1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/process.c 4 * 5 * Original Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 #include <linux/compat.h> 10 #include <linux/efi.h> 11 #include <linux/elf.h> 12 #include <linux/export.h> 13 #include <linux/sched.h> 14 #include <linux/sched/debug.h> 15 #include <linux/sched/task.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/kernel.h> 18 #include <linux/mman.h> 19 #include <linux/mm.h> 20 #include <linux/nospec.h> 21 #include <linux/stddef.h> 22 #include <linux/sysctl.h> 23 #include <linux/unistd.h> 24 #include <linux/user.h> 25 #include <linux/delay.h> 26 #include <linux/reboot.h> 27 #include <linux/interrupt.h> 28 #include <linux/init.h> 29 #include <linux/cpu.h> 30 #include <linux/elfcore.h> 31 #include <linux/pm.h> 32 #include <linux/tick.h> 33 #include <linux/utsname.h> 34 #include <linux/uaccess.h> 35 #include <linux/random.h> 36 #include <linux/hw_breakpoint.h> 37 #include <linux/personality.h> 38 #include <linux/notifier.h> 39 #include <trace/events/power.h> 40 #include <linux/percpu.h> 41 #include <linux/thread_info.h> 42 #include <linux/prctl.h> 43 #include <linux/stacktrace.h> 44 45 #include <asm/alternative.h> 46 #include <asm/arch_timer.h> 47 #include <asm/compat.h> 48 #include <asm/cpufeature.h> 49 #include <asm/cacheflush.h> 50 #include <asm/exec.h> 51 #include <asm/fpsimd.h> 52 #include <asm/gcs.h> 53 #include <asm/mmu_context.h> 54 #include <asm/mte.h> 55 #include <asm/processor.h> 56 #include <asm/pointer_auth.h> 57 #include <asm/stacktrace.h> 58 #include <asm/switch_to.h> 59 #include <asm/system_misc.h> 60 61 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) 62 #include <linux/stackprotector.h> 63 unsigned long __stack_chk_guard __ro_after_init; 64 EXPORT_SYMBOL(__stack_chk_guard); 65 #endif 66 67 /* 68 * Function pointers to optional machine specific functions 69 */ 70 void (*pm_power_off)(void); 71 EXPORT_SYMBOL_GPL(pm_power_off); 72 73 #ifdef CONFIG_HOTPLUG_CPU 74 void __noreturn arch_cpu_idle_dead(void) 75 { 76 cpu_die(); 77 } 78 #endif 79 80 /* 81 * Called by kexec, immediately prior to machine_kexec(). 82 * 83 * This must completely disable all secondary CPUs; simply causing those CPUs 84 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 85 * kexec'd kernel to use any and all RAM as it sees fit, without having to 86 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 87 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this. 88 */ 89 void machine_shutdown(void) 90 { 91 smp_shutdown_nonboot_cpus(reboot_cpu); 92 } 93 94 /* 95 * Halting simply requires that the secondary CPUs stop performing any 96 * activity (executing tasks, handling interrupts). smp_send_stop() 97 * achieves this. 98 */ 99 void machine_halt(void) 100 { 101 local_irq_disable(); 102 smp_send_stop(); 103 while (1); 104 } 105 106 /* 107 * Power-off simply requires that the secondary CPUs stop performing any 108 * activity (executing tasks, handling interrupts). smp_send_stop() 109 * achieves this. When the system power is turned off, it will take all CPUs 110 * with it. 111 */ 112 void machine_power_off(void) 113 { 114 local_irq_disable(); 115 smp_send_stop(); 116 do_kernel_power_off(); 117 } 118 119 /* 120 * Restart requires that the secondary CPUs stop performing any activity 121 * while the primary CPU resets the system. Systems with multiple CPUs must 122 * provide a HW restart implementation, to ensure that all CPUs reset at once. 123 * This is required so that any code running after reset on the primary CPU 124 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 125 * executing pre-reset code, and using RAM that the primary CPU's code wishes 126 * to use. Implementing such co-ordination would be essentially impossible. 127 */ 128 void machine_restart(char *cmd) 129 { 130 /* Disable interrupts first */ 131 local_irq_disable(); 132 smp_send_stop(); 133 134 /* 135 * UpdateCapsule() depends on the system being reset via 136 * ResetSystem(). 137 */ 138 if (efi_enabled(EFI_RUNTIME_SERVICES)) 139 efi_reboot(reboot_mode, NULL); 140 141 /* Now call the architecture specific reboot code. */ 142 do_kernel_restart(cmd); 143 144 /* 145 * Whoops - the architecture was unable to reboot. 146 */ 147 printk("Reboot failed -- System halted\n"); 148 while (1); 149 } 150 151 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str 152 static const char *const btypes[] = { 153 bstr(NONE, "--"), 154 bstr( JC, "jc"), 155 bstr( C, "-c"), 156 bstr( J , "j-") 157 }; 158 #undef bstr 159 160 static void print_pstate(struct pt_regs *regs) 161 { 162 u64 pstate = regs->pstate; 163 164 if (compat_user_mode(regs)) { 165 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n", 166 pstate, 167 pstate & PSR_AA32_N_BIT ? 'N' : 'n', 168 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', 169 pstate & PSR_AA32_C_BIT ? 'C' : 'c', 170 pstate & PSR_AA32_V_BIT ? 'V' : 'v', 171 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', 172 pstate & PSR_AA32_T_BIT ? "T32" : "A32", 173 pstate & PSR_AA32_E_BIT ? "BE" : "LE", 174 pstate & PSR_AA32_A_BIT ? 'A' : 'a', 175 pstate & PSR_AA32_I_BIT ? 'I' : 'i', 176 pstate & PSR_AA32_F_BIT ? 'F' : 'f', 177 pstate & PSR_AA32_DIT_BIT ? '+' : '-', 178 pstate & PSR_AA32_SSBS_BIT ? '+' : '-'); 179 } else { 180 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >> 181 PSR_BTYPE_SHIFT]; 182 183 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n", 184 pstate, 185 pstate & PSR_N_BIT ? 'N' : 'n', 186 pstate & PSR_Z_BIT ? 'Z' : 'z', 187 pstate & PSR_C_BIT ? 'C' : 'c', 188 pstate & PSR_V_BIT ? 'V' : 'v', 189 pstate & PSR_D_BIT ? 'D' : 'd', 190 pstate & PSR_A_BIT ? 'A' : 'a', 191 pstate & PSR_I_BIT ? 'I' : 'i', 192 pstate & PSR_F_BIT ? 'F' : 'f', 193 pstate & PSR_PAN_BIT ? '+' : '-', 194 pstate & PSR_UAO_BIT ? '+' : '-', 195 pstate & PSR_TCO_BIT ? '+' : '-', 196 pstate & PSR_DIT_BIT ? '+' : '-', 197 pstate & PSR_SSBS_BIT ? '+' : '-', 198 btype_str); 199 } 200 } 201 202 void __show_regs(struct pt_regs *regs) 203 { 204 int i, top_reg; 205 u64 lr, sp; 206 207 if (compat_user_mode(regs)) { 208 lr = regs->compat_lr; 209 sp = regs->compat_sp; 210 top_reg = 12; 211 } else { 212 lr = regs->regs[30]; 213 sp = regs->sp; 214 top_reg = 29; 215 } 216 217 show_regs_print_info(KERN_DEFAULT); 218 print_pstate(regs); 219 220 if (!user_mode(regs)) { 221 printk("pc : %pS\n", (void *)regs->pc); 222 printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr)); 223 } else { 224 printk("pc : %016llx\n", regs->pc); 225 printk("lr : %016llx\n", lr); 226 } 227 228 printk("sp : %016llx\n", sp); 229 230 if (system_uses_irq_prio_masking()) 231 printk("pmr: %08x\n", regs->pmr); 232 233 i = top_reg; 234 235 while (i >= 0) { 236 printk("x%-2d: %016llx", i, regs->regs[i]); 237 238 while (i-- % 3) 239 pr_cont(" x%-2d: %016llx", i, regs->regs[i]); 240 241 pr_cont("\n"); 242 } 243 } 244 245 void show_regs(struct pt_regs *regs) 246 { 247 __show_regs(regs); 248 dump_backtrace(regs, NULL, KERN_DEFAULT); 249 } 250 251 static void tls_thread_flush(void) 252 { 253 write_sysreg(0, tpidr_el0); 254 if (system_supports_tpidr2()) 255 write_sysreg_s(0, SYS_TPIDR2_EL0); 256 257 if (is_compat_task()) { 258 current->thread.uw.tp_value = 0; 259 260 /* 261 * We need to ensure ordering between the shadow state and the 262 * hardware state, so that we don't corrupt the hardware state 263 * with a stale shadow state during context switch. 264 */ 265 barrier(); 266 write_sysreg(0, tpidrro_el0); 267 } 268 } 269 270 static void flush_tagged_addr_state(void) 271 { 272 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) 273 clear_thread_flag(TIF_TAGGED_ADDR); 274 } 275 276 static void flush_poe(void) 277 { 278 if (!system_supports_poe()) 279 return; 280 281 write_sysreg_s(POR_EL0_INIT, SYS_POR_EL0); 282 } 283 284 #ifdef CONFIG_ARM64_GCS 285 286 static void flush_gcs(void) 287 { 288 if (!system_supports_gcs()) 289 return; 290 291 current->thread.gcspr_el0 = 0; 292 current->thread.gcs_base = 0; 293 current->thread.gcs_size = 0; 294 current->thread.gcs_el0_mode = 0; 295 write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1); 296 write_sysreg_s(0, SYS_GCSPR_EL0); 297 } 298 299 static int copy_thread_gcs(struct task_struct *p, 300 const struct kernel_clone_args *args) 301 { 302 unsigned long gcs; 303 304 if (!system_supports_gcs()) 305 return 0; 306 307 p->thread.gcs_base = 0; 308 p->thread.gcs_size = 0; 309 310 p->thread.gcs_el0_mode = current->thread.gcs_el0_mode; 311 p->thread.gcs_el0_locked = current->thread.gcs_el0_locked; 312 313 gcs = gcs_alloc_thread_stack(p, args); 314 if (IS_ERR_VALUE(gcs)) 315 return PTR_ERR((void *)gcs); 316 317 return 0; 318 } 319 320 #else 321 322 static void flush_gcs(void) { } 323 static int copy_thread_gcs(struct task_struct *p, 324 const struct kernel_clone_args *args) 325 { 326 return 0; 327 } 328 329 #endif 330 331 void flush_thread(void) 332 { 333 fpsimd_flush_thread(); 334 tls_thread_flush(); 335 flush_ptrace_hw_breakpoint(current); 336 flush_tagged_addr_state(); 337 flush_poe(); 338 flush_gcs(); 339 } 340 341 void arch_release_task_struct(struct task_struct *tsk) 342 { 343 fpsimd_release_task(tsk); 344 } 345 346 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 347 { 348 /* 349 * The current/src task's FPSIMD state may or may not be live, and may 350 * have been altered by ptrace after entry to the kernel. Save the 351 * effective FPSIMD state so that this will be copied into dst. 352 */ 353 fpsimd_save_and_flush_current_state(); 354 fpsimd_sync_from_effective_state(src); 355 356 *dst = *src; 357 358 /* 359 * Drop stale reference to src's sve_state and convert dst to 360 * non-streaming FPSIMD mode. 361 */ 362 dst->thread.fp_type = FP_STATE_FPSIMD; 363 dst->thread.sve_state = NULL; 364 clear_tsk_thread_flag(dst, TIF_SVE); 365 task_smstop_sm(dst); 366 367 /* 368 * Drop stale reference to src's sme_state and ensure dst has ZA 369 * disabled. 370 * 371 * When necessary, ZA will be inherited later in copy_thread_za(). 372 */ 373 dst->thread.sme_state = NULL; 374 clear_tsk_thread_flag(dst, TIF_SME); 375 dst->thread.svcr &= ~SVCR_ZA_MASK; 376 377 /* clear any pending asynchronous tag fault raised by the parent */ 378 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT); 379 380 return 0; 381 } 382 383 static int copy_thread_za(struct task_struct *dst, struct task_struct *src) 384 { 385 if (!thread_za_enabled(&src->thread)) 386 return 0; 387 388 dst->thread.sve_state = kzalloc(sve_state_size(src), 389 GFP_KERNEL); 390 if (!dst->thread.sve_state) 391 return -ENOMEM; 392 393 dst->thread.sme_state = kmemdup(src->thread.sme_state, 394 sme_state_size(src), 395 GFP_KERNEL); 396 if (!dst->thread.sme_state) { 397 kfree(dst->thread.sve_state); 398 dst->thread.sve_state = NULL; 399 return -ENOMEM; 400 } 401 402 set_tsk_thread_flag(dst, TIF_SME); 403 dst->thread.svcr |= SVCR_ZA_MASK; 404 405 return 0; 406 } 407 408 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 409 410 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) 411 { 412 unsigned long clone_flags = args->flags; 413 unsigned long stack_start = args->stack; 414 unsigned long tls = args->tls; 415 struct pt_regs *childregs = task_pt_regs(p); 416 int ret; 417 418 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 419 420 /* 421 * In case p was allocated the same task_struct pointer as some 422 * other recently-exited task, make sure p is disassociated from 423 * any cpu that may have run that now-exited task recently. 424 * Otherwise we could erroneously skip reloading the FPSIMD 425 * registers for p. 426 */ 427 fpsimd_flush_task_state(p); 428 429 ptrauth_thread_init_kernel(p); 430 431 if (likely(!args->fn)) { 432 *childregs = *current_pt_regs(); 433 childregs->regs[0] = 0; 434 435 /* 436 * Read the current TLS pointer from tpidr_el0 as it may be 437 * out-of-sync with the saved value. 438 */ 439 *task_user_tls(p) = read_sysreg(tpidr_el0); 440 441 if (system_supports_poe()) 442 p->thread.por_el0 = read_sysreg_s(SYS_POR_EL0); 443 444 if (stack_start) { 445 if (is_compat_thread(task_thread_info(p))) 446 childregs->compat_sp = stack_start; 447 else 448 childregs->sp = stack_start; 449 } 450 451 /* 452 * Due to the AAPCS64 "ZA lazy saving scheme", PSTATE.ZA and 453 * TPIDR2 need to be manipulated as a pair, and either both 454 * need to be inherited or both need to be reset. 455 * 456 * Within a process, child threads must not inherit their 457 * parent's TPIDR2 value or they may clobber their parent's 458 * stack at some later point. 459 * 460 * When a process is fork()'d, the child must inherit ZA and 461 * TPIDR2 from its parent in case there was dormant ZA state. 462 * 463 * Use CLONE_VM to determine when the child will share the 464 * address space with the parent, and cannot safely inherit the 465 * state. 466 */ 467 if (system_supports_sme()) { 468 if (!(clone_flags & CLONE_VM)) { 469 p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0); 470 ret = copy_thread_za(p, current); 471 if (ret) 472 return ret; 473 } else { 474 p->thread.tpidr2_el0 = 0; 475 WARN_ON_ONCE(p->thread.svcr & SVCR_ZA_MASK); 476 } 477 } 478 479 /* 480 * If a TLS pointer was passed to clone, use it for the new 481 * thread. 482 */ 483 if (clone_flags & CLONE_SETTLS) 484 p->thread.uw.tp_value = tls; 485 486 ret = copy_thread_gcs(p, args); 487 if (ret != 0) 488 return ret; 489 } else { 490 /* 491 * A kthread has no context to ERET to, so ensure any buggy 492 * ERET is treated as an illegal exception return. 493 * 494 * When a user task is created from a kthread, childregs will 495 * be initialized by start_thread() or start_compat_thread(). 496 */ 497 memset(childregs, 0, sizeof(struct pt_regs)); 498 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT; 499 childregs->stackframe.type = FRAME_META_TYPE_FINAL; 500 501 p->thread.cpu_context.x19 = (unsigned long)args->fn; 502 p->thread.cpu_context.x20 = (unsigned long)args->fn_arg; 503 504 if (system_supports_poe()) 505 p->thread.por_el0 = POR_EL0_INIT; 506 } 507 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 508 p->thread.cpu_context.sp = (unsigned long)childregs; 509 /* 510 * For the benefit of the unwinder, set up childregs->stackframe 511 * as the final frame for the new task. 512 */ 513 p->thread.cpu_context.fp = (unsigned long)&childregs->stackframe; 514 515 ptrace_hw_copy_thread(p); 516 517 return 0; 518 } 519 520 void tls_preserve_current_state(void) 521 { 522 *task_user_tls(current) = read_sysreg(tpidr_el0); 523 if (system_supports_tpidr2() && !is_compat_task()) 524 current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0); 525 } 526 527 static void tls_thread_switch(struct task_struct *next) 528 { 529 tls_preserve_current_state(); 530 531 if (is_compat_thread(task_thread_info(next))) 532 write_sysreg(next->thread.uw.tp_value, tpidrro_el0); 533 else 534 write_sysreg(0, tpidrro_el0); 535 536 write_sysreg(*task_user_tls(next), tpidr_el0); 537 if (system_supports_tpidr2()) 538 write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0); 539 } 540 541 /* 542 * Force SSBS state on context-switch, since it may be lost after migrating 543 * from a CPU which treats the bit as RES0 in a heterogeneous system. 544 */ 545 static void ssbs_thread_switch(struct task_struct *next) 546 { 547 /* 548 * Nothing to do for kernel threads, but 'regs' may be junk 549 * (e.g. idle task) so check the flags and bail early. 550 */ 551 if (unlikely(next->flags & PF_KTHREAD)) 552 return; 553 554 /* 555 * If all CPUs implement the SSBS extension, then we just need to 556 * context-switch the PSTATE field. 557 */ 558 if (alternative_has_cap_unlikely(ARM64_SSBS)) 559 return; 560 561 spectre_v4_enable_task_mitigation(next); 562 } 563 564 /* 565 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 566 * shadow copy so that we can restore this upon entry from userspace. 567 * 568 * This is *only* for exception entry from EL0, and is not valid until we 569 * __switch_to() a user task. 570 */ 571 DEFINE_PER_CPU(struct task_struct *, __entry_task); 572 573 static void entry_task_switch(struct task_struct *next) 574 { 575 __this_cpu_write(__entry_task, next); 576 } 577 578 #ifdef CONFIG_ARM64_GCS 579 580 void gcs_preserve_current_state(void) 581 { 582 current->thread.gcspr_el0 = read_sysreg_s(SYS_GCSPR_EL0); 583 } 584 585 static void gcs_thread_switch(struct task_struct *next) 586 { 587 if (!system_supports_gcs()) 588 return; 589 590 /* GCSPR_EL0 is always readable */ 591 gcs_preserve_current_state(); 592 write_sysreg_s(next->thread.gcspr_el0, SYS_GCSPR_EL0); 593 594 if (current->thread.gcs_el0_mode != next->thread.gcs_el0_mode) 595 gcs_set_el0_mode(next); 596 597 /* 598 * Ensure that GCS memory effects of the 'prev' thread are 599 * ordered before other memory accesses with release semantics 600 * (or preceded by a DMB) on the current PE. In addition, any 601 * memory accesses with acquire semantics (or succeeded by a 602 * DMB) are ordered before GCS memory effects of the 'next' 603 * thread. This will ensure that the GCS memory effects are 604 * visible to other PEs in case of migration. 605 */ 606 if (task_gcs_el0_enabled(current) || task_gcs_el0_enabled(next)) 607 gcsb_dsync(); 608 } 609 610 #else 611 612 static void gcs_thread_switch(struct task_struct *next) 613 { 614 } 615 616 #endif 617 618 /* 619 * Handle sysreg updates for ARM erratum 1418040 which affects the 32bit view of 620 * CNTVCT, various other errata which require trapping all CNTVCT{,_EL0} 621 * accesses and prctl(PR_SET_TSC). Ensure access is disabled iff a workaround is 622 * required or PR_TSC_SIGSEGV is set. 623 */ 624 static void update_cntkctl_el1(struct task_struct *next) 625 { 626 struct thread_info *ti = task_thread_info(next); 627 628 if (test_ti_thread_flag(ti, TIF_TSC_SIGSEGV) || 629 has_erratum_handler(read_cntvct_el0) || 630 (IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) && 631 this_cpu_has_cap(ARM64_WORKAROUND_1418040) && 632 is_compat_thread(ti))) 633 sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0); 634 else 635 sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN); 636 } 637 638 static void cntkctl_thread_switch(struct task_struct *prev, 639 struct task_struct *next) 640 { 641 if ((read_ti_thread_flags(task_thread_info(prev)) & 642 (_TIF_32BIT | _TIF_TSC_SIGSEGV)) != 643 (read_ti_thread_flags(task_thread_info(next)) & 644 (_TIF_32BIT | _TIF_TSC_SIGSEGV))) 645 update_cntkctl_el1(next); 646 } 647 648 static int do_set_tsc_mode(unsigned int val) 649 { 650 bool tsc_sigsegv; 651 652 if (val == PR_TSC_SIGSEGV) 653 tsc_sigsegv = true; 654 else if (val == PR_TSC_ENABLE) 655 tsc_sigsegv = false; 656 else 657 return -EINVAL; 658 659 preempt_disable(); 660 update_thread_flag(TIF_TSC_SIGSEGV, tsc_sigsegv); 661 update_cntkctl_el1(current); 662 preempt_enable(); 663 664 return 0; 665 } 666 667 static void permission_overlay_switch(struct task_struct *next) 668 { 669 if (!system_supports_poe()) 670 return; 671 672 current->thread.por_el0 = read_sysreg_s(SYS_POR_EL0); 673 if (current->thread.por_el0 != next->thread.por_el0) { 674 write_sysreg_s(next->thread.por_el0, SYS_POR_EL0); 675 /* 676 * No ISB required as we can tolerate spurious Overlay faults - 677 * the fault handler will check again based on the new value 678 * of POR_EL0. 679 */ 680 } 681 } 682 683 /* 684 * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore 685 * this function must be called with preemption disabled and the update to 686 * sctlr_user must be made in the same preemption disabled block so that 687 * __switch_to() does not see the variable update before the SCTLR_EL1 one. 688 */ 689 void update_sctlr_el1(u64 sctlr) 690 { 691 /* 692 * EnIA must not be cleared while in the kernel as this is necessary for 693 * in-kernel PAC. It will be cleared on kernel exit if needed. 694 */ 695 sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr); 696 697 /* ISB required for the kernel uaccess routines when setting TCF0. */ 698 isb(); 699 } 700 701 /* 702 * Thread switching. 703 */ 704 __notrace_funcgraph __sched 705 struct task_struct *__switch_to(struct task_struct *prev, 706 struct task_struct *next) 707 { 708 struct task_struct *last; 709 710 fpsimd_thread_switch(next); 711 tls_thread_switch(next); 712 hw_breakpoint_thread_switch(next); 713 contextidr_thread_switch(next); 714 entry_task_switch(next); 715 ssbs_thread_switch(next); 716 cntkctl_thread_switch(prev, next); 717 ptrauth_thread_switch_user(next); 718 permission_overlay_switch(next); 719 gcs_thread_switch(next); 720 721 /* 722 * Complete any pending TLB or cache maintenance on this CPU in case the 723 * thread migrates to a different CPU. This full barrier is also 724 * required by the membarrier system call. Additionally it makes any 725 * in-progress pgtable writes visible to the table walker; See 726 * emit_pte_barriers(). 727 */ 728 dsb(ish); 729 730 /* 731 * MTE thread switching must happen after the DSB above to ensure that 732 * any asynchronous tag check faults have been logged in the TFSR*_EL1 733 * registers. 734 */ 735 mte_thread_switch(next); 736 /* avoid expensive SCTLR_EL1 accesses if no change */ 737 if (prev->thread.sctlr_user != next->thread.sctlr_user) 738 update_sctlr_el1(next->thread.sctlr_user); 739 740 /* the actual thread switch */ 741 last = cpu_switch_to(prev, next); 742 743 return last; 744 } 745 746 struct wchan_info { 747 unsigned long pc; 748 int count; 749 }; 750 751 static bool get_wchan_cb(void *arg, unsigned long pc) 752 { 753 struct wchan_info *wchan_info = arg; 754 755 if (!in_sched_functions(pc)) { 756 wchan_info->pc = pc; 757 return false; 758 } 759 return wchan_info->count++ < 16; 760 } 761 762 unsigned long __get_wchan(struct task_struct *p) 763 { 764 struct wchan_info wchan_info = { 765 .pc = 0, 766 .count = 0, 767 }; 768 769 if (!try_get_task_stack(p)) 770 return 0; 771 772 arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL); 773 774 put_task_stack(p); 775 776 return wchan_info.pc; 777 } 778 779 unsigned long arch_align_stack(unsigned long sp) 780 { 781 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 782 sp -= get_random_u32_below(PAGE_SIZE); 783 return sp & ~0xf; 784 } 785 786 #ifdef CONFIG_COMPAT 787 int compat_elf_check_arch(const struct elf32_hdr *hdr) 788 { 789 if (!system_supports_32bit_el0()) 790 return false; 791 792 if ((hdr)->e_machine != EM_ARM) 793 return false; 794 795 if (!((hdr)->e_flags & EF_ARM_EABI_MASK)) 796 return false; 797 798 /* 799 * Prevent execve() of a 32-bit program from a deadline task 800 * if the restricted affinity mask would be inadmissible on an 801 * asymmetric system. 802 */ 803 return !static_branch_unlikely(&arm64_mismatched_32bit_el0) || 804 !dl_task_check_affinity(current, system_32bit_el0_cpumask()); 805 } 806 #endif 807 808 /* 809 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 810 */ 811 void arch_setup_new_exec(void) 812 { 813 unsigned long mmflags = 0; 814 815 if (is_compat_task()) { 816 mmflags = MMCF_AARCH32; 817 818 /* 819 * Restrict the CPU affinity mask for a 32-bit task so that 820 * it contains only 32-bit-capable CPUs. 821 * 822 * From the perspective of the task, this looks similar to 823 * what would happen if the 64-bit-only CPUs were hot-unplugged 824 * at the point of execve(), although we try a bit harder to 825 * honour the cpuset hierarchy. 826 */ 827 if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) 828 force_compatible_cpus_allowed_ptr(current); 829 } else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) { 830 relax_compatible_cpus_allowed_ptr(current); 831 } 832 833 current->mm->context.flags = mmflags; 834 ptrauth_thread_init_user(); 835 mte_thread_init_user(); 836 do_set_tsc_mode(PR_TSC_ENABLE); 837 838 if (task_spec_ssb_noexec(current)) { 839 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS, 840 PR_SPEC_ENABLE); 841 } 842 } 843 844 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 845 /* 846 * Control the relaxed ABI allowing tagged user addresses into the kernel. 847 */ 848 static unsigned int tagged_addr_disabled; 849 850 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg) 851 { 852 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE; 853 struct thread_info *ti = task_thread_info(task); 854 855 if (is_compat_thread(ti)) 856 return -EINVAL; 857 858 if (system_supports_mte()) { 859 valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \ 860 | PR_MTE_TAG_MASK; 861 862 if (cpus_have_cap(ARM64_MTE_STORE_ONLY)) 863 valid_mask |= PR_MTE_STORE_ONLY; 864 } 865 866 if (arg & ~valid_mask) 867 return -EINVAL; 868 869 /* 870 * Do not allow the enabling of the tagged address ABI if globally 871 * disabled via sysctl abi.tagged_addr_disabled. 872 */ 873 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled) 874 return -EINVAL; 875 876 if (set_mte_ctrl(task, arg) != 0) 877 return -EINVAL; 878 879 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE); 880 881 return 0; 882 } 883 884 long get_tagged_addr_ctrl(struct task_struct *task) 885 { 886 long ret = 0; 887 struct thread_info *ti = task_thread_info(task); 888 889 if (is_compat_thread(ti)) 890 return -EINVAL; 891 892 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR)) 893 ret = PR_TAGGED_ADDR_ENABLE; 894 895 ret |= get_mte_ctrl(task); 896 897 return ret; 898 } 899 900 /* 901 * Global sysctl to disable the tagged user addresses support. This control 902 * only prevents the tagged address ABI enabling via prctl() and does not 903 * disable it for tasks that already opted in to the relaxed ABI. 904 */ 905 906 static const struct ctl_table tagged_addr_sysctl_table[] = { 907 { 908 .procname = "tagged_addr_disabled", 909 .mode = 0644, 910 .data = &tagged_addr_disabled, 911 .maxlen = sizeof(int), 912 .proc_handler = proc_dointvec_minmax, 913 .extra1 = SYSCTL_ZERO, 914 .extra2 = SYSCTL_ONE, 915 }, 916 }; 917 918 static int __init tagged_addr_init(void) 919 { 920 if (!register_sysctl("abi", tagged_addr_sysctl_table)) 921 return -EINVAL; 922 return 0; 923 } 924 925 core_initcall(tagged_addr_init); 926 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */ 927 928 #ifdef CONFIG_BINFMT_ELF 929 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state, 930 bool has_interp, bool is_interp) 931 { 932 /* 933 * For dynamically linked executables the interpreter is 934 * responsible for setting PROT_BTI on everything except 935 * itself. 936 */ 937 if (is_interp != has_interp) 938 return prot; 939 940 if (!(state->flags & ARM64_ELF_BTI)) 941 return prot; 942 943 if (prot & PROT_EXEC) 944 prot |= PROT_BTI; 945 946 return prot; 947 } 948 #endif 949 950 int get_tsc_mode(unsigned long adr) 951 { 952 unsigned int val; 953 954 if (is_compat_task()) 955 return -EINVAL; 956 957 if (test_thread_flag(TIF_TSC_SIGSEGV)) 958 val = PR_TSC_SIGSEGV; 959 else 960 val = PR_TSC_ENABLE; 961 962 return put_user(val, (unsigned int __user *)adr); 963 } 964 965 int set_tsc_mode(unsigned int val) 966 { 967 if (is_compat_task()) 968 return -EINVAL; 969 970 return do_set_tsc_mode(val); 971 } 972