1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/process.c 4 * 5 * Original Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 #include <linux/compat.h> 10 #include <linux/efi.h> 11 #include <linux/elf.h> 12 #include <linux/export.h> 13 #include <linux/sched.h> 14 #include <linux/sched/debug.h> 15 #include <linux/sched/task.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/kernel.h> 18 #include <linux/mman.h> 19 #include <linux/mm.h> 20 #include <linux/nospec.h> 21 #include <linux/stddef.h> 22 #include <linux/sysctl.h> 23 #include <linux/unistd.h> 24 #include <linux/user.h> 25 #include <linux/delay.h> 26 #include <linux/reboot.h> 27 #include <linux/interrupt.h> 28 #include <linux/init.h> 29 #include <linux/cpu.h> 30 #include <linux/elfcore.h> 31 #include <linux/pm.h> 32 #include <linux/tick.h> 33 #include <linux/utsname.h> 34 #include <linux/uaccess.h> 35 #include <linux/random.h> 36 #include <linux/hw_breakpoint.h> 37 #include <linux/personality.h> 38 #include <linux/notifier.h> 39 #include <trace/events/power.h> 40 #include <linux/percpu.h> 41 #include <linux/thread_info.h> 42 #include <linux/prctl.h> 43 44 #include <asm/alternative.h> 45 #include <asm/compat.h> 46 #include <asm/cpufeature.h> 47 #include <asm/cacheflush.h> 48 #include <asm/exec.h> 49 #include <asm/fpsimd.h> 50 #include <asm/mmu_context.h> 51 #include <asm/mte.h> 52 #include <asm/processor.h> 53 #include <asm/pointer_auth.h> 54 #include <asm/stacktrace.h> 55 #include <asm/switch_to.h> 56 #include <asm/system_misc.h> 57 58 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) 59 #include <linux/stackprotector.h> 60 unsigned long __stack_chk_guard __read_mostly; 61 EXPORT_SYMBOL(__stack_chk_guard); 62 #endif 63 64 /* 65 * Function pointers to optional machine specific functions 66 */ 67 void (*pm_power_off)(void); 68 EXPORT_SYMBOL_GPL(pm_power_off); 69 70 #ifdef CONFIG_HOTPLUG_CPU 71 void arch_cpu_idle_dead(void) 72 { 73 cpu_die(); 74 } 75 #endif 76 77 /* 78 * Called by kexec, immediately prior to machine_kexec(). 79 * 80 * This must completely disable all secondary CPUs; simply causing those CPUs 81 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 82 * kexec'd kernel to use any and all RAM as it sees fit, without having to 83 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 84 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this. 85 */ 86 void machine_shutdown(void) 87 { 88 smp_shutdown_nonboot_cpus(reboot_cpu); 89 } 90 91 /* 92 * Halting simply requires that the secondary CPUs stop performing any 93 * activity (executing tasks, handling interrupts). smp_send_stop() 94 * achieves this. 95 */ 96 void machine_halt(void) 97 { 98 local_irq_disable(); 99 smp_send_stop(); 100 while (1); 101 } 102 103 /* 104 * Power-off simply requires that the secondary CPUs stop performing any 105 * activity (executing tasks, handling interrupts). smp_send_stop() 106 * achieves this. When the system power is turned off, it will take all CPUs 107 * with it. 108 */ 109 void machine_power_off(void) 110 { 111 local_irq_disable(); 112 smp_send_stop(); 113 if (pm_power_off) 114 pm_power_off(); 115 } 116 117 /* 118 * Restart requires that the secondary CPUs stop performing any activity 119 * while the primary CPU resets the system. Systems with multiple CPUs must 120 * provide a HW restart implementation, to ensure that all CPUs reset at once. 121 * This is required so that any code running after reset on the primary CPU 122 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 123 * executing pre-reset code, and using RAM that the primary CPU's code wishes 124 * to use. Implementing such co-ordination would be essentially impossible. 125 */ 126 void machine_restart(char *cmd) 127 { 128 /* Disable interrupts first */ 129 local_irq_disable(); 130 smp_send_stop(); 131 132 /* 133 * UpdateCapsule() depends on the system being reset via 134 * ResetSystem(). 135 */ 136 if (efi_enabled(EFI_RUNTIME_SERVICES)) 137 efi_reboot(reboot_mode, NULL); 138 139 /* Now call the architecture specific reboot code. */ 140 do_kernel_restart(cmd); 141 142 /* 143 * Whoops - the architecture was unable to reboot. 144 */ 145 printk("Reboot failed -- System halted\n"); 146 while (1); 147 } 148 149 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str 150 static const char *const btypes[] = { 151 bstr(NONE, "--"), 152 bstr( JC, "jc"), 153 bstr( C, "-c"), 154 bstr( J , "j-") 155 }; 156 #undef bstr 157 158 static void print_pstate(struct pt_regs *regs) 159 { 160 u64 pstate = regs->pstate; 161 162 if (compat_user_mode(regs)) { 163 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n", 164 pstate, 165 pstate & PSR_AA32_N_BIT ? 'N' : 'n', 166 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', 167 pstate & PSR_AA32_C_BIT ? 'C' : 'c', 168 pstate & PSR_AA32_V_BIT ? 'V' : 'v', 169 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', 170 pstate & PSR_AA32_T_BIT ? "T32" : "A32", 171 pstate & PSR_AA32_E_BIT ? "BE" : "LE", 172 pstate & PSR_AA32_A_BIT ? 'A' : 'a', 173 pstate & PSR_AA32_I_BIT ? 'I' : 'i', 174 pstate & PSR_AA32_F_BIT ? 'F' : 'f'); 175 } else { 176 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >> 177 PSR_BTYPE_SHIFT]; 178 179 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO BTYPE=%s)\n", 180 pstate, 181 pstate & PSR_N_BIT ? 'N' : 'n', 182 pstate & PSR_Z_BIT ? 'Z' : 'z', 183 pstate & PSR_C_BIT ? 'C' : 'c', 184 pstate & PSR_V_BIT ? 'V' : 'v', 185 pstate & PSR_D_BIT ? 'D' : 'd', 186 pstate & PSR_A_BIT ? 'A' : 'a', 187 pstate & PSR_I_BIT ? 'I' : 'i', 188 pstate & PSR_F_BIT ? 'F' : 'f', 189 pstate & PSR_PAN_BIT ? '+' : '-', 190 pstate & PSR_UAO_BIT ? '+' : '-', 191 pstate & PSR_TCO_BIT ? '+' : '-', 192 btype_str); 193 } 194 } 195 196 void __show_regs(struct pt_regs *regs) 197 { 198 int i, top_reg; 199 u64 lr, sp; 200 201 if (compat_user_mode(regs)) { 202 lr = regs->compat_lr; 203 sp = regs->compat_sp; 204 top_reg = 12; 205 } else { 206 lr = regs->regs[30]; 207 sp = regs->sp; 208 top_reg = 29; 209 } 210 211 show_regs_print_info(KERN_DEFAULT); 212 print_pstate(regs); 213 214 if (!user_mode(regs)) { 215 printk("pc : %pS\n", (void *)regs->pc); 216 printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr)); 217 } else { 218 printk("pc : %016llx\n", regs->pc); 219 printk("lr : %016llx\n", lr); 220 } 221 222 printk("sp : %016llx\n", sp); 223 224 if (system_uses_irq_prio_masking()) 225 printk("pmr_save: %08llx\n", regs->pmr_save); 226 227 i = top_reg; 228 229 while (i >= 0) { 230 printk("x%-2d: %016llx", i, regs->regs[i]); 231 232 while (i-- % 3) 233 pr_cont(" x%-2d: %016llx", i, regs->regs[i]); 234 235 pr_cont("\n"); 236 } 237 } 238 239 void show_regs(struct pt_regs *regs) 240 { 241 __show_regs(regs); 242 dump_backtrace(regs, NULL, KERN_DEFAULT); 243 } 244 245 static void tls_thread_flush(void) 246 { 247 write_sysreg(0, tpidr_el0); 248 249 if (is_compat_task()) { 250 current->thread.uw.tp_value = 0; 251 252 /* 253 * We need to ensure ordering between the shadow state and the 254 * hardware state, so that we don't corrupt the hardware state 255 * with a stale shadow state during context switch. 256 */ 257 barrier(); 258 write_sysreg(0, tpidrro_el0); 259 } 260 } 261 262 static void flush_tagged_addr_state(void) 263 { 264 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) 265 clear_thread_flag(TIF_TAGGED_ADDR); 266 } 267 268 void flush_thread(void) 269 { 270 fpsimd_flush_thread(); 271 tls_thread_flush(); 272 flush_ptrace_hw_breakpoint(current); 273 flush_tagged_addr_state(); 274 } 275 276 void release_thread(struct task_struct *dead_task) 277 { 278 } 279 280 void arch_release_task_struct(struct task_struct *tsk) 281 { 282 fpsimd_release_task(tsk); 283 } 284 285 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 286 { 287 if (current->mm) 288 fpsimd_preserve_current_state(); 289 *dst = *src; 290 291 /* We rely on the above assignment to initialize dst's thread_flags: */ 292 BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK)); 293 294 /* 295 * Detach src's sve_state (if any) from dst so that it does not 296 * get erroneously used or freed prematurely. dst's sve_state 297 * will be allocated on demand later on if dst uses SVE. 298 * For consistency, also clear TIF_SVE here: this could be done 299 * later in copy_process(), but to avoid tripping up future 300 * maintainers it is best not to leave TIF_SVE and sve_state in 301 * an inconsistent state, even temporarily. 302 */ 303 dst->thread.sve_state = NULL; 304 clear_tsk_thread_flag(dst, TIF_SVE); 305 306 /* clear any pending asynchronous tag fault raised by the parent */ 307 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT); 308 309 return 0; 310 } 311 312 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 313 314 int copy_thread(unsigned long clone_flags, unsigned long stack_start, 315 unsigned long stk_sz, struct task_struct *p, unsigned long tls) 316 { 317 struct pt_regs *childregs = task_pt_regs(p); 318 319 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 320 321 /* 322 * In case p was allocated the same task_struct pointer as some 323 * other recently-exited task, make sure p is disassociated from 324 * any cpu that may have run that now-exited task recently. 325 * Otherwise we could erroneously skip reloading the FPSIMD 326 * registers for p. 327 */ 328 fpsimd_flush_task_state(p); 329 330 ptrauth_thread_init_kernel(p); 331 332 if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) { 333 *childregs = *current_pt_regs(); 334 childregs->regs[0] = 0; 335 336 /* 337 * Read the current TLS pointer from tpidr_el0 as it may be 338 * out-of-sync with the saved value. 339 */ 340 *task_user_tls(p) = read_sysreg(tpidr_el0); 341 342 if (stack_start) { 343 if (is_compat_thread(task_thread_info(p))) 344 childregs->compat_sp = stack_start; 345 else 346 childregs->sp = stack_start; 347 } 348 349 /* 350 * If a TLS pointer was passed to clone, use it for the new 351 * thread. 352 */ 353 if (clone_flags & CLONE_SETTLS) 354 p->thread.uw.tp_value = tls; 355 } else { 356 /* 357 * A kthread has no context to ERET to, so ensure any buggy 358 * ERET is treated as an illegal exception return. 359 * 360 * When a user task is created from a kthread, childregs will 361 * be initialized by start_thread() or start_compat_thread(). 362 */ 363 memset(childregs, 0, sizeof(struct pt_regs)); 364 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT; 365 366 p->thread.cpu_context.x19 = stack_start; 367 p->thread.cpu_context.x20 = stk_sz; 368 } 369 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 370 p->thread.cpu_context.sp = (unsigned long)childregs; 371 /* 372 * For the benefit of the unwinder, set up childregs->stackframe 373 * as the final frame for the new task. 374 */ 375 p->thread.cpu_context.fp = (unsigned long)childregs->stackframe; 376 377 ptrace_hw_copy_thread(p); 378 379 return 0; 380 } 381 382 void tls_preserve_current_state(void) 383 { 384 *task_user_tls(current) = read_sysreg(tpidr_el0); 385 } 386 387 static void tls_thread_switch(struct task_struct *next) 388 { 389 tls_preserve_current_state(); 390 391 if (is_compat_thread(task_thread_info(next))) 392 write_sysreg(next->thread.uw.tp_value, tpidrro_el0); 393 else if (!arm64_kernel_unmapped_at_el0()) 394 write_sysreg(0, tpidrro_el0); 395 396 write_sysreg(*task_user_tls(next), tpidr_el0); 397 } 398 399 /* 400 * Force SSBS state on context-switch, since it may be lost after migrating 401 * from a CPU which treats the bit as RES0 in a heterogeneous system. 402 */ 403 static void ssbs_thread_switch(struct task_struct *next) 404 { 405 /* 406 * Nothing to do for kernel threads, but 'regs' may be junk 407 * (e.g. idle task) so check the flags and bail early. 408 */ 409 if (unlikely(next->flags & PF_KTHREAD)) 410 return; 411 412 /* 413 * If all CPUs implement the SSBS extension, then we just need to 414 * context-switch the PSTATE field. 415 */ 416 if (cpus_have_const_cap(ARM64_SSBS)) 417 return; 418 419 spectre_v4_enable_task_mitigation(next); 420 } 421 422 /* 423 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 424 * shadow copy so that we can restore this upon entry from userspace. 425 * 426 * This is *only* for exception entry from EL0, and is not valid until we 427 * __switch_to() a user task. 428 */ 429 DEFINE_PER_CPU(struct task_struct *, __entry_task); 430 431 static void entry_task_switch(struct task_struct *next) 432 { 433 __this_cpu_write(__entry_task, next); 434 } 435 436 /* 437 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT. 438 * Assuming the virtual counter is enabled at the beginning of times: 439 * 440 * - disable access when switching from a 64bit task to a 32bit task 441 * - enable access when switching from a 32bit task to a 64bit task 442 */ 443 static void erratum_1418040_thread_switch(struct task_struct *prev, 444 struct task_struct *next) 445 { 446 bool prev32, next32; 447 u64 val; 448 449 if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040)) 450 return; 451 452 prev32 = is_compat_thread(task_thread_info(prev)); 453 next32 = is_compat_thread(task_thread_info(next)); 454 455 if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040)) 456 return; 457 458 val = read_sysreg(cntkctl_el1); 459 460 if (!next32) 461 val |= ARCH_TIMER_USR_VCT_ACCESS_EN; 462 else 463 val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN; 464 465 write_sysreg(val, cntkctl_el1); 466 } 467 468 static void compat_thread_switch(struct task_struct *next) 469 { 470 if (!is_compat_thread(task_thread_info(next))) 471 return; 472 473 if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) 474 set_tsk_thread_flag(next, TIF_NOTIFY_RESUME); 475 } 476 477 static void update_sctlr_el1(u64 sctlr) 478 { 479 /* 480 * EnIA must not be cleared while in the kernel as this is necessary for 481 * in-kernel PAC. It will be cleared on kernel exit if needed. 482 */ 483 sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr); 484 485 /* ISB required for the kernel uaccess routines when setting TCF0. */ 486 isb(); 487 } 488 489 void set_task_sctlr_el1(u64 sctlr) 490 { 491 /* 492 * __switch_to() checks current->thread.sctlr as an 493 * optimisation. Disable preemption so that it does not see 494 * the variable update before the SCTLR_EL1 one. 495 */ 496 preempt_disable(); 497 current->thread.sctlr_user = sctlr; 498 update_sctlr_el1(sctlr); 499 preempt_enable(); 500 } 501 502 /* 503 * Thread switching. 504 */ 505 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev, 506 struct task_struct *next) 507 { 508 struct task_struct *last; 509 510 fpsimd_thread_switch(next); 511 tls_thread_switch(next); 512 hw_breakpoint_thread_switch(next); 513 contextidr_thread_switch(next); 514 entry_task_switch(next); 515 ssbs_thread_switch(next); 516 erratum_1418040_thread_switch(prev, next); 517 ptrauth_thread_switch_user(next); 518 compat_thread_switch(next); 519 520 /* 521 * Complete any pending TLB or cache maintenance on this CPU in case 522 * the thread migrates to a different CPU. 523 * This full barrier is also required by the membarrier system 524 * call. 525 */ 526 dsb(ish); 527 528 /* 529 * MTE thread switching must happen after the DSB above to ensure that 530 * any asynchronous tag check faults have been logged in the TFSR*_EL1 531 * registers. 532 */ 533 mte_thread_switch(next); 534 /* avoid expensive SCTLR_EL1 accesses if no change */ 535 if (prev->thread.sctlr_user != next->thread.sctlr_user) 536 update_sctlr_el1(next->thread.sctlr_user); 537 538 /* the actual thread switch */ 539 last = cpu_switch_to(prev, next); 540 541 return last; 542 } 543 544 unsigned long get_wchan(struct task_struct *p) 545 { 546 struct stackframe frame; 547 unsigned long stack_page, ret = 0; 548 int count = 0; 549 if (!p || p == current || task_is_running(p)) 550 return 0; 551 552 stack_page = (unsigned long)try_get_task_stack(p); 553 if (!stack_page) 554 return 0; 555 556 start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p)); 557 558 do { 559 if (unwind_frame(p, &frame)) 560 goto out; 561 if (!in_sched_functions(frame.pc)) { 562 ret = frame.pc; 563 goto out; 564 } 565 } while (count++ < 16); 566 567 out: 568 put_task_stack(p); 569 return ret; 570 } 571 572 unsigned long arch_align_stack(unsigned long sp) 573 { 574 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 575 sp -= get_random_int() & ~PAGE_MASK; 576 return sp & ~0xf; 577 } 578 579 /* 580 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 581 */ 582 void arch_setup_new_exec(void) 583 { 584 unsigned long mmflags = 0; 585 586 if (is_compat_task()) { 587 mmflags = MMCF_AARCH32; 588 if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) 589 set_tsk_thread_flag(current, TIF_NOTIFY_RESUME); 590 } 591 592 current->mm->context.flags = mmflags; 593 ptrauth_thread_init_user(); 594 mte_thread_init_user(); 595 596 if (task_spec_ssb_noexec(current)) { 597 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS, 598 PR_SPEC_ENABLE); 599 } 600 } 601 602 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 603 /* 604 * Control the relaxed ABI allowing tagged user addresses into the kernel. 605 */ 606 static unsigned int tagged_addr_disabled; 607 608 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg) 609 { 610 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE; 611 struct thread_info *ti = task_thread_info(task); 612 613 if (is_compat_thread(ti)) 614 return -EINVAL; 615 616 if (system_supports_mte()) 617 valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK; 618 619 if (arg & ~valid_mask) 620 return -EINVAL; 621 622 /* 623 * Do not allow the enabling of the tagged address ABI if globally 624 * disabled via sysctl abi.tagged_addr_disabled. 625 */ 626 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled) 627 return -EINVAL; 628 629 if (set_mte_ctrl(task, arg) != 0) 630 return -EINVAL; 631 632 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE); 633 634 return 0; 635 } 636 637 long get_tagged_addr_ctrl(struct task_struct *task) 638 { 639 long ret = 0; 640 struct thread_info *ti = task_thread_info(task); 641 642 if (is_compat_thread(ti)) 643 return -EINVAL; 644 645 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR)) 646 ret = PR_TAGGED_ADDR_ENABLE; 647 648 ret |= get_mte_ctrl(task); 649 650 return ret; 651 } 652 653 /* 654 * Global sysctl to disable the tagged user addresses support. This control 655 * only prevents the tagged address ABI enabling via prctl() and does not 656 * disable it for tasks that already opted in to the relaxed ABI. 657 */ 658 659 static struct ctl_table tagged_addr_sysctl_table[] = { 660 { 661 .procname = "tagged_addr_disabled", 662 .mode = 0644, 663 .data = &tagged_addr_disabled, 664 .maxlen = sizeof(int), 665 .proc_handler = proc_dointvec_minmax, 666 .extra1 = SYSCTL_ZERO, 667 .extra2 = SYSCTL_ONE, 668 }, 669 { } 670 }; 671 672 static int __init tagged_addr_init(void) 673 { 674 if (!register_sysctl("abi", tagged_addr_sysctl_table)) 675 return -EINVAL; 676 return 0; 677 } 678 679 core_initcall(tagged_addr_init); 680 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */ 681 682 #ifdef CONFIG_BINFMT_ELF 683 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state, 684 bool has_interp, bool is_interp) 685 { 686 /* 687 * For dynamically linked executables the interpreter is 688 * responsible for setting PROT_BTI on everything except 689 * itself. 690 */ 691 if (is_interp != has_interp) 692 return prot; 693 694 if (!(state->flags & ARM64_ELF_BTI)) 695 return prot; 696 697 if (prot & PROT_EXEC) 698 prot |= PROT_BTI; 699 700 return prot; 701 } 702 #endif 703