1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/process.c 4 * 5 * Original Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 10 #include <stdarg.h> 11 12 #include <linux/compat.h> 13 #include <linux/efi.h> 14 #include <linux/elf.h> 15 #include <linux/export.h> 16 #include <linux/sched.h> 17 #include <linux/sched/debug.h> 18 #include <linux/sched/task.h> 19 #include <linux/sched/task_stack.h> 20 #include <linux/kernel.h> 21 #include <linux/lockdep.h> 22 #include <linux/mman.h> 23 #include <linux/mm.h> 24 #include <linux/stddef.h> 25 #include <linux/sysctl.h> 26 #include <linux/unistd.h> 27 #include <linux/user.h> 28 #include <linux/delay.h> 29 #include <linux/reboot.h> 30 #include <linux/interrupt.h> 31 #include <linux/init.h> 32 #include <linux/cpu.h> 33 #include <linux/elfcore.h> 34 #include <linux/pm.h> 35 #include <linux/tick.h> 36 #include <linux/utsname.h> 37 #include <linux/uaccess.h> 38 #include <linux/random.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/personality.h> 41 #include <linux/notifier.h> 42 #include <trace/events/power.h> 43 #include <linux/percpu.h> 44 #include <linux/thread_info.h> 45 #include <linux/prctl.h> 46 47 #include <asm/alternative.h> 48 #include <asm/arch_gicv3.h> 49 #include <asm/compat.h> 50 #include <asm/cpufeature.h> 51 #include <asm/cacheflush.h> 52 #include <asm/exec.h> 53 #include <asm/fpsimd.h> 54 #include <asm/mmu_context.h> 55 #include <asm/processor.h> 56 #include <asm/pointer_auth.h> 57 #include <asm/stacktrace.h> 58 59 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) 60 #include <linux/stackprotector.h> 61 unsigned long __stack_chk_guard __read_mostly; 62 EXPORT_SYMBOL(__stack_chk_guard); 63 #endif 64 65 /* 66 * Function pointers to optional machine specific functions 67 */ 68 void (*pm_power_off)(void); 69 EXPORT_SYMBOL_GPL(pm_power_off); 70 71 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd); 72 73 static void __cpu_do_idle(void) 74 { 75 dsb(sy); 76 wfi(); 77 } 78 79 static void __cpu_do_idle_irqprio(void) 80 { 81 unsigned long pmr; 82 unsigned long daif_bits; 83 84 daif_bits = read_sysreg(daif); 85 write_sysreg(daif_bits | PSR_I_BIT, daif); 86 87 /* 88 * Unmask PMR before going idle to make sure interrupts can 89 * be raised. 90 */ 91 pmr = gic_read_pmr(); 92 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 93 94 __cpu_do_idle(); 95 96 gic_write_pmr(pmr); 97 write_sysreg(daif_bits, daif); 98 } 99 100 /* 101 * cpu_do_idle() 102 * 103 * Idle the processor (wait for interrupt). 104 * 105 * If the CPU supports priority masking we must do additional work to 106 * ensure that interrupts are not masked at the PMR (because the core will 107 * not wake up if we block the wake up signal in the interrupt controller). 108 */ 109 void cpu_do_idle(void) 110 { 111 if (system_uses_irq_prio_masking()) 112 __cpu_do_idle_irqprio(); 113 else 114 __cpu_do_idle(); 115 } 116 117 /* 118 * This is our default idle handler. 119 */ 120 void arch_cpu_idle(void) 121 { 122 /* 123 * This should do all the clock switching and wait for interrupt 124 * tricks 125 */ 126 cpu_do_idle(); 127 local_irq_enable(); 128 } 129 130 #ifdef CONFIG_HOTPLUG_CPU 131 void arch_cpu_idle_dead(void) 132 { 133 cpu_die(); 134 } 135 #endif 136 137 /* 138 * Called by kexec, immediately prior to machine_kexec(). 139 * 140 * This must completely disable all secondary CPUs; simply causing those CPUs 141 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 142 * kexec'd kernel to use any and all RAM as it sees fit, without having to 143 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 144 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this. 145 */ 146 void machine_shutdown(void) 147 { 148 smp_shutdown_nonboot_cpus(reboot_cpu); 149 } 150 151 /* 152 * Halting simply requires that the secondary CPUs stop performing any 153 * activity (executing tasks, handling interrupts). smp_send_stop() 154 * achieves this. 155 */ 156 void machine_halt(void) 157 { 158 local_irq_disable(); 159 smp_send_stop(); 160 while (1); 161 } 162 163 /* 164 * Power-off simply requires that the secondary CPUs stop performing any 165 * activity (executing tasks, handling interrupts). smp_send_stop() 166 * achieves this. When the system power is turned off, it will take all CPUs 167 * with it. 168 */ 169 void machine_power_off(void) 170 { 171 local_irq_disable(); 172 smp_send_stop(); 173 if (pm_power_off) 174 pm_power_off(); 175 } 176 177 /* 178 * Restart requires that the secondary CPUs stop performing any activity 179 * while the primary CPU resets the system. Systems with multiple CPUs must 180 * provide a HW restart implementation, to ensure that all CPUs reset at once. 181 * This is required so that any code running after reset on the primary CPU 182 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 183 * executing pre-reset code, and using RAM that the primary CPU's code wishes 184 * to use. Implementing such co-ordination would be essentially impossible. 185 */ 186 void machine_restart(char *cmd) 187 { 188 /* Disable interrupts first */ 189 local_irq_disable(); 190 smp_send_stop(); 191 192 /* 193 * UpdateCapsule() depends on the system being reset via 194 * ResetSystem(). 195 */ 196 if (efi_enabled(EFI_RUNTIME_SERVICES)) 197 efi_reboot(reboot_mode, NULL); 198 199 /* Now call the architecture specific reboot code. */ 200 if (arm_pm_restart) 201 arm_pm_restart(reboot_mode, cmd); 202 else 203 do_kernel_restart(cmd); 204 205 /* 206 * Whoops - the architecture was unable to reboot. 207 */ 208 printk("Reboot failed -- System halted\n"); 209 while (1); 210 } 211 212 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str 213 static const char *const btypes[] = { 214 bstr(NONE, "--"), 215 bstr( JC, "jc"), 216 bstr( C, "-c"), 217 bstr( J , "j-") 218 }; 219 #undef bstr 220 221 static void print_pstate(struct pt_regs *regs) 222 { 223 u64 pstate = regs->pstate; 224 225 if (compat_user_mode(regs)) { 226 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n", 227 pstate, 228 pstate & PSR_AA32_N_BIT ? 'N' : 'n', 229 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', 230 pstate & PSR_AA32_C_BIT ? 'C' : 'c', 231 pstate & PSR_AA32_V_BIT ? 'V' : 'v', 232 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', 233 pstate & PSR_AA32_T_BIT ? "T32" : "A32", 234 pstate & PSR_AA32_E_BIT ? "BE" : "LE", 235 pstate & PSR_AA32_A_BIT ? 'A' : 'a', 236 pstate & PSR_AA32_I_BIT ? 'I' : 'i', 237 pstate & PSR_AA32_F_BIT ? 'F' : 'f'); 238 } else { 239 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >> 240 PSR_BTYPE_SHIFT]; 241 242 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO BTYPE=%s)\n", 243 pstate, 244 pstate & PSR_N_BIT ? 'N' : 'n', 245 pstate & PSR_Z_BIT ? 'Z' : 'z', 246 pstate & PSR_C_BIT ? 'C' : 'c', 247 pstate & PSR_V_BIT ? 'V' : 'v', 248 pstate & PSR_D_BIT ? 'D' : 'd', 249 pstate & PSR_A_BIT ? 'A' : 'a', 250 pstate & PSR_I_BIT ? 'I' : 'i', 251 pstate & PSR_F_BIT ? 'F' : 'f', 252 pstate & PSR_PAN_BIT ? '+' : '-', 253 pstate & PSR_UAO_BIT ? '+' : '-', 254 btype_str); 255 } 256 } 257 258 void __show_regs(struct pt_regs *regs) 259 { 260 int i, top_reg; 261 u64 lr, sp; 262 263 if (compat_user_mode(regs)) { 264 lr = regs->compat_lr; 265 sp = regs->compat_sp; 266 top_reg = 12; 267 } else { 268 lr = regs->regs[30]; 269 sp = regs->sp; 270 top_reg = 29; 271 } 272 273 show_regs_print_info(KERN_DEFAULT); 274 print_pstate(regs); 275 276 if (!user_mode(regs)) { 277 printk("pc : %pS\n", (void *)regs->pc); 278 printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr)); 279 } else { 280 printk("pc : %016llx\n", regs->pc); 281 printk("lr : %016llx\n", lr); 282 } 283 284 printk("sp : %016llx\n", sp); 285 286 if (system_uses_irq_prio_masking()) 287 printk("pmr_save: %08llx\n", regs->pmr_save); 288 289 i = top_reg; 290 291 while (i >= 0) { 292 printk("x%-2d: %016llx ", i, regs->regs[i]); 293 i--; 294 295 if (i % 2 == 0) { 296 pr_cont("x%-2d: %016llx ", i, regs->regs[i]); 297 i--; 298 } 299 300 pr_cont("\n"); 301 } 302 } 303 304 void show_regs(struct pt_regs * regs) 305 { 306 __show_regs(regs); 307 dump_backtrace(regs, NULL, KERN_DEFAULT); 308 } 309 310 static void tls_thread_flush(void) 311 { 312 write_sysreg(0, tpidr_el0); 313 314 if (is_compat_task()) { 315 current->thread.uw.tp_value = 0; 316 317 /* 318 * We need to ensure ordering between the shadow state and the 319 * hardware state, so that we don't corrupt the hardware state 320 * with a stale shadow state during context switch. 321 */ 322 barrier(); 323 write_sysreg(0, tpidrro_el0); 324 } 325 } 326 327 static void flush_tagged_addr_state(void) 328 { 329 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) 330 clear_thread_flag(TIF_TAGGED_ADDR); 331 } 332 333 void flush_thread(void) 334 { 335 fpsimd_flush_thread(); 336 tls_thread_flush(); 337 flush_ptrace_hw_breakpoint(current); 338 flush_tagged_addr_state(); 339 } 340 341 void release_thread(struct task_struct *dead_task) 342 { 343 } 344 345 void arch_release_task_struct(struct task_struct *tsk) 346 { 347 fpsimd_release_task(tsk); 348 } 349 350 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 351 { 352 if (current->mm) 353 fpsimd_preserve_current_state(); 354 *dst = *src; 355 356 /* We rely on the above assignment to initialize dst's thread_flags: */ 357 BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK)); 358 359 /* 360 * Detach src's sve_state (if any) from dst so that it does not 361 * get erroneously used or freed prematurely. dst's sve_state 362 * will be allocated on demand later on if dst uses SVE. 363 * For consistency, also clear TIF_SVE here: this could be done 364 * later in copy_process(), but to avoid tripping up future 365 * maintainers it is best not to leave TIF_SVE and sve_state in 366 * an inconsistent state, even temporarily. 367 */ 368 dst->thread.sve_state = NULL; 369 clear_tsk_thread_flag(dst, TIF_SVE); 370 371 return 0; 372 } 373 374 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 375 376 int copy_thread(unsigned long clone_flags, unsigned long stack_start, 377 unsigned long stk_sz, struct task_struct *p, unsigned long tls) 378 { 379 struct pt_regs *childregs = task_pt_regs(p); 380 381 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 382 383 /* 384 * In case p was allocated the same task_struct pointer as some 385 * other recently-exited task, make sure p is disassociated from 386 * any cpu that may have run that now-exited task recently. 387 * Otherwise we could erroneously skip reloading the FPSIMD 388 * registers for p. 389 */ 390 fpsimd_flush_task_state(p); 391 392 ptrauth_thread_init_kernel(p); 393 394 if (likely(!(p->flags & PF_KTHREAD))) { 395 *childregs = *current_pt_regs(); 396 childregs->regs[0] = 0; 397 398 /* 399 * Read the current TLS pointer from tpidr_el0 as it may be 400 * out-of-sync with the saved value. 401 */ 402 *task_user_tls(p) = read_sysreg(tpidr_el0); 403 404 if (stack_start) { 405 if (is_compat_thread(task_thread_info(p))) 406 childregs->compat_sp = stack_start; 407 else 408 childregs->sp = stack_start; 409 } 410 411 /* 412 * If a TLS pointer was passed to clone, use it for the new 413 * thread. 414 */ 415 if (clone_flags & CLONE_SETTLS) 416 p->thread.uw.tp_value = tls; 417 } else { 418 memset(childregs, 0, sizeof(struct pt_regs)); 419 childregs->pstate = PSR_MODE_EL1h; 420 if (IS_ENABLED(CONFIG_ARM64_UAO) && 421 cpus_have_const_cap(ARM64_HAS_UAO)) 422 childregs->pstate |= PSR_UAO_BIT; 423 424 if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) 425 set_ssbs_bit(childregs); 426 427 if (system_uses_irq_prio_masking()) 428 childregs->pmr_save = GIC_PRIO_IRQON; 429 430 p->thread.cpu_context.x19 = stack_start; 431 p->thread.cpu_context.x20 = stk_sz; 432 } 433 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 434 p->thread.cpu_context.sp = (unsigned long)childregs; 435 436 ptrace_hw_copy_thread(p); 437 438 return 0; 439 } 440 441 void tls_preserve_current_state(void) 442 { 443 *task_user_tls(current) = read_sysreg(tpidr_el0); 444 } 445 446 static void tls_thread_switch(struct task_struct *next) 447 { 448 tls_preserve_current_state(); 449 450 if (is_compat_thread(task_thread_info(next))) 451 write_sysreg(next->thread.uw.tp_value, tpidrro_el0); 452 else if (!arm64_kernel_unmapped_at_el0()) 453 write_sysreg(0, tpidrro_el0); 454 455 write_sysreg(*task_user_tls(next), tpidr_el0); 456 } 457 458 /* Restore the UAO state depending on next's addr_limit */ 459 void uao_thread_switch(struct task_struct *next) 460 { 461 if (IS_ENABLED(CONFIG_ARM64_UAO)) { 462 if (task_thread_info(next)->addr_limit == KERNEL_DS) 463 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO)); 464 else 465 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO)); 466 } 467 } 468 469 /* 470 * Force SSBS state on context-switch, since it may be lost after migrating 471 * from a CPU which treats the bit as RES0 in a heterogeneous system. 472 */ 473 static void ssbs_thread_switch(struct task_struct *next) 474 { 475 struct pt_regs *regs = task_pt_regs(next); 476 477 /* 478 * Nothing to do for kernel threads, but 'regs' may be junk 479 * (e.g. idle task) so check the flags and bail early. 480 */ 481 if (unlikely(next->flags & PF_KTHREAD)) 482 return; 483 484 /* 485 * If all CPUs implement the SSBS extension, then we just need to 486 * context-switch the PSTATE field. 487 */ 488 if (cpu_have_feature(cpu_feature(SSBS))) 489 return; 490 491 /* If the mitigation is enabled, then we leave SSBS clear. */ 492 if ((arm64_get_ssbd_state() == ARM64_SSBD_FORCE_ENABLE) || 493 test_tsk_thread_flag(next, TIF_SSBD)) 494 return; 495 496 if (compat_user_mode(regs)) 497 set_compat_ssbs_bit(regs); 498 else if (user_mode(regs)) 499 set_ssbs_bit(regs); 500 } 501 502 /* 503 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 504 * shadow copy so that we can restore this upon entry from userspace. 505 * 506 * This is *only* for exception entry from EL0, and is not valid until we 507 * __switch_to() a user task. 508 */ 509 DEFINE_PER_CPU(struct task_struct *, __entry_task); 510 511 static void entry_task_switch(struct task_struct *next) 512 { 513 __this_cpu_write(__entry_task, next); 514 } 515 516 /* 517 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT. 518 * Assuming the virtual counter is enabled at the beginning of times: 519 * 520 * - disable access when switching from a 64bit task to a 32bit task 521 * - enable access when switching from a 32bit task to a 64bit task 522 */ 523 static void erratum_1418040_thread_switch(struct task_struct *prev, 524 struct task_struct *next) 525 { 526 bool prev32, next32; 527 u64 val; 528 529 if (!(IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) && 530 cpus_have_const_cap(ARM64_WORKAROUND_1418040))) 531 return; 532 533 prev32 = is_compat_thread(task_thread_info(prev)); 534 next32 = is_compat_thread(task_thread_info(next)); 535 536 if (prev32 == next32) 537 return; 538 539 val = read_sysreg(cntkctl_el1); 540 541 if (!next32) 542 val |= ARCH_TIMER_USR_VCT_ACCESS_EN; 543 else 544 val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN; 545 546 write_sysreg(val, cntkctl_el1); 547 } 548 549 /* 550 * Thread switching. 551 */ 552 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev, 553 struct task_struct *next) 554 { 555 struct task_struct *last; 556 557 fpsimd_thread_switch(next); 558 tls_thread_switch(next); 559 hw_breakpoint_thread_switch(next); 560 contextidr_thread_switch(next); 561 entry_task_switch(next); 562 uao_thread_switch(next); 563 ssbs_thread_switch(next); 564 erratum_1418040_thread_switch(prev, next); 565 566 /* 567 * Complete any pending TLB or cache maintenance on this CPU in case 568 * the thread migrates to a different CPU. 569 * This full barrier is also required by the membarrier system 570 * call. 571 */ 572 dsb(ish); 573 574 /* the actual thread switch */ 575 last = cpu_switch_to(prev, next); 576 577 return last; 578 } 579 580 unsigned long get_wchan(struct task_struct *p) 581 { 582 struct stackframe frame; 583 unsigned long stack_page, ret = 0; 584 int count = 0; 585 if (!p || p == current || p->state == TASK_RUNNING) 586 return 0; 587 588 stack_page = (unsigned long)try_get_task_stack(p); 589 if (!stack_page) 590 return 0; 591 592 start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p)); 593 594 do { 595 if (unwind_frame(p, &frame)) 596 goto out; 597 if (!in_sched_functions(frame.pc)) { 598 ret = frame.pc; 599 goto out; 600 } 601 } while (count ++ < 16); 602 603 out: 604 put_task_stack(p); 605 return ret; 606 } 607 608 unsigned long arch_align_stack(unsigned long sp) 609 { 610 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 611 sp -= get_random_int() & ~PAGE_MASK; 612 return sp & ~0xf; 613 } 614 615 /* 616 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 617 */ 618 void arch_setup_new_exec(void) 619 { 620 current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0; 621 622 ptrauth_thread_init_user(current); 623 } 624 625 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 626 /* 627 * Control the relaxed ABI allowing tagged user addresses into the kernel. 628 */ 629 static unsigned int tagged_addr_disabled; 630 631 long set_tagged_addr_ctrl(unsigned long arg) 632 { 633 if (is_compat_task()) 634 return -EINVAL; 635 if (arg & ~PR_TAGGED_ADDR_ENABLE) 636 return -EINVAL; 637 638 /* 639 * Do not allow the enabling of the tagged address ABI if globally 640 * disabled via sysctl abi.tagged_addr_disabled. 641 */ 642 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled) 643 return -EINVAL; 644 645 update_thread_flag(TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE); 646 647 return 0; 648 } 649 650 long get_tagged_addr_ctrl(void) 651 { 652 if (is_compat_task()) 653 return -EINVAL; 654 655 if (test_thread_flag(TIF_TAGGED_ADDR)) 656 return PR_TAGGED_ADDR_ENABLE; 657 658 return 0; 659 } 660 661 /* 662 * Global sysctl to disable the tagged user addresses support. This control 663 * only prevents the tagged address ABI enabling via prctl() and does not 664 * disable it for tasks that already opted in to the relaxed ABI. 665 */ 666 667 static struct ctl_table tagged_addr_sysctl_table[] = { 668 { 669 .procname = "tagged_addr_disabled", 670 .mode = 0644, 671 .data = &tagged_addr_disabled, 672 .maxlen = sizeof(int), 673 .proc_handler = proc_dointvec_minmax, 674 .extra1 = SYSCTL_ZERO, 675 .extra2 = SYSCTL_ONE, 676 }, 677 { } 678 }; 679 680 static int __init tagged_addr_init(void) 681 { 682 if (!register_sysctl("abi", tagged_addr_sysctl_table)) 683 return -EINVAL; 684 return 0; 685 } 686 687 core_initcall(tagged_addr_init); 688 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */ 689 690 asmlinkage void __sched arm64_preempt_schedule_irq(void) 691 { 692 lockdep_assert_irqs_disabled(); 693 694 /* 695 * Preempting a task from an IRQ means we leave copies of PSTATE 696 * on the stack. cpufeature's enable calls may modify PSTATE, but 697 * resuming one of these preempted tasks would undo those changes. 698 * 699 * Only allow a task to be preempted once cpufeatures have been 700 * enabled. 701 */ 702 if (system_capabilities_finalized()) 703 preempt_schedule_irq(); 704 } 705 706 #ifdef CONFIG_BINFMT_ELF 707 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state, 708 bool has_interp, bool is_interp) 709 { 710 /* 711 * For dynamically linked executables the interpreter is 712 * responsible for setting PROT_BTI on everything except 713 * itself. 714 */ 715 if (is_interp != has_interp) 716 return prot; 717 718 if (!(state->flags & ARM64_ELF_BTI)) 719 return prot; 720 721 if (prot & PROT_EXEC) 722 prot |= PROT_BTI; 723 724 return prot; 725 } 726 #endif 727