempt_disable();
497 	current->thread.sctlr_user = sctlr;
498 	update_sctlr_el1(sctlr);
499 	preempt_enable();
500 }
501 
502 /*
503  * Thread switching.
504  */
505 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
506 				struct task_struct *next)
507 {
508 	struct task_struct *last;
509 
510 	fpsimd_thread_switch(next);
511 	tls_thread_switch(next);
512 	hw_breakpoint_thread_switch(next);
513 	contextidr_thread_switch(next);
514 	entry_task_switch(next);
515 	ssbs_thread_switch(next);
516 	erratum_1418040_thread_switch(prev, next);
517 	ptrauth_thread_switch_user(next);
518 	compat_thread_switch(next);
519 
520 	/*
521 	 * Complete any pending TLB or cache maintenance on this CPU in case
522 	 * the thread migrates to a different CPU.
523 	 * This full barrier is also required by the membarrier system
524 	 * call.
525 	 */
526 	dsb(ish);
527 
528 	/*
529 	 * MTE thread switching must happen after the DSB above to ensure that
530 	 * any asynchronous tag check faults have been logged in the TFSR*_EL1
531 	 * registers.
532 	 */
533 	mte_thread_switch(next);
534 	/* avoid expensive SCTLR_EL1 accesses if no change */
535 	if (prev->thread.sctlr_user != next->thread.sctlr_user)
536 		update_sctlr_el1(next->thread.sctlr_user);
537 
538 	/* the actual thread switch */
539 	last = cpu_switch_to(prev, next);
540 
541 	return last;
542 }
543 
544 unsigned long get_wchan(struct task_struct *p)
545 {
546 	struct stackframe frame;
547 	unsigned long stack_page, ret = 0;
548 	int count = 0;
549 	if (!p || p == current || task_is_running(p))
550 		return 0;
551 
552 	stack_page = (unsigned long)try_get_task_stack(p);
553 	if (!stack_page)
554 		return 0;
555 
556 	start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
557 
558 	do {
559 		if (unwind_frame(p, &frame))
560 			goto out;
561 		if (!in_sched_functions(frame.pc)) {
562 			ret = frame.pc;
563 			goto out;
564 		}
565 	} while (count++ < 16);
566 
567 out:
568 	put_task_stack(p);
569 	return ret;
570 }
571 
572 unsigned long arch_align_stack(unsigned long sp)
573 {
574 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
575 		sp -= get_random_int() & ~PAGE_MASK;
576 	return sp & ~0xf;
577 }
578 
579 /*
580  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
581  */
582 void arch_setup_new_exec(void)
583 {
584 	unsigned long mmflags = 0;
585 
586 	if (is_compat_task()) {
587 		mmflags = MMCF_AARCH32;
588 		if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
589 			set_tsk_thread_flag(current, TIF_NOTIFY_RESUME);
590 	}
591 
592 	current->mm->context.flags = mmflags;
593 	ptrauth_thread_init_user();
594 	mte_thread_init_user();
595 
596 	if (task_spec_ssb_noexec(current)) {
597 		arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
598 					 PR_SPEC_ENABLE);
599 	}
600 }
601 
602 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
603 /*
604  * Control the relaxed ABI allowing tagged user addresses into the kernel.
605  */
606 static unsigned int tagged_addr_disabled;
607 
608 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
609 {
610 	unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
611 	struct thread_info *ti = task_thread_info(task);
612 
613 	if (is_compat_thread(ti))
614 		return -EINVAL;
615 
616 	if (system_supports_mte())
617 		valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK;
618 
619 	if (arg & ~valid_mask)
620 		return -EINVAL;
621 
622 	/*
623 	 * Do not allow the enabling of the tagged address ABI if globally
624 	 * disabled via sysctl abi.tagged_addr_disabled.
625 	 */
626 	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
627 		return -EINVAL;
628 
629 	if (set_mte_ctrl(task, arg) != 0)
630 		return -EINVAL;
631 
632 	update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
633 
634 	return 0;
635 }
636 
637 long get_tagged_addr_ctrl(struct task_struct *task)
638 {
639 	long ret = 0;
640 	struct thread_info *ti = task_thread_info(task);
641 
642 	if (is_compat_thread(ti))
643 		return -EINVAL;
644 
645 	if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
646 		ret = PR_TAGGED_ADDR_ENABLE;
647 
648 	ret |= get_mte_ctrl(task);
649 
650 	return ret;
651 }
652 
653 /*
654  * Global sysctl to disable the tagged user addresses support. This control
655  * only prevents the tagged address ABI enabling via prctl() and does not
656  * disable it for tasks that already opted in to the relaxed ABI.
657  */
658 
659 static struct ctl_table tagged_addr_sysctl_table[] = {
660 	{
661 		.procname	= "tagged_addr_disabled",
662 		.mode		= 0644,
663 		.data		= &tagged_addr_disabled,
664 		.maxlen		= sizeof(int),
665 		.proc_handler	= proc_dointvec_minmax,
666 		.extra1		= SYSCTL_ZERO,
667 		.extra2		= SYSCTL_ONE,
668 	},
669 	{ }
670 };
671 
672 static int __init tagged_addr_init(void)
673 {
674 	if (!register_sysctl("abi", tagged_addr_sysctl_table))
675 		return -EINVAL;
676 	return 0;
677 }
678 
679 core_initcall(tagged_addr_init);
680 #endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
681 
682 #ifdef CONFIG_BINFMT_ELF
683 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
684 			 bool has_interp, bool is_interp)
685 {
686 	/*
687 	 * For dynamically linked executables the interpreter is
688 	 * responsible for setting PROT_BTI on everything except
689 	 * itself.
690 	 */
691 	if (is_interp != has_interp)
692 		return prot;
693 
694 	if (!(state->flags & ARM64_ELF_BTI))
695 		return prot;
696 
697 	if (prot & PROT_EXEC)
698 		prot |= PROT_BTI;
699 
700 	return prot;
701 }
702 #endif
703