xref: /linux/arch/arm64/kernel/process.c (revision 2634682fdffd9ba6e74b76be8aa91cf8b2e05c41)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/process.c
4  *
5  * Original Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <stdarg.h>
11 
12 #include <linux/compat.h>
13 #include <linux/efi.h>
14 #include <linux/elf.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/sched/debug.h>
18 #include <linux/sched/task.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/kernel.h>
21 #include <linux/lockdep.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/stddef.h>
25 #include <linux/sysctl.h>
26 #include <linux/unistd.h>
27 #include <linux/user.h>
28 #include <linux/delay.h>
29 #include <linux/reboot.h>
30 #include <linux/interrupt.h>
31 #include <linux/init.h>
32 #include <linux/cpu.h>
33 #include <linux/elfcore.h>
34 #include <linux/pm.h>
35 #include <linux/tick.h>
36 #include <linux/utsname.h>
37 #include <linux/uaccess.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/personality.h>
41 #include <linux/notifier.h>
42 #include <trace/events/power.h>
43 #include <linux/percpu.h>
44 #include <linux/thread_info.h>
45 #include <linux/prctl.h>
46 
47 #include <asm/alternative.h>
48 #include <asm/arch_gicv3.h>
49 #include <asm/compat.h>
50 #include <asm/cpufeature.h>
51 #include <asm/cacheflush.h>
52 #include <asm/exec.h>
53 #include <asm/fpsimd.h>
54 #include <asm/mmu_context.h>
55 #include <asm/processor.h>
56 #include <asm/pointer_auth.h>
57 #include <asm/stacktrace.h>
58 
59 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
60 #include <linux/stackprotector.h>
61 unsigned long __stack_chk_guard __read_mostly;
62 EXPORT_SYMBOL(__stack_chk_guard);
63 #endif
64 
65 /*
66  * Function pointers to optional machine specific functions
67  */
68 void (*pm_power_off)(void);
69 EXPORT_SYMBOL_GPL(pm_power_off);
70 
71 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
72 
73 static void __cpu_do_idle(void)
74 {
75 	dsb(sy);
76 	wfi();
77 }
78 
79 static void __cpu_do_idle_irqprio(void)
80 {
81 	unsigned long pmr;
82 	unsigned long daif_bits;
83 
84 	daif_bits = read_sysreg(daif);
85 	write_sysreg(daif_bits | PSR_I_BIT, daif);
86 
87 	/*
88 	 * Unmask PMR before going idle to make sure interrupts can
89 	 * be raised.
90 	 */
91 	pmr = gic_read_pmr();
92 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
93 
94 	__cpu_do_idle();
95 
96 	gic_write_pmr(pmr);
97 	write_sysreg(daif_bits, daif);
98 }
99 
100 /*
101  *	cpu_do_idle()
102  *
103  *	Idle the processor (wait for interrupt).
104  *
105  *	If the CPU supports priority masking we must do additional work to
106  *	ensure that interrupts are not masked at the PMR (because the core will
107  *	not wake up if we block the wake up signal in the interrupt controller).
108  */
109 void cpu_do_idle(void)
110 {
111 	if (system_uses_irq_prio_masking())
112 		__cpu_do_idle_irqprio();
113 	else
114 		__cpu_do_idle();
115 }
116 
117 /*
118  * This is our default idle handler.
119  */
120 void arch_cpu_idle(void)
121 {
122 	/*
123 	 * This should do all the clock switching and wait for interrupt
124 	 * tricks
125 	 */
126 	cpu_do_idle();
127 	local_irq_enable();
128 }
129 
130 #ifdef CONFIG_HOTPLUG_CPU
131 void arch_cpu_idle_dead(void)
132 {
133        cpu_die();
134 }
135 #endif
136 
137 /*
138  * Called by kexec, immediately prior to machine_kexec().
139  *
140  * This must completely disable all secondary CPUs; simply causing those CPUs
141  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
142  * kexec'd kernel to use any and all RAM as it sees fit, without having to
143  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
144  * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
145  */
146 void machine_shutdown(void)
147 {
148 	smp_shutdown_nonboot_cpus(reboot_cpu);
149 }
150 
151 /*
152  * Halting simply requires that the secondary CPUs stop performing any
153  * activity (executing tasks, handling interrupts). smp_send_stop()
154  * achieves this.
155  */
156 void machine_halt(void)
157 {
158 	local_irq_disable();
159 	smp_send_stop();
160 	while (1);
161 }
162 
163 /*
164  * Power-off simply requires that the secondary CPUs stop performing any
165  * activity (executing tasks, handling interrupts). smp_send_stop()
166  * achieves this. When the system power is turned off, it will take all CPUs
167  * with it.
168  */
169 void machine_power_off(void)
170 {
171 	local_irq_disable();
172 	smp_send_stop();
173 	if (pm_power_off)
174 		pm_power_off();
175 }
176 
177 /*
178  * Restart requires that the secondary CPUs stop performing any activity
179  * while the primary CPU resets the system. Systems with multiple CPUs must
180  * provide a HW restart implementation, to ensure that all CPUs reset at once.
181  * This is required so that any code running after reset on the primary CPU
182  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
183  * executing pre-reset code, and using RAM that the primary CPU's code wishes
184  * to use. Implementing such co-ordination would be essentially impossible.
185  */
186 void machine_restart(char *cmd)
187 {
188 	/* Disable interrupts first */
189 	local_irq_disable();
190 	smp_send_stop();
191 
192 	/*
193 	 * UpdateCapsule() depends on the system being reset via
194 	 * ResetSystem().
195 	 */
196 	if (efi_enabled(EFI_RUNTIME_SERVICES))
197 		efi_reboot(reboot_mode, NULL);
198 
199 	/* Now call the architecture specific reboot code. */
200 	if (arm_pm_restart)
201 		arm_pm_restart(reboot_mode, cmd);
202 	else
203 		do_kernel_restart(cmd);
204 
205 	/*
206 	 * Whoops - the architecture was unable to reboot.
207 	 */
208 	printk("Reboot failed -- System halted\n");
209 	while (1);
210 }
211 
212 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
213 static const char *const btypes[] = {
214 	bstr(NONE, "--"),
215 	bstr(  JC, "jc"),
216 	bstr(   C, "-c"),
217 	bstr(  J , "j-")
218 };
219 #undef bstr
220 
221 static void print_pstate(struct pt_regs *regs)
222 {
223 	u64 pstate = regs->pstate;
224 
225 	if (compat_user_mode(regs)) {
226 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
227 			pstate,
228 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
229 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
230 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
231 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
232 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
233 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
234 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
235 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
236 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
237 			pstate & PSR_AA32_F_BIT ? 'F' : 'f');
238 	} else {
239 		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
240 					       PSR_BTYPE_SHIFT];
241 
242 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO BTYPE=%s)\n",
243 			pstate,
244 			pstate & PSR_N_BIT ? 'N' : 'n',
245 			pstate & PSR_Z_BIT ? 'Z' : 'z',
246 			pstate & PSR_C_BIT ? 'C' : 'c',
247 			pstate & PSR_V_BIT ? 'V' : 'v',
248 			pstate & PSR_D_BIT ? 'D' : 'd',
249 			pstate & PSR_A_BIT ? 'A' : 'a',
250 			pstate & PSR_I_BIT ? 'I' : 'i',
251 			pstate & PSR_F_BIT ? 'F' : 'f',
252 			pstate & PSR_PAN_BIT ? '+' : '-',
253 			pstate & PSR_UAO_BIT ? '+' : '-',
254 			btype_str);
255 	}
256 }
257 
258 void __show_regs(struct pt_regs *regs)
259 {
260 	int i, top_reg;
261 	u64 lr, sp;
262 
263 	if (compat_user_mode(regs)) {
264 		lr = regs->compat_lr;
265 		sp = regs->compat_sp;
266 		top_reg = 12;
267 	} else {
268 		lr = regs->regs[30];
269 		sp = regs->sp;
270 		top_reg = 29;
271 	}
272 
273 	show_regs_print_info(KERN_DEFAULT);
274 	print_pstate(regs);
275 
276 	if (!user_mode(regs)) {
277 		printk("pc : %pS\n", (void *)regs->pc);
278 		printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
279 	} else {
280 		printk("pc : %016llx\n", regs->pc);
281 		printk("lr : %016llx\n", lr);
282 	}
283 
284 	printk("sp : %016llx\n", sp);
285 
286 	if (system_uses_irq_prio_masking())
287 		printk("pmr_save: %08llx\n", regs->pmr_save);
288 
289 	i = top_reg;
290 
291 	while (i >= 0) {
292 		printk("x%-2d: %016llx ", i, regs->regs[i]);
293 		i--;
294 
295 		if (i % 2 == 0) {
296 			pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
297 			i--;
298 		}
299 
300 		pr_cont("\n");
301 	}
302 }
303 
304 void show_regs(struct pt_regs * regs)
305 {
306 	__show_regs(regs);
307 	dump_backtrace(regs, NULL, KERN_DEFAULT);
308 }
309 
310 static void tls_thread_flush(void)
311 {
312 	write_sysreg(0, tpidr_el0);
313 
314 	if (is_compat_task()) {
315 		current->thread.uw.tp_value = 0;
316 
317 		/*
318 		 * We need to ensure ordering between the shadow state and the
319 		 * hardware state, so that we don't corrupt the hardware state
320 		 * with a stale shadow state during context switch.
321 		 */
322 		barrier();
323 		write_sysreg(0, tpidrro_el0);
324 	}
325 }
326 
327 static void flush_tagged_addr_state(void)
328 {
329 	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
330 		clear_thread_flag(TIF_TAGGED_ADDR);
331 }
332 
333 void flush_thread(void)
334 {
335 	fpsimd_flush_thread();
336 	tls_thread_flush();
337 	flush_ptrace_hw_breakpoint(current);
338 	flush_tagged_addr_state();
339 }
340 
341 void release_thread(struct task_struct *dead_task)
342 {
343 }
344 
345 void arch_release_task_struct(struct task_struct *tsk)
346 {
347 	fpsimd_release_task(tsk);
348 }
349 
350 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
351 {
352 	if (current->mm)
353 		fpsimd_preserve_current_state();
354 	*dst = *src;
355 
356 	/* We rely on the above assignment to initialize dst's thread_flags: */
357 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
358 
359 	/*
360 	 * Detach src's sve_state (if any) from dst so that it does not
361 	 * get erroneously used or freed prematurely.  dst's sve_state
362 	 * will be allocated on demand later on if dst uses SVE.
363 	 * For consistency, also clear TIF_SVE here: this could be done
364 	 * later in copy_process(), but to avoid tripping up future
365 	 * maintainers it is best not to leave TIF_SVE and sve_state in
366 	 * an inconsistent state, even temporarily.
367 	 */
368 	dst->thread.sve_state = NULL;
369 	clear_tsk_thread_flag(dst, TIF_SVE);
370 
371 	return 0;
372 }
373 
374 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
375 
376 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
377 		unsigned long stk_sz, struct task_struct *p, unsigned long tls)
378 {
379 	struct pt_regs *childregs = task_pt_regs(p);
380 
381 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
382 
383 	/*
384 	 * In case p was allocated the same task_struct pointer as some
385 	 * other recently-exited task, make sure p is disassociated from
386 	 * any cpu that may have run that now-exited task recently.
387 	 * Otherwise we could erroneously skip reloading the FPSIMD
388 	 * registers for p.
389 	 */
390 	fpsimd_flush_task_state(p);
391 
392 	ptrauth_thread_init_kernel(p);
393 
394 	if (likely(!(p->flags & PF_KTHREAD))) {
395 		*childregs = *current_pt_regs();
396 		childregs->regs[0] = 0;
397 
398 		/*
399 		 * Read the current TLS pointer from tpidr_el0 as it may be
400 		 * out-of-sync with the saved value.
401 		 */
402 		*task_user_tls(p) = read_sysreg(tpidr_el0);
403 
404 		if (stack_start) {
405 			if (is_compat_thread(task_thread_info(p)))
406 				childregs->compat_sp = stack_start;
407 			else
408 				childregs->sp = stack_start;
409 		}
410 
411 		/*
412 		 * If a TLS pointer was passed to clone, use it for the new
413 		 * thread.
414 		 */
415 		if (clone_flags & CLONE_SETTLS)
416 			p->thread.uw.tp_value = tls;
417 	} else {
418 		memset(childregs, 0, sizeof(struct pt_regs));
419 		childregs->pstate = PSR_MODE_EL1h;
420 		if (IS_ENABLED(CONFIG_ARM64_UAO) &&
421 		    cpus_have_const_cap(ARM64_HAS_UAO))
422 			childregs->pstate |= PSR_UAO_BIT;
423 
424 		if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE)
425 			set_ssbs_bit(childregs);
426 
427 		if (system_uses_irq_prio_masking())
428 			childregs->pmr_save = GIC_PRIO_IRQON;
429 
430 		p->thread.cpu_context.x19 = stack_start;
431 		p->thread.cpu_context.x20 = stk_sz;
432 	}
433 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
434 	p->thread.cpu_context.sp = (unsigned long)childregs;
435 
436 	ptrace_hw_copy_thread(p);
437 
438 	return 0;
439 }
440 
441 void tls_preserve_current_state(void)
442 {
443 	*task_user_tls(current) = read_sysreg(tpidr_el0);
444 }
445 
446 static void tls_thread_switch(struct task_struct *next)
447 {
448 	tls_preserve_current_state();
449 
450 	if (is_compat_thread(task_thread_info(next)))
451 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
452 	else if (!arm64_kernel_unmapped_at_el0())
453 		write_sysreg(0, tpidrro_el0);
454 
455 	write_sysreg(*task_user_tls(next), tpidr_el0);
456 }
457 
458 /* Restore the UAO state depending on next's addr_limit */
459 void uao_thread_switch(struct task_struct *next)
460 {
461 	if (IS_ENABLED(CONFIG_ARM64_UAO)) {
462 		if (task_thread_info(next)->addr_limit == KERNEL_DS)
463 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
464 		else
465 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
466 	}
467 }
468 
469 /*
470  * Force SSBS state on context-switch, since it may be lost after migrating
471  * from a CPU which treats the bit as RES0 in a heterogeneous system.
472  */
473 static void ssbs_thread_switch(struct task_struct *next)
474 {
475 	struct pt_regs *regs = task_pt_regs(next);
476 
477 	/*
478 	 * Nothing to do for kernel threads, but 'regs' may be junk
479 	 * (e.g. idle task) so check the flags and bail early.
480 	 */
481 	if (unlikely(next->flags & PF_KTHREAD))
482 		return;
483 
484 	/*
485 	 * If all CPUs implement the SSBS extension, then we just need to
486 	 * context-switch the PSTATE field.
487 	 */
488 	if (cpu_have_feature(cpu_feature(SSBS)))
489 		return;
490 
491 	/* If the mitigation is enabled, then we leave SSBS clear. */
492 	if ((arm64_get_ssbd_state() == ARM64_SSBD_FORCE_ENABLE) ||
493 	    test_tsk_thread_flag(next, TIF_SSBD))
494 		return;
495 
496 	if (compat_user_mode(regs))
497 		set_compat_ssbs_bit(regs);
498 	else if (user_mode(regs))
499 		set_ssbs_bit(regs);
500 }
501 
502 /*
503  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
504  * shadow copy so that we can restore this upon entry from userspace.
505  *
506  * This is *only* for exception entry from EL0, and is not valid until we
507  * __switch_to() a user task.
508  */
509 DEFINE_PER_CPU(struct task_struct *, __entry_task);
510 
511 static void entry_task_switch(struct task_struct *next)
512 {
513 	__this_cpu_write(__entry_task, next);
514 }
515 
516 /*
517  * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
518  * Assuming the virtual counter is enabled at the beginning of times:
519  *
520  * - disable access when switching from a 64bit task to a 32bit task
521  * - enable access when switching from a 32bit task to a 64bit task
522  */
523 static void erratum_1418040_thread_switch(struct task_struct *prev,
524 					  struct task_struct *next)
525 {
526 	bool prev32, next32;
527 	u64 val;
528 
529 	if (!(IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) &&
530 	      cpus_have_const_cap(ARM64_WORKAROUND_1418040)))
531 		return;
532 
533 	prev32 = is_compat_thread(task_thread_info(prev));
534 	next32 = is_compat_thread(task_thread_info(next));
535 
536 	if (prev32 == next32)
537 		return;
538 
539 	val = read_sysreg(cntkctl_el1);
540 
541 	if (!next32)
542 		val |= ARCH_TIMER_USR_VCT_ACCESS_EN;
543 	else
544 		val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
545 
546 	write_sysreg(val, cntkctl_el1);
547 }
548 
549 /*
550  * Thread switching.
551  */
552 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
553 				struct task_struct *next)
554 {
555 	struct task_struct *last;
556 
557 	fpsimd_thread_switch(next);
558 	tls_thread_switch(next);
559 	hw_breakpoint_thread_switch(next);
560 	contextidr_thread_switch(next);
561 	entry_task_switch(next);
562 	uao_thread_switch(next);
563 	ssbs_thread_switch(next);
564 	erratum_1418040_thread_switch(prev, next);
565 
566 	/*
567 	 * Complete any pending TLB or cache maintenance on this CPU in case
568 	 * the thread migrates to a different CPU.
569 	 * This full barrier is also required by the membarrier system
570 	 * call.
571 	 */
572 	dsb(ish);
573 
574 	/* the actual thread switch */
575 	last = cpu_switch_to(prev, next);
576 
577 	return last;
578 }
579 
580 unsigned long get_wchan(struct task_struct *p)
581 {
582 	struct stackframe frame;
583 	unsigned long stack_page, ret = 0;
584 	int count = 0;
585 	if (!p || p == current || p->state == TASK_RUNNING)
586 		return 0;
587 
588 	stack_page = (unsigned long)try_get_task_stack(p);
589 	if (!stack_page)
590 		return 0;
591 
592 	start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
593 
594 	do {
595 		if (unwind_frame(p, &frame))
596 			goto out;
597 		if (!in_sched_functions(frame.pc)) {
598 			ret = frame.pc;
599 			goto out;
600 		}
601 	} while (count ++ < 16);
602 
603 out:
604 	put_task_stack(p);
605 	return ret;
606 }
607 
608 unsigned long arch_align_stack(unsigned long sp)
609 {
610 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
611 		sp -= get_random_int() & ~PAGE_MASK;
612 	return sp & ~0xf;
613 }
614 
615 /*
616  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
617  */
618 void arch_setup_new_exec(void)
619 {
620 	current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
621 
622 	ptrauth_thread_init_user(current);
623 }
624 
625 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
626 /*
627  * Control the relaxed ABI allowing tagged user addresses into the kernel.
628  */
629 static unsigned int tagged_addr_disabled;
630 
631 long set_tagged_addr_ctrl(unsigned long arg)
632 {
633 	if (is_compat_task())
634 		return -EINVAL;
635 	if (arg & ~PR_TAGGED_ADDR_ENABLE)
636 		return -EINVAL;
637 
638 	/*
639 	 * Do not allow the enabling of the tagged address ABI if globally
640 	 * disabled via sysctl abi.tagged_addr_disabled.
641 	 */
642 	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
643 		return -EINVAL;
644 
645 	update_thread_flag(TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
646 
647 	return 0;
648 }
649 
650 long get_tagged_addr_ctrl(void)
651 {
652 	if (is_compat_task())
653 		return -EINVAL;
654 
655 	if (test_thread_flag(TIF_TAGGED_ADDR))
656 		return PR_TAGGED_ADDR_ENABLE;
657 
658 	return 0;
659 }
660 
661 /*
662  * Global sysctl to disable the tagged user addresses support. This control
663  * only prevents the tagged address ABI enabling via prctl() and does not
664  * disable it for tasks that already opted in to the relaxed ABI.
665  */
666 
667 static struct ctl_table tagged_addr_sysctl_table[] = {
668 	{
669 		.procname	= "tagged_addr_disabled",
670 		.mode		= 0644,
671 		.data		= &tagged_addr_disabled,
672 		.maxlen		= sizeof(int),
673 		.proc_handler	= proc_dointvec_minmax,
674 		.extra1		= SYSCTL_ZERO,
675 		.extra2		= SYSCTL_ONE,
676 	},
677 	{ }
678 };
679 
680 static int __init tagged_addr_init(void)
681 {
682 	if (!register_sysctl("abi", tagged_addr_sysctl_table))
683 		return -EINVAL;
684 	return 0;
685 }
686 
687 core_initcall(tagged_addr_init);
688 #endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
689 
690 asmlinkage void __sched arm64_preempt_schedule_irq(void)
691 {
692 	lockdep_assert_irqs_disabled();
693 
694 	/*
695 	 * Preempting a task from an IRQ means we leave copies of PSTATE
696 	 * on the stack. cpufeature's enable calls may modify PSTATE, but
697 	 * resuming one of these preempted tasks would undo those changes.
698 	 *
699 	 * Only allow a task to be preempted once cpufeatures have been
700 	 * enabled.
701 	 */
702 	if (system_capabilities_finalized())
703 		preempt_schedule_irq();
704 }
705 
706 #ifdef CONFIG_BINFMT_ELF
707 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
708 			 bool has_interp, bool is_interp)
709 {
710 	/*
711 	 * For dynamically linked executables the interpreter is
712 	 * responsible for setting PROT_BTI on everything except
713 	 * itself.
714 	 */
715 	if (is_interp != has_interp)
716 		return prot;
717 
718 	if (!(state->flags & ARM64_ELF_BTI))
719 		return prot;
720 
721 	if (prot & PROT_EXEC)
722 		prot |= PROT_BTI;
723 
724 	return prot;
725 }
726 #endif
727