xref: /linux/arch/arm64/kernel/process.c (revision 32daa5d7899e03433429bedf9e20d7963179703a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/process.c
4  *
5  * Original Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <stdarg.h>
11 
12 #include <linux/compat.h>
13 #include <linux/efi.h>
14 #include <linux/elf.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/sched/debug.h>
18 #include <linux/sched/task.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/kernel.h>
21 #include <linux/lockdep.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/nospec.h>
25 #include <linux/stddef.h>
26 #include <linux/sysctl.h>
27 #include <linux/unistd.h>
28 #include <linux/user.h>
29 #include <linux/delay.h>
30 #include <linux/reboot.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/cpu.h>
34 #include <linux/elfcore.h>
35 #include <linux/pm.h>
36 #include <linux/tick.h>
37 #include <linux/utsname.h>
38 #include <linux/uaccess.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/personality.h>
42 #include <linux/notifier.h>
43 #include <trace/events/power.h>
44 #include <linux/percpu.h>
45 #include <linux/thread_info.h>
46 #include <linux/prctl.h>
47 
48 #include <asm/alternative.h>
49 #include <asm/arch_gicv3.h>
50 #include <asm/compat.h>
51 #include <asm/cpufeature.h>
52 #include <asm/cacheflush.h>
53 #include <asm/exec.h>
54 #include <asm/fpsimd.h>
55 #include <asm/mmu_context.h>
56 #include <asm/mte.h>
57 #include <asm/processor.h>
58 #include <asm/pointer_auth.h>
59 #include <asm/stacktrace.h>
60 #include <asm/switch_to.h>
61 #include <asm/system_misc.h>
62 
63 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
64 #include <linux/stackprotector.h>
65 unsigned long __stack_chk_guard __read_mostly;
66 EXPORT_SYMBOL(__stack_chk_guard);
67 #endif
68 
69 /*
70  * Function pointers to optional machine specific functions
71  */
72 void (*pm_power_off)(void);
73 EXPORT_SYMBOL_GPL(pm_power_off);
74 
75 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
76 
77 static void noinstr __cpu_do_idle(void)
78 {
79 	dsb(sy);
80 	wfi();
81 }
82 
83 static void noinstr __cpu_do_idle_irqprio(void)
84 {
85 	unsigned long pmr;
86 	unsigned long daif_bits;
87 
88 	daif_bits = read_sysreg(daif);
89 	write_sysreg(daif_bits | PSR_I_BIT, daif);
90 
91 	/*
92 	 * Unmask PMR before going idle to make sure interrupts can
93 	 * be raised.
94 	 */
95 	pmr = gic_read_pmr();
96 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
97 
98 	__cpu_do_idle();
99 
100 	gic_write_pmr(pmr);
101 	write_sysreg(daif_bits, daif);
102 }
103 
104 /*
105  *	cpu_do_idle()
106  *
107  *	Idle the processor (wait for interrupt).
108  *
109  *	If the CPU supports priority masking we must do additional work to
110  *	ensure that interrupts are not masked at the PMR (because the core will
111  *	not wake up if we block the wake up signal in the interrupt controller).
112  */
113 void noinstr cpu_do_idle(void)
114 {
115 	if (system_uses_irq_prio_masking())
116 		__cpu_do_idle_irqprio();
117 	else
118 		__cpu_do_idle();
119 }
120 
121 /*
122  * This is our default idle handler.
123  */
124 void noinstr arch_cpu_idle(void)
125 {
126 	/*
127 	 * This should do all the clock switching and wait for interrupt
128 	 * tricks
129 	 */
130 	cpu_do_idle();
131 	raw_local_irq_enable();
132 }
133 
134 #ifdef CONFIG_HOTPLUG_CPU
135 void arch_cpu_idle_dead(void)
136 {
137        cpu_die();
138 }
139 #endif
140 
141 /*
142  * Called by kexec, immediately prior to machine_kexec().
143  *
144  * This must completely disable all secondary CPUs; simply causing those CPUs
145  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
146  * kexec'd kernel to use any and all RAM as it sees fit, without having to
147  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
148  * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
149  */
150 void machine_shutdown(void)
151 {
152 	smp_shutdown_nonboot_cpus(reboot_cpu);
153 }
154 
155 /*
156  * Halting simply requires that the secondary CPUs stop performing any
157  * activity (executing tasks, handling interrupts). smp_send_stop()
158  * achieves this.
159  */
160 void machine_halt(void)
161 {
162 	local_irq_disable();
163 	smp_send_stop();
164 	while (1);
165 }
166 
167 /*
168  * Power-off simply requires that the secondary CPUs stop performing any
169  * activity (executing tasks, handling interrupts). smp_send_stop()
170  * achieves this. When the system power is turned off, it will take all CPUs
171  * with it.
172  */
173 void machine_power_off(void)
174 {
175 	local_irq_disable();
176 	smp_send_stop();
177 	if (pm_power_off)
178 		pm_power_off();
179 }
180 
181 /*
182  * Restart requires that the secondary CPUs stop performing any activity
183  * while the primary CPU resets the system. Systems with multiple CPUs must
184  * provide a HW restart implementation, to ensure that all CPUs reset at once.
185  * This is required so that any code running after reset on the primary CPU
186  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
187  * executing pre-reset code, and using RAM that the primary CPU's code wishes
188  * to use. Implementing such co-ordination would be essentially impossible.
189  */
190 void machine_restart(char *cmd)
191 {
192 	/* Disable interrupts first */
193 	local_irq_disable();
194 	smp_send_stop();
195 
196 	/*
197 	 * UpdateCapsule() depends on the system being reset via
198 	 * ResetSystem().
199 	 */
200 	if (efi_enabled(EFI_RUNTIME_SERVICES))
201 		efi_reboot(reboot_mode, NULL);
202 
203 	/* Now call the architecture specific reboot code. */
204 	if (arm_pm_restart)
205 		arm_pm_restart(reboot_mode, cmd);
206 	else
207 		do_kernel_restart(cmd);
208 
209 	/*
210 	 * Whoops - the architecture was unable to reboot.
211 	 */
212 	printk("Reboot failed -- System halted\n");
213 	while (1);
214 }
215 
216 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
217 static const char *const btypes[] = {
218 	bstr(NONE, "--"),
219 	bstr(  JC, "jc"),
220 	bstr(   C, "-c"),
221 	bstr(  J , "j-")
222 };
223 #undef bstr
224 
225 static void print_pstate(struct pt_regs *regs)
226 {
227 	u64 pstate = regs->pstate;
228 
229 	if (compat_user_mode(regs)) {
230 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
231 			pstate,
232 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
233 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
234 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
235 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
236 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
237 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
238 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
239 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
240 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
241 			pstate & PSR_AA32_F_BIT ? 'F' : 'f');
242 	} else {
243 		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
244 					       PSR_BTYPE_SHIFT];
245 
246 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO BTYPE=%s)\n",
247 			pstate,
248 			pstate & PSR_N_BIT ? 'N' : 'n',
249 			pstate & PSR_Z_BIT ? 'Z' : 'z',
250 			pstate & PSR_C_BIT ? 'C' : 'c',
251 			pstate & PSR_V_BIT ? 'V' : 'v',
252 			pstate & PSR_D_BIT ? 'D' : 'd',
253 			pstate & PSR_A_BIT ? 'A' : 'a',
254 			pstate & PSR_I_BIT ? 'I' : 'i',
255 			pstate & PSR_F_BIT ? 'F' : 'f',
256 			pstate & PSR_PAN_BIT ? '+' : '-',
257 			pstate & PSR_UAO_BIT ? '+' : '-',
258 			pstate & PSR_TCO_BIT ? '+' : '-',
259 			btype_str);
260 	}
261 }
262 
263 void __show_regs(struct pt_regs *regs)
264 {
265 	int i, top_reg;
266 	u64 lr, sp;
267 
268 	if (compat_user_mode(regs)) {
269 		lr = regs->compat_lr;
270 		sp = regs->compat_sp;
271 		top_reg = 12;
272 	} else {
273 		lr = regs->regs[30];
274 		sp = regs->sp;
275 		top_reg = 29;
276 	}
277 
278 	show_regs_print_info(KERN_DEFAULT);
279 	print_pstate(regs);
280 
281 	if (!user_mode(regs)) {
282 		printk("pc : %pS\n", (void *)regs->pc);
283 		printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
284 	} else {
285 		printk("pc : %016llx\n", regs->pc);
286 		printk("lr : %016llx\n", lr);
287 	}
288 
289 	printk("sp : %016llx\n", sp);
290 
291 	if (system_uses_irq_prio_masking())
292 		printk("pmr_save: %08llx\n", regs->pmr_save);
293 
294 	i = top_reg;
295 
296 	while (i >= 0) {
297 		printk("x%-2d: %016llx ", i, regs->regs[i]);
298 		i--;
299 
300 		if (i % 2 == 0) {
301 			pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
302 			i--;
303 		}
304 
305 		pr_cont("\n");
306 	}
307 }
308 
309 void show_regs(struct pt_regs *regs)
310 {
311 	__show_regs(regs);
312 	dump_backtrace(regs, NULL, KERN_DEFAULT);
313 }
314 
315 static void tls_thread_flush(void)
316 {
317 	write_sysreg(0, tpidr_el0);
318 
319 	if (is_compat_task()) {
320 		current->thread.uw.tp_value = 0;
321 
322 		/*
323 		 * We need to ensure ordering between the shadow state and the
324 		 * hardware state, so that we don't corrupt the hardware state
325 		 * with a stale shadow state during context switch.
326 		 */
327 		barrier();
328 		write_sysreg(0, tpidrro_el0);
329 	}
330 }
331 
332 static void flush_tagged_addr_state(void)
333 {
334 	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
335 		clear_thread_flag(TIF_TAGGED_ADDR);
336 }
337 
338 void flush_thread(void)
339 {
340 	fpsimd_flush_thread();
341 	tls_thread_flush();
342 	flush_ptrace_hw_breakpoint(current);
343 	flush_tagged_addr_state();
344 	flush_mte_state();
345 }
346 
347 void release_thread(struct task_struct *dead_task)
348 {
349 }
350 
351 void arch_release_task_struct(struct task_struct *tsk)
352 {
353 	fpsimd_release_task(tsk);
354 }
355 
356 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
357 {
358 	if (current->mm)
359 		fpsimd_preserve_current_state();
360 	*dst = *src;
361 
362 	/* We rely on the above assignment to initialize dst's thread_flags: */
363 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
364 
365 	/*
366 	 * Detach src's sve_state (if any) from dst so that it does not
367 	 * get erroneously used or freed prematurely.  dst's sve_state
368 	 * will be allocated on demand later on if dst uses SVE.
369 	 * For consistency, also clear TIF_SVE here: this could be done
370 	 * later in copy_process(), but to avoid tripping up future
371 	 * maintainers it is best not to leave TIF_SVE and sve_state in
372 	 * an inconsistent state, even temporarily.
373 	 */
374 	dst->thread.sve_state = NULL;
375 	clear_tsk_thread_flag(dst, TIF_SVE);
376 
377 	/* clear any pending asynchronous tag fault raised by the parent */
378 	clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
379 
380 	return 0;
381 }
382 
383 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
384 
385 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
386 		unsigned long stk_sz, struct task_struct *p, unsigned long tls)
387 {
388 	struct pt_regs *childregs = task_pt_regs(p);
389 
390 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
391 
392 	/*
393 	 * In case p was allocated the same task_struct pointer as some
394 	 * other recently-exited task, make sure p is disassociated from
395 	 * any cpu that may have run that now-exited task recently.
396 	 * Otherwise we could erroneously skip reloading the FPSIMD
397 	 * registers for p.
398 	 */
399 	fpsimd_flush_task_state(p);
400 
401 	ptrauth_thread_init_kernel(p);
402 
403 	if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) {
404 		*childregs = *current_pt_regs();
405 		childregs->regs[0] = 0;
406 
407 		/*
408 		 * Read the current TLS pointer from tpidr_el0 as it may be
409 		 * out-of-sync with the saved value.
410 		 */
411 		*task_user_tls(p) = read_sysreg(tpidr_el0);
412 
413 		if (stack_start) {
414 			if (is_compat_thread(task_thread_info(p)))
415 				childregs->compat_sp = stack_start;
416 			else
417 				childregs->sp = stack_start;
418 		}
419 
420 		/*
421 		 * If a TLS pointer was passed to clone, use it for the new
422 		 * thread.
423 		 */
424 		if (clone_flags & CLONE_SETTLS)
425 			p->thread.uw.tp_value = tls;
426 	} else {
427 		/*
428 		 * A kthread has no context to ERET to, so ensure any buggy
429 		 * ERET is treated as an illegal exception return.
430 		 *
431 		 * When a user task is created from a kthread, childregs will
432 		 * be initialized by start_thread() or start_compat_thread().
433 		 */
434 		memset(childregs, 0, sizeof(struct pt_regs));
435 		childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
436 
437 		p->thread.cpu_context.x19 = stack_start;
438 		p->thread.cpu_context.x20 = stk_sz;
439 	}
440 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
441 	p->thread.cpu_context.sp = (unsigned long)childregs;
442 
443 	ptrace_hw_copy_thread(p);
444 
445 	return 0;
446 }
447 
448 void tls_preserve_current_state(void)
449 {
450 	*task_user_tls(current) = read_sysreg(tpidr_el0);
451 }
452 
453 static void tls_thread_switch(struct task_struct *next)
454 {
455 	tls_preserve_current_state();
456 
457 	if (is_compat_thread(task_thread_info(next)))
458 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
459 	else if (!arm64_kernel_unmapped_at_el0())
460 		write_sysreg(0, tpidrro_el0);
461 
462 	write_sysreg(*task_user_tls(next), tpidr_el0);
463 }
464 
465 /*
466  * Force SSBS state on context-switch, since it may be lost after migrating
467  * from a CPU which treats the bit as RES0 in a heterogeneous system.
468  */
469 static void ssbs_thread_switch(struct task_struct *next)
470 {
471 	/*
472 	 * Nothing to do for kernel threads, but 'regs' may be junk
473 	 * (e.g. idle task) so check the flags and bail early.
474 	 */
475 	if (unlikely(next->flags & PF_KTHREAD))
476 		return;
477 
478 	/*
479 	 * If all CPUs implement the SSBS extension, then we just need to
480 	 * context-switch the PSTATE field.
481 	 */
482 	if (cpus_have_const_cap(ARM64_SSBS))
483 		return;
484 
485 	spectre_v4_enable_task_mitigation(next);
486 }
487 
488 /*
489  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
490  * shadow copy so that we can restore this upon entry from userspace.
491  *
492  * This is *only* for exception entry from EL0, and is not valid until we
493  * __switch_to() a user task.
494  */
495 DEFINE_PER_CPU(struct task_struct *, __entry_task);
496 
497 static void entry_task_switch(struct task_struct *next)
498 {
499 	__this_cpu_write(__entry_task, next);
500 }
501 
502 /*
503  * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
504  * Assuming the virtual counter is enabled at the beginning of times:
505  *
506  * - disable access when switching from a 64bit task to a 32bit task
507  * - enable access when switching from a 32bit task to a 64bit task
508  */
509 static void erratum_1418040_thread_switch(struct task_struct *prev,
510 					  struct task_struct *next)
511 {
512 	bool prev32, next32;
513 	u64 val;
514 
515 	if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040))
516 		return;
517 
518 	prev32 = is_compat_thread(task_thread_info(prev));
519 	next32 = is_compat_thread(task_thread_info(next));
520 
521 	if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
522 		return;
523 
524 	val = read_sysreg(cntkctl_el1);
525 
526 	if (!next32)
527 		val |= ARCH_TIMER_USR_VCT_ACCESS_EN;
528 	else
529 		val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
530 
531 	write_sysreg(val, cntkctl_el1);
532 }
533 
534 /*
535  * Thread switching.
536  */
537 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
538 				struct task_struct *next)
539 {
540 	struct task_struct *last;
541 
542 	fpsimd_thread_switch(next);
543 	tls_thread_switch(next);
544 	hw_breakpoint_thread_switch(next);
545 	contextidr_thread_switch(next);
546 	entry_task_switch(next);
547 	ssbs_thread_switch(next);
548 	erratum_1418040_thread_switch(prev, next);
549 
550 	/*
551 	 * Complete any pending TLB or cache maintenance on this CPU in case
552 	 * the thread migrates to a different CPU.
553 	 * This full barrier is also required by the membarrier system
554 	 * call.
555 	 */
556 	dsb(ish);
557 
558 	/*
559 	 * MTE thread switching must happen after the DSB above to ensure that
560 	 * any asynchronous tag check faults have been logged in the TFSR*_EL1
561 	 * registers.
562 	 */
563 	mte_thread_switch(next);
564 
565 	/* the actual thread switch */
566 	last = cpu_switch_to(prev, next);
567 
568 	return last;
569 }
570 
571 unsigned long get_wchan(struct task_struct *p)
572 {
573 	struct stackframe frame;
574 	unsigned long stack_page, ret = 0;
575 	int count = 0;
576 	if (!p || p == current || p->state == TASK_RUNNING)
577 		return 0;
578 
579 	stack_page = (unsigned long)try_get_task_stack(p);
580 	if (!stack_page)
581 		return 0;
582 
583 	start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
584 
585 	do {
586 		if (unwind_frame(p, &frame))
587 			goto out;
588 		if (!in_sched_functions(frame.pc)) {
589 			ret = frame.pc;
590 			goto out;
591 		}
592 	} while (count++ < 16);
593 
594 out:
595 	put_task_stack(p);
596 	return ret;
597 }
598 
599 unsigned long arch_align_stack(unsigned long sp)
600 {
601 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
602 		sp -= get_random_int() & ~PAGE_MASK;
603 	return sp & ~0xf;
604 }
605 
606 /*
607  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
608  */
609 void arch_setup_new_exec(void)
610 {
611 	current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
612 
613 	ptrauth_thread_init_user(current);
614 
615 	if (task_spec_ssb_noexec(current)) {
616 		arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
617 					 PR_SPEC_ENABLE);
618 	}
619 }
620 
621 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
622 /*
623  * Control the relaxed ABI allowing tagged user addresses into the kernel.
624  */
625 static unsigned int tagged_addr_disabled;
626 
627 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
628 {
629 	unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
630 	struct thread_info *ti = task_thread_info(task);
631 
632 	if (is_compat_thread(ti))
633 		return -EINVAL;
634 
635 	if (system_supports_mte())
636 		valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK;
637 
638 	if (arg & ~valid_mask)
639 		return -EINVAL;
640 
641 	/*
642 	 * Do not allow the enabling of the tagged address ABI if globally
643 	 * disabled via sysctl abi.tagged_addr_disabled.
644 	 */
645 	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
646 		return -EINVAL;
647 
648 	if (set_mte_ctrl(task, arg) != 0)
649 		return -EINVAL;
650 
651 	update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
652 
653 	return 0;
654 }
655 
656 long get_tagged_addr_ctrl(struct task_struct *task)
657 {
658 	long ret = 0;
659 	struct thread_info *ti = task_thread_info(task);
660 
661 	if (is_compat_thread(ti))
662 		return -EINVAL;
663 
664 	if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
665 		ret = PR_TAGGED_ADDR_ENABLE;
666 
667 	ret |= get_mte_ctrl(task);
668 
669 	return ret;
670 }
671 
672 /*
673  * Global sysctl to disable the tagged user addresses support. This control
674  * only prevents the tagged address ABI enabling via prctl() and does not
675  * disable it for tasks that already opted in to the relaxed ABI.
676  */
677 
678 static struct ctl_table tagged_addr_sysctl_table[] = {
679 	{
680 		.procname	= "tagged_addr_disabled",
681 		.mode		= 0644,
682 		.data		= &tagged_addr_disabled,
683 		.maxlen		= sizeof(int),
684 		.proc_handler	= proc_dointvec_minmax,
685 		.extra1		= SYSCTL_ZERO,
686 		.extra2		= SYSCTL_ONE,
687 	},
688 	{ }
689 };
690 
691 static int __init tagged_addr_init(void)
692 {
693 	if (!register_sysctl("abi", tagged_addr_sysctl_table))
694 		return -EINVAL;
695 	return 0;
696 }
697 
698 core_initcall(tagged_addr_init);
699 #endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
700 
701 asmlinkage void __sched arm64_preempt_schedule_irq(void)
702 {
703 	lockdep_assert_irqs_disabled();
704 
705 	/*
706 	 * Preempting a task from an IRQ means we leave copies of PSTATE
707 	 * on the stack. cpufeature's enable calls may modify PSTATE, but
708 	 * resuming one of these preempted tasks would undo those changes.
709 	 *
710 	 * Only allow a task to be preempted once cpufeatures have been
711 	 * enabled.
712 	 */
713 	if (system_capabilities_finalized())
714 		preempt_schedule_irq();
715 }
716 
717 #ifdef CONFIG_BINFMT_ELF
718 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
719 			 bool has_interp, bool is_interp)
720 {
721 	/*
722 	 * For dynamically linked executables the interpreter is
723 	 * responsible for setting PROT_BTI on everything except
724 	 * itself.
725 	 */
726 	if (is_interp != has_interp)
727 		return prot;
728 
729 	if (!(state->flags & ARM64_ELF_BTI))
730 		return prot;
731 
732 	if (prot & PROT_EXEC)
733 		prot |= PROT_BTI;
734 
735 	return prot;
736 }
737 #endif
738