1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/process.c 4 * 5 * Original Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 10 #include <stdarg.h> 11 12 #include <linux/compat.h> 13 #include <linux/efi.h> 14 #include <linux/elf.h> 15 #include <linux/export.h> 16 #include <linux/sched.h> 17 #include <linux/sched/debug.h> 18 #include <linux/sched/task.h> 19 #include <linux/sched/task_stack.h> 20 #include <linux/kernel.h> 21 #include <linux/lockdep.h> 22 #include <linux/mman.h> 23 #include <linux/mm.h> 24 #include <linux/nospec.h> 25 #include <linux/stddef.h> 26 #include <linux/sysctl.h> 27 #include <linux/unistd.h> 28 #include <linux/user.h> 29 #include <linux/delay.h> 30 #include <linux/reboot.h> 31 #include <linux/interrupt.h> 32 #include <linux/init.h> 33 #include <linux/cpu.h> 34 #include <linux/elfcore.h> 35 #include <linux/pm.h> 36 #include <linux/tick.h> 37 #include <linux/utsname.h> 38 #include <linux/uaccess.h> 39 #include <linux/random.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/personality.h> 42 #include <linux/notifier.h> 43 #include <trace/events/power.h> 44 #include <linux/percpu.h> 45 #include <linux/thread_info.h> 46 #include <linux/prctl.h> 47 48 #include <asm/alternative.h> 49 #include <asm/arch_gicv3.h> 50 #include <asm/compat.h> 51 #include <asm/cpufeature.h> 52 #include <asm/cacheflush.h> 53 #include <asm/exec.h> 54 #include <asm/fpsimd.h> 55 #include <asm/mmu_context.h> 56 #include <asm/mte.h> 57 #include <asm/processor.h> 58 #include <asm/pointer_auth.h> 59 #include <asm/stacktrace.h> 60 #include <asm/switch_to.h> 61 #include <asm/system_misc.h> 62 63 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) 64 #include <linux/stackprotector.h> 65 unsigned long __stack_chk_guard __read_mostly; 66 EXPORT_SYMBOL(__stack_chk_guard); 67 #endif 68 69 /* 70 * Function pointers to optional machine specific functions 71 */ 72 void (*pm_power_off)(void); 73 EXPORT_SYMBOL_GPL(pm_power_off); 74 75 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd); 76 77 static void noinstr __cpu_do_idle(void) 78 { 79 dsb(sy); 80 wfi(); 81 } 82 83 static void noinstr __cpu_do_idle_irqprio(void) 84 { 85 unsigned long pmr; 86 unsigned long daif_bits; 87 88 daif_bits = read_sysreg(daif); 89 write_sysreg(daif_bits | PSR_I_BIT, daif); 90 91 /* 92 * Unmask PMR before going idle to make sure interrupts can 93 * be raised. 94 */ 95 pmr = gic_read_pmr(); 96 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 97 98 __cpu_do_idle(); 99 100 gic_write_pmr(pmr); 101 write_sysreg(daif_bits, daif); 102 } 103 104 /* 105 * cpu_do_idle() 106 * 107 * Idle the processor (wait for interrupt). 108 * 109 * If the CPU supports priority masking we must do additional work to 110 * ensure that interrupts are not masked at the PMR (because the core will 111 * not wake up if we block the wake up signal in the interrupt controller). 112 */ 113 void noinstr cpu_do_idle(void) 114 { 115 if (system_uses_irq_prio_masking()) 116 __cpu_do_idle_irqprio(); 117 else 118 __cpu_do_idle(); 119 } 120 121 /* 122 * This is our default idle handler. 123 */ 124 void noinstr arch_cpu_idle(void) 125 { 126 /* 127 * This should do all the clock switching and wait for interrupt 128 * tricks 129 */ 130 cpu_do_idle(); 131 raw_local_irq_enable(); 132 } 133 134 #ifdef CONFIG_HOTPLUG_CPU 135 void arch_cpu_idle_dead(void) 136 { 137 cpu_die(); 138 } 139 #endif 140 141 /* 142 * Called by kexec, immediately prior to machine_kexec(). 143 * 144 * This must completely disable all secondary CPUs; simply causing those CPUs 145 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 146 * kexec'd kernel to use any and all RAM as it sees fit, without having to 147 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 148 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this. 149 */ 150 void machine_shutdown(void) 151 { 152 smp_shutdown_nonboot_cpus(reboot_cpu); 153 } 154 155 /* 156 * Halting simply requires that the secondary CPUs stop performing any 157 * activity (executing tasks, handling interrupts). smp_send_stop() 158 * achieves this. 159 */ 160 void machine_halt(void) 161 { 162 local_irq_disable(); 163 smp_send_stop(); 164 while (1); 165 } 166 167 /* 168 * Power-off simply requires that the secondary CPUs stop performing any 169 * activity (executing tasks, handling interrupts). smp_send_stop() 170 * achieves this. When the system power is turned off, it will take all CPUs 171 * with it. 172 */ 173 void machine_power_off(void) 174 { 175 local_irq_disable(); 176 smp_send_stop(); 177 if (pm_power_off) 178 pm_power_off(); 179 } 180 181 /* 182 * Restart requires that the secondary CPUs stop performing any activity 183 * while the primary CPU resets the system. Systems with multiple CPUs must 184 * provide a HW restart implementation, to ensure that all CPUs reset at once. 185 * This is required so that any code running after reset on the primary CPU 186 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 187 * executing pre-reset code, and using RAM that the primary CPU's code wishes 188 * to use. Implementing such co-ordination would be essentially impossible. 189 */ 190 void machine_restart(char *cmd) 191 { 192 /* Disable interrupts first */ 193 local_irq_disable(); 194 smp_send_stop(); 195 196 /* 197 * UpdateCapsule() depends on the system being reset via 198 * ResetSystem(). 199 */ 200 if (efi_enabled(EFI_RUNTIME_SERVICES)) 201 efi_reboot(reboot_mode, NULL); 202 203 /* Now call the architecture specific reboot code. */ 204 if (arm_pm_restart) 205 arm_pm_restart(reboot_mode, cmd); 206 else 207 do_kernel_restart(cmd); 208 209 /* 210 * Whoops - the architecture was unable to reboot. 211 */ 212 printk("Reboot failed -- System halted\n"); 213 while (1); 214 } 215 216 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str 217 static const char *const btypes[] = { 218 bstr(NONE, "--"), 219 bstr( JC, "jc"), 220 bstr( C, "-c"), 221 bstr( J , "j-") 222 }; 223 #undef bstr 224 225 static void print_pstate(struct pt_regs *regs) 226 { 227 u64 pstate = regs->pstate; 228 229 if (compat_user_mode(regs)) { 230 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n", 231 pstate, 232 pstate & PSR_AA32_N_BIT ? 'N' : 'n', 233 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', 234 pstate & PSR_AA32_C_BIT ? 'C' : 'c', 235 pstate & PSR_AA32_V_BIT ? 'V' : 'v', 236 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', 237 pstate & PSR_AA32_T_BIT ? "T32" : "A32", 238 pstate & PSR_AA32_E_BIT ? "BE" : "LE", 239 pstate & PSR_AA32_A_BIT ? 'A' : 'a', 240 pstate & PSR_AA32_I_BIT ? 'I' : 'i', 241 pstate & PSR_AA32_F_BIT ? 'F' : 'f'); 242 } else { 243 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >> 244 PSR_BTYPE_SHIFT]; 245 246 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO BTYPE=%s)\n", 247 pstate, 248 pstate & PSR_N_BIT ? 'N' : 'n', 249 pstate & PSR_Z_BIT ? 'Z' : 'z', 250 pstate & PSR_C_BIT ? 'C' : 'c', 251 pstate & PSR_V_BIT ? 'V' : 'v', 252 pstate & PSR_D_BIT ? 'D' : 'd', 253 pstate & PSR_A_BIT ? 'A' : 'a', 254 pstate & PSR_I_BIT ? 'I' : 'i', 255 pstate & PSR_F_BIT ? 'F' : 'f', 256 pstate & PSR_PAN_BIT ? '+' : '-', 257 pstate & PSR_UAO_BIT ? '+' : '-', 258 pstate & PSR_TCO_BIT ? '+' : '-', 259 btype_str); 260 } 261 } 262 263 void __show_regs(struct pt_regs *regs) 264 { 265 int i, top_reg; 266 u64 lr, sp; 267 268 if (compat_user_mode(regs)) { 269 lr = regs->compat_lr; 270 sp = regs->compat_sp; 271 top_reg = 12; 272 } else { 273 lr = regs->regs[30]; 274 sp = regs->sp; 275 top_reg = 29; 276 } 277 278 show_regs_print_info(KERN_DEFAULT); 279 print_pstate(regs); 280 281 if (!user_mode(regs)) { 282 printk("pc : %pS\n", (void *)regs->pc); 283 printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr)); 284 } else { 285 printk("pc : %016llx\n", regs->pc); 286 printk("lr : %016llx\n", lr); 287 } 288 289 printk("sp : %016llx\n", sp); 290 291 if (system_uses_irq_prio_masking()) 292 printk("pmr_save: %08llx\n", regs->pmr_save); 293 294 i = top_reg; 295 296 while (i >= 0) { 297 printk("x%-2d: %016llx ", i, regs->regs[i]); 298 i--; 299 300 if (i % 2 == 0) { 301 pr_cont("x%-2d: %016llx ", i, regs->regs[i]); 302 i--; 303 } 304 305 pr_cont("\n"); 306 } 307 } 308 309 void show_regs(struct pt_regs *regs) 310 { 311 __show_regs(regs); 312 dump_backtrace(regs, NULL, KERN_DEFAULT); 313 } 314 315 static void tls_thread_flush(void) 316 { 317 write_sysreg(0, tpidr_el0); 318 319 if (is_compat_task()) { 320 current->thread.uw.tp_value = 0; 321 322 /* 323 * We need to ensure ordering between the shadow state and the 324 * hardware state, so that we don't corrupt the hardware state 325 * with a stale shadow state during context switch. 326 */ 327 barrier(); 328 write_sysreg(0, tpidrro_el0); 329 } 330 } 331 332 static void flush_tagged_addr_state(void) 333 { 334 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) 335 clear_thread_flag(TIF_TAGGED_ADDR); 336 } 337 338 void flush_thread(void) 339 { 340 fpsimd_flush_thread(); 341 tls_thread_flush(); 342 flush_ptrace_hw_breakpoint(current); 343 flush_tagged_addr_state(); 344 flush_mte_state(); 345 } 346 347 void release_thread(struct task_struct *dead_task) 348 { 349 } 350 351 void arch_release_task_struct(struct task_struct *tsk) 352 { 353 fpsimd_release_task(tsk); 354 } 355 356 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 357 { 358 if (current->mm) 359 fpsimd_preserve_current_state(); 360 *dst = *src; 361 362 /* We rely on the above assignment to initialize dst's thread_flags: */ 363 BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK)); 364 365 /* 366 * Detach src's sve_state (if any) from dst so that it does not 367 * get erroneously used or freed prematurely. dst's sve_state 368 * will be allocated on demand later on if dst uses SVE. 369 * For consistency, also clear TIF_SVE here: this could be done 370 * later in copy_process(), but to avoid tripping up future 371 * maintainers it is best not to leave TIF_SVE and sve_state in 372 * an inconsistent state, even temporarily. 373 */ 374 dst->thread.sve_state = NULL; 375 clear_tsk_thread_flag(dst, TIF_SVE); 376 377 /* clear any pending asynchronous tag fault raised by the parent */ 378 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT); 379 380 return 0; 381 } 382 383 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 384 385 int copy_thread(unsigned long clone_flags, unsigned long stack_start, 386 unsigned long stk_sz, struct task_struct *p, unsigned long tls) 387 { 388 struct pt_regs *childregs = task_pt_regs(p); 389 390 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 391 392 /* 393 * In case p was allocated the same task_struct pointer as some 394 * other recently-exited task, make sure p is disassociated from 395 * any cpu that may have run that now-exited task recently. 396 * Otherwise we could erroneously skip reloading the FPSIMD 397 * registers for p. 398 */ 399 fpsimd_flush_task_state(p); 400 401 ptrauth_thread_init_kernel(p); 402 403 if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) { 404 *childregs = *current_pt_regs(); 405 childregs->regs[0] = 0; 406 407 /* 408 * Read the current TLS pointer from tpidr_el0 as it may be 409 * out-of-sync with the saved value. 410 */ 411 *task_user_tls(p) = read_sysreg(tpidr_el0); 412 413 if (stack_start) { 414 if (is_compat_thread(task_thread_info(p))) 415 childregs->compat_sp = stack_start; 416 else 417 childregs->sp = stack_start; 418 } 419 420 /* 421 * If a TLS pointer was passed to clone, use it for the new 422 * thread. 423 */ 424 if (clone_flags & CLONE_SETTLS) 425 p->thread.uw.tp_value = tls; 426 } else { 427 /* 428 * A kthread has no context to ERET to, so ensure any buggy 429 * ERET is treated as an illegal exception return. 430 * 431 * When a user task is created from a kthread, childregs will 432 * be initialized by start_thread() or start_compat_thread(). 433 */ 434 memset(childregs, 0, sizeof(struct pt_regs)); 435 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT; 436 437 p->thread.cpu_context.x19 = stack_start; 438 p->thread.cpu_context.x20 = stk_sz; 439 } 440 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 441 p->thread.cpu_context.sp = (unsigned long)childregs; 442 443 ptrace_hw_copy_thread(p); 444 445 return 0; 446 } 447 448 void tls_preserve_current_state(void) 449 { 450 *task_user_tls(current) = read_sysreg(tpidr_el0); 451 } 452 453 static void tls_thread_switch(struct task_struct *next) 454 { 455 tls_preserve_current_state(); 456 457 if (is_compat_thread(task_thread_info(next))) 458 write_sysreg(next->thread.uw.tp_value, tpidrro_el0); 459 else if (!arm64_kernel_unmapped_at_el0()) 460 write_sysreg(0, tpidrro_el0); 461 462 write_sysreg(*task_user_tls(next), tpidr_el0); 463 } 464 465 /* 466 * Force SSBS state on context-switch, since it may be lost after migrating 467 * from a CPU which treats the bit as RES0 in a heterogeneous system. 468 */ 469 static void ssbs_thread_switch(struct task_struct *next) 470 { 471 /* 472 * Nothing to do for kernel threads, but 'regs' may be junk 473 * (e.g. idle task) so check the flags and bail early. 474 */ 475 if (unlikely(next->flags & PF_KTHREAD)) 476 return; 477 478 /* 479 * If all CPUs implement the SSBS extension, then we just need to 480 * context-switch the PSTATE field. 481 */ 482 if (cpus_have_const_cap(ARM64_SSBS)) 483 return; 484 485 spectre_v4_enable_task_mitigation(next); 486 } 487 488 /* 489 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 490 * shadow copy so that we can restore this upon entry from userspace. 491 * 492 * This is *only* for exception entry from EL0, and is not valid until we 493 * __switch_to() a user task. 494 */ 495 DEFINE_PER_CPU(struct task_struct *, __entry_task); 496 497 static void entry_task_switch(struct task_struct *next) 498 { 499 __this_cpu_write(__entry_task, next); 500 } 501 502 /* 503 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT. 504 * Assuming the virtual counter is enabled at the beginning of times: 505 * 506 * - disable access when switching from a 64bit task to a 32bit task 507 * - enable access when switching from a 32bit task to a 64bit task 508 */ 509 static void erratum_1418040_thread_switch(struct task_struct *prev, 510 struct task_struct *next) 511 { 512 bool prev32, next32; 513 u64 val; 514 515 if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040)) 516 return; 517 518 prev32 = is_compat_thread(task_thread_info(prev)); 519 next32 = is_compat_thread(task_thread_info(next)); 520 521 if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040)) 522 return; 523 524 val = read_sysreg(cntkctl_el1); 525 526 if (!next32) 527 val |= ARCH_TIMER_USR_VCT_ACCESS_EN; 528 else 529 val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN; 530 531 write_sysreg(val, cntkctl_el1); 532 } 533 534 /* 535 * Thread switching. 536 */ 537 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev, 538 struct task_struct *next) 539 { 540 struct task_struct *last; 541 542 fpsimd_thread_switch(next); 543 tls_thread_switch(next); 544 hw_breakpoint_thread_switch(next); 545 contextidr_thread_switch(next); 546 entry_task_switch(next); 547 ssbs_thread_switch(next); 548 erratum_1418040_thread_switch(prev, next); 549 550 /* 551 * Complete any pending TLB or cache maintenance on this CPU in case 552 * the thread migrates to a different CPU. 553 * This full barrier is also required by the membarrier system 554 * call. 555 */ 556 dsb(ish); 557 558 /* 559 * MTE thread switching must happen after the DSB above to ensure that 560 * any asynchronous tag check faults have been logged in the TFSR*_EL1 561 * registers. 562 */ 563 mte_thread_switch(next); 564 565 /* the actual thread switch */ 566 last = cpu_switch_to(prev, next); 567 568 return last; 569 } 570 571 unsigned long get_wchan(struct task_struct *p) 572 { 573 struct stackframe frame; 574 unsigned long stack_page, ret = 0; 575 int count = 0; 576 if (!p || p == current || p->state == TASK_RUNNING) 577 return 0; 578 579 stack_page = (unsigned long)try_get_task_stack(p); 580 if (!stack_page) 581 return 0; 582 583 start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p)); 584 585 do { 586 if (unwind_frame(p, &frame)) 587 goto out; 588 if (!in_sched_functions(frame.pc)) { 589 ret = frame.pc; 590 goto out; 591 } 592 } while (count++ < 16); 593 594 out: 595 put_task_stack(p); 596 return ret; 597 } 598 599 unsigned long arch_align_stack(unsigned long sp) 600 { 601 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 602 sp -= get_random_int() & ~PAGE_MASK; 603 return sp & ~0xf; 604 } 605 606 /* 607 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 608 */ 609 void arch_setup_new_exec(void) 610 { 611 current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0; 612 613 ptrauth_thread_init_user(current); 614 615 if (task_spec_ssb_noexec(current)) { 616 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS, 617 PR_SPEC_ENABLE); 618 } 619 } 620 621 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 622 /* 623 * Control the relaxed ABI allowing tagged user addresses into the kernel. 624 */ 625 static unsigned int tagged_addr_disabled; 626 627 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg) 628 { 629 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE; 630 struct thread_info *ti = task_thread_info(task); 631 632 if (is_compat_thread(ti)) 633 return -EINVAL; 634 635 if (system_supports_mte()) 636 valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK; 637 638 if (arg & ~valid_mask) 639 return -EINVAL; 640 641 /* 642 * Do not allow the enabling of the tagged address ABI if globally 643 * disabled via sysctl abi.tagged_addr_disabled. 644 */ 645 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled) 646 return -EINVAL; 647 648 if (set_mte_ctrl(task, arg) != 0) 649 return -EINVAL; 650 651 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE); 652 653 return 0; 654 } 655 656 long get_tagged_addr_ctrl(struct task_struct *task) 657 { 658 long ret = 0; 659 struct thread_info *ti = task_thread_info(task); 660 661 if (is_compat_thread(ti)) 662 return -EINVAL; 663 664 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR)) 665 ret = PR_TAGGED_ADDR_ENABLE; 666 667 ret |= get_mte_ctrl(task); 668 669 return ret; 670 } 671 672 /* 673 * Global sysctl to disable the tagged user addresses support. This control 674 * only prevents the tagged address ABI enabling via prctl() and does not 675 * disable it for tasks that already opted in to the relaxed ABI. 676 */ 677 678 static struct ctl_table tagged_addr_sysctl_table[] = { 679 { 680 .procname = "tagged_addr_disabled", 681 .mode = 0644, 682 .data = &tagged_addr_disabled, 683 .maxlen = sizeof(int), 684 .proc_handler = proc_dointvec_minmax, 685 .extra1 = SYSCTL_ZERO, 686 .extra2 = SYSCTL_ONE, 687 }, 688 { } 689 }; 690 691 static int __init tagged_addr_init(void) 692 { 693 if (!register_sysctl("abi", tagged_addr_sysctl_table)) 694 return -EINVAL; 695 return 0; 696 } 697 698 core_initcall(tagged_addr_init); 699 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */ 700 701 asmlinkage void __sched arm64_preempt_schedule_irq(void) 702 { 703 lockdep_assert_irqs_disabled(); 704 705 /* 706 * Preempting a task from an IRQ means we leave copies of PSTATE 707 * on the stack. cpufeature's enable calls may modify PSTATE, but 708 * resuming one of these preempted tasks would undo those changes. 709 * 710 * Only allow a task to be preempted once cpufeatures have been 711 * enabled. 712 */ 713 if (system_capabilities_finalized()) 714 preempt_schedule_irq(); 715 } 716 717 #ifdef CONFIG_BINFMT_ELF 718 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state, 719 bool has_interp, bool is_interp) 720 { 721 /* 722 * For dynamically linked executables the interpreter is 723 * responsible for setting PROT_BTI on everything except 724 * itself. 725 */ 726 if (is_interp != has_interp) 727 return prot; 728 729 if (!(state->flags & ARM64_ELF_BTI)) 730 return prot; 731 732 if (prot & PROT_EXEC) 733 prot |= PROT_BTI; 734 735 return prot; 736 } 737 #endif 738