1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/process.c 4 * 5 * Original Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 #include <linux/compat.h> 10 #include <linux/efi.h> 11 #include <linux/elf.h> 12 #include <linux/export.h> 13 #include <linux/sched.h> 14 #include <linux/sched/debug.h> 15 #include <linux/sched/task.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/kernel.h> 18 #include <linux/mman.h> 19 #include <linux/mm.h> 20 #include <linux/nospec.h> 21 #include <linux/stddef.h> 22 #include <linux/sysctl.h> 23 #include <linux/unistd.h> 24 #include <linux/user.h> 25 #include <linux/delay.h> 26 #include <linux/reboot.h> 27 #include <linux/interrupt.h> 28 #include <linux/init.h> 29 #include <linux/cpu.h> 30 #include <linux/elfcore.h> 31 #include <linux/pm.h> 32 #include <linux/tick.h> 33 #include <linux/utsname.h> 34 #include <linux/uaccess.h> 35 #include <linux/random.h> 36 #include <linux/hw_breakpoint.h> 37 #include <linux/personality.h> 38 #include <linux/notifier.h> 39 #include <trace/events/power.h> 40 #include <linux/percpu.h> 41 #include <linux/thread_info.h> 42 #include <linux/prctl.h> 43 #include <linux/stacktrace.h> 44 45 #include <asm/alternative.h> 46 #include <asm/compat.h> 47 #include <asm/cpufeature.h> 48 #include <asm/cacheflush.h> 49 #include <asm/exec.h> 50 #include <asm/fpsimd.h> 51 #include <asm/mmu_context.h> 52 #include <asm/mte.h> 53 #include <asm/processor.h> 54 #include <asm/pointer_auth.h> 55 #include <asm/stacktrace.h> 56 #include <asm/switch_to.h> 57 #include <asm/system_misc.h> 58 59 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) 60 #include <linux/stackprotector.h> 61 unsigned long __stack_chk_guard __ro_after_init; 62 EXPORT_SYMBOL(__stack_chk_guard); 63 #endif 64 65 /* 66 * Function pointers to optional machine specific functions 67 */ 68 void (*pm_power_off)(void); 69 EXPORT_SYMBOL_GPL(pm_power_off); 70 71 #ifdef CONFIG_HOTPLUG_CPU 72 void __noreturn arch_cpu_idle_dead(void) 73 { 74 cpu_die(); 75 } 76 #endif 77 78 /* 79 * Called by kexec, immediately prior to machine_kexec(). 80 * 81 * This must completely disable all secondary CPUs; simply causing those CPUs 82 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 83 * kexec'd kernel to use any and all RAM as it sees fit, without having to 84 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 85 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this. 86 */ 87 void machine_shutdown(void) 88 { 89 smp_shutdown_nonboot_cpus(reboot_cpu); 90 } 91 92 /* 93 * Halting simply requires that the secondary CPUs stop performing any 94 * activity (executing tasks, handling interrupts). smp_send_stop() 95 * achieves this. 96 */ 97 void machine_halt(void) 98 { 99 local_irq_disable(); 100 smp_send_stop(); 101 while (1); 102 } 103 104 /* 105 * Power-off simply requires that the secondary CPUs stop performing any 106 * activity (executing tasks, handling interrupts). smp_send_stop() 107 * achieves this. When the system power is turned off, it will take all CPUs 108 * with it. 109 */ 110 void machine_power_off(void) 111 { 112 local_irq_disable(); 113 smp_send_stop(); 114 do_kernel_power_off(); 115 } 116 117 /* 118 * Restart requires that the secondary CPUs stop performing any activity 119 * while the primary CPU resets the system. Systems with multiple CPUs must 120 * provide a HW restart implementation, to ensure that all CPUs reset at once. 121 * This is required so that any code running after reset on the primary CPU 122 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 123 * executing pre-reset code, and using RAM that the primary CPU's code wishes 124 * to use. Implementing such co-ordination would be essentially impossible. 125 */ 126 void machine_restart(char *cmd) 127 { 128 /* Disable interrupts first */ 129 local_irq_disable(); 130 smp_send_stop(); 131 132 /* 133 * UpdateCapsule() depends on the system being reset via 134 * ResetSystem(). 135 */ 136 if (efi_enabled(EFI_RUNTIME_SERVICES)) 137 efi_reboot(reboot_mode, NULL); 138 139 /* Now call the architecture specific reboot code. */ 140 do_kernel_restart(cmd); 141 142 /* 143 * Whoops - the architecture was unable to reboot. 144 */ 145 printk("Reboot failed -- System halted\n"); 146 while (1); 147 } 148 149 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str 150 static const char *const btypes[] = { 151 bstr(NONE, "--"), 152 bstr( JC, "jc"), 153 bstr( C, "-c"), 154 bstr( J , "j-") 155 }; 156 #undef bstr 157 158 static void print_pstate(struct pt_regs *regs) 159 { 160 u64 pstate = regs->pstate; 161 162 if (compat_user_mode(regs)) { 163 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n", 164 pstate, 165 pstate & PSR_AA32_N_BIT ? 'N' : 'n', 166 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', 167 pstate & PSR_AA32_C_BIT ? 'C' : 'c', 168 pstate & PSR_AA32_V_BIT ? 'V' : 'v', 169 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', 170 pstate & PSR_AA32_T_BIT ? "T32" : "A32", 171 pstate & PSR_AA32_E_BIT ? "BE" : "LE", 172 pstate & PSR_AA32_A_BIT ? 'A' : 'a', 173 pstate & PSR_AA32_I_BIT ? 'I' : 'i', 174 pstate & PSR_AA32_F_BIT ? 'F' : 'f', 175 pstate & PSR_AA32_DIT_BIT ? '+' : '-', 176 pstate & PSR_AA32_SSBS_BIT ? '+' : '-'); 177 } else { 178 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >> 179 PSR_BTYPE_SHIFT]; 180 181 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n", 182 pstate, 183 pstate & PSR_N_BIT ? 'N' : 'n', 184 pstate & PSR_Z_BIT ? 'Z' : 'z', 185 pstate & PSR_C_BIT ? 'C' : 'c', 186 pstate & PSR_V_BIT ? 'V' : 'v', 187 pstate & PSR_D_BIT ? 'D' : 'd', 188 pstate & PSR_A_BIT ? 'A' : 'a', 189 pstate & PSR_I_BIT ? 'I' : 'i', 190 pstate & PSR_F_BIT ? 'F' : 'f', 191 pstate & PSR_PAN_BIT ? '+' : '-', 192 pstate & PSR_UAO_BIT ? '+' : '-', 193 pstate & PSR_TCO_BIT ? '+' : '-', 194 pstate & PSR_DIT_BIT ? '+' : '-', 195 pstate & PSR_SSBS_BIT ? '+' : '-', 196 btype_str); 197 } 198 } 199 200 void __show_regs(struct pt_regs *regs) 201 { 202 int i, top_reg; 203 u64 lr, sp; 204 205 if (compat_user_mode(regs)) { 206 lr = regs->compat_lr; 207 sp = regs->compat_sp; 208 top_reg = 12; 209 } else { 210 lr = regs->regs[30]; 211 sp = regs->sp; 212 top_reg = 29; 213 } 214 215 show_regs_print_info(KERN_DEFAULT); 216 print_pstate(regs); 217 218 if (!user_mode(regs)) { 219 printk("pc : %pS\n", (void *)regs->pc); 220 printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr)); 221 } else { 222 printk("pc : %016llx\n", regs->pc); 223 printk("lr : %016llx\n", lr); 224 } 225 226 printk("sp : %016llx\n", sp); 227 228 if (system_uses_irq_prio_masking()) 229 printk("pmr_save: %08llx\n", regs->pmr_save); 230 231 i = top_reg; 232 233 while (i >= 0) { 234 printk("x%-2d: %016llx", i, regs->regs[i]); 235 236 while (i-- % 3) 237 pr_cont(" x%-2d: %016llx", i, regs->regs[i]); 238 239 pr_cont("\n"); 240 } 241 } 242 243 void show_regs(struct pt_regs *regs) 244 { 245 __show_regs(regs); 246 dump_backtrace(regs, NULL, KERN_DEFAULT); 247 } 248 249 static void tls_thread_flush(void) 250 { 251 write_sysreg(0, tpidr_el0); 252 if (system_supports_tpidr2()) 253 write_sysreg_s(0, SYS_TPIDR2_EL0); 254 255 if (is_compat_task()) { 256 current->thread.uw.tp_value = 0; 257 258 /* 259 * We need to ensure ordering between the shadow state and the 260 * hardware state, so that we don't corrupt the hardware state 261 * with a stale shadow state during context switch. 262 */ 263 barrier(); 264 write_sysreg(0, tpidrro_el0); 265 } 266 } 267 268 static void flush_tagged_addr_state(void) 269 { 270 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) 271 clear_thread_flag(TIF_TAGGED_ADDR); 272 } 273 274 void flush_thread(void) 275 { 276 fpsimd_flush_thread(); 277 tls_thread_flush(); 278 flush_ptrace_hw_breakpoint(current); 279 flush_tagged_addr_state(); 280 } 281 282 void arch_release_task_struct(struct task_struct *tsk) 283 { 284 fpsimd_release_task(tsk); 285 } 286 287 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 288 { 289 if (current->mm) 290 fpsimd_preserve_current_state(); 291 *dst = *src; 292 293 /* 294 * Detach src's sve_state (if any) from dst so that it does not 295 * get erroneously used or freed prematurely. dst's copies 296 * will be allocated on demand later on if dst uses SVE. 297 * For consistency, also clear TIF_SVE here: this could be done 298 * later in copy_process(), but to avoid tripping up future 299 * maintainers it is best not to leave TIF flags and buffers in 300 * an inconsistent state, even temporarily. 301 */ 302 dst->thread.sve_state = NULL; 303 clear_tsk_thread_flag(dst, TIF_SVE); 304 305 /* 306 * In the unlikely event that we create a new thread with ZA 307 * enabled we should retain the ZA and ZT state so duplicate 308 * it here. This may be shortly freed if we exec() or if 309 * CLONE_SETTLS but it's simpler to do it here. To avoid 310 * confusing the rest of the code ensure that we have a 311 * sve_state allocated whenever sme_state is allocated. 312 */ 313 if (thread_za_enabled(&src->thread)) { 314 dst->thread.sve_state = kzalloc(sve_state_size(src), 315 GFP_KERNEL); 316 if (!dst->thread.sve_state) 317 return -ENOMEM; 318 319 dst->thread.sme_state = kmemdup(src->thread.sme_state, 320 sme_state_size(src), 321 GFP_KERNEL); 322 if (!dst->thread.sme_state) { 323 kfree(dst->thread.sve_state); 324 dst->thread.sve_state = NULL; 325 return -ENOMEM; 326 } 327 } else { 328 dst->thread.sme_state = NULL; 329 clear_tsk_thread_flag(dst, TIF_SME); 330 } 331 332 dst->thread.fp_type = FP_STATE_FPSIMD; 333 334 /* clear any pending asynchronous tag fault raised by the parent */ 335 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT); 336 337 return 0; 338 } 339 340 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 341 342 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) 343 { 344 unsigned long clone_flags = args->flags; 345 unsigned long stack_start = args->stack; 346 unsigned long tls = args->tls; 347 struct pt_regs *childregs = task_pt_regs(p); 348 349 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 350 351 /* 352 * In case p was allocated the same task_struct pointer as some 353 * other recently-exited task, make sure p is disassociated from 354 * any cpu that may have run that now-exited task recently. 355 * Otherwise we could erroneously skip reloading the FPSIMD 356 * registers for p. 357 */ 358 fpsimd_flush_task_state(p); 359 360 ptrauth_thread_init_kernel(p); 361 362 if (likely(!args->fn)) { 363 *childregs = *current_pt_regs(); 364 childregs->regs[0] = 0; 365 366 /* 367 * Read the current TLS pointer from tpidr_el0 as it may be 368 * out-of-sync with the saved value. 369 */ 370 *task_user_tls(p) = read_sysreg(tpidr_el0); 371 if (system_supports_tpidr2()) 372 p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0); 373 374 if (stack_start) { 375 if (is_compat_thread(task_thread_info(p))) 376 childregs->compat_sp = stack_start; 377 else 378 childregs->sp = stack_start; 379 } 380 381 /* 382 * If a TLS pointer was passed to clone, use it for the new 383 * thread. We also reset TPIDR2 if it's in use. 384 */ 385 if (clone_flags & CLONE_SETTLS) { 386 p->thread.uw.tp_value = tls; 387 p->thread.tpidr2_el0 = 0; 388 } 389 } else { 390 /* 391 * A kthread has no context to ERET to, so ensure any buggy 392 * ERET is treated as an illegal exception return. 393 * 394 * When a user task is created from a kthread, childregs will 395 * be initialized by start_thread() or start_compat_thread(). 396 */ 397 memset(childregs, 0, sizeof(struct pt_regs)); 398 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT; 399 400 p->thread.cpu_context.x19 = (unsigned long)args->fn; 401 p->thread.cpu_context.x20 = (unsigned long)args->fn_arg; 402 } 403 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 404 p->thread.cpu_context.sp = (unsigned long)childregs; 405 /* 406 * For the benefit of the unwinder, set up childregs->stackframe 407 * as the final frame for the new task. 408 */ 409 p->thread.cpu_context.fp = (unsigned long)childregs->stackframe; 410 411 ptrace_hw_copy_thread(p); 412 413 return 0; 414 } 415 416 void tls_preserve_current_state(void) 417 { 418 *task_user_tls(current) = read_sysreg(tpidr_el0); 419 if (system_supports_tpidr2() && !is_compat_task()) 420 current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0); 421 } 422 423 static void tls_thread_switch(struct task_struct *next) 424 { 425 tls_preserve_current_state(); 426 427 if (is_compat_thread(task_thread_info(next))) 428 write_sysreg(next->thread.uw.tp_value, tpidrro_el0); 429 else if (!arm64_kernel_unmapped_at_el0()) 430 write_sysreg(0, tpidrro_el0); 431 432 write_sysreg(*task_user_tls(next), tpidr_el0); 433 if (system_supports_tpidr2()) 434 write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0); 435 } 436 437 /* 438 * Force SSBS state on context-switch, since it may be lost after migrating 439 * from a CPU which treats the bit as RES0 in a heterogeneous system. 440 */ 441 static void ssbs_thread_switch(struct task_struct *next) 442 { 443 /* 444 * Nothing to do for kernel threads, but 'regs' may be junk 445 * (e.g. idle task) so check the flags and bail early. 446 */ 447 if (unlikely(next->flags & PF_KTHREAD)) 448 return; 449 450 /* 451 * If all CPUs implement the SSBS extension, then we just need to 452 * context-switch the PSTATE field. 453 */ 454 if (alternative_has_cap_unlikely(ARM64_SSBS)) 455 return; 456 457 spectre_v4_enable_task_mitigation(next); 458 } 459 460 /* 461 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 462 * shadow copy so that we can restore this upon entry from userspace. 463 * 464 * This is *only* for exception entry from EL0, and is not valid until we 465 * __switch_to() a user task. 466 */ 467 DEFINE_PER_CPU(struct task_struct *, __entry_task); 468 469 static void entry_task_switch(struct task_struct *next) 470 { 471 __this_cpu_write(__entry_task, next); 472 } 473 474 /* 475 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT. 476 * Ensure access is disabled when switching to a 32bit task, ensure 477 * access is enabled when switching to a 64bit task. 478 */ 479 static void erratum_1418040_thread_switch(struct task_struct *next) 480 { 481 if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) || 482 !this_cpu_has_cap(ARM64_WORKAROUND_1418040)) 483 return; 484 485 if (is_compat_thread(task_thread_info(next))) 486 sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0); 487 else 488 sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN); 489 } 490 491 static void erratum_1418040_new_exec(void) 492 { 493 preempt_disable(); 494 erratum_1418040_thread_switch(current); 495 preempt_enable(); 496 } 497 498 /* 499 * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore 500 * this function must be called with preemption disabled and the update to 501 * sctlr_user must be made in the same preemption disabled block so that 502 * __switch_to() does not see the variable update before the SCTLR_EL1 one. 503 */ 504 void update_sctlr_el1(u64 sctlr) 505 { 506 /* 507 * EnIA must not be cleared while in the kernel as this is necessary for 508 * in-kernel PAC. It will be cleared on kernel exit if needed. 509 */ 510 sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr); 511 512 /* ISB required for the kernel uaccess routines when setting TCF0. */ 513 isb(); 514 } 515 516 /* 517 * Thread switching. 518 */ 519 __notrace_funcgraph __sched 520 struct task_struct *__switch_to(struct task_struct *prev, 521 struct task_struct *next) 522 { 523 struct task_struct *last; 524 525 fpsimd_thread_switch(next); 526 tls_thread_switch(next); 527 hw_breakpoint_thread_switch(next); 528 contextidr_thread_switch(next); 529 entry_task_switch(next); 530 ssbs_thread_switch(next); 531 erratum_1418040_thread_switch(next); 532 ptrauth_thread_switch_user(next); 533 534 /* 535 * Complete any pending TLB or cache maintenance on this CPU in case 536 * the thread migrates to a different CPU. 537 * This full barrier is also required by the membarrier system 538 * call. 539 */ 540 dsb(ish); 541 542 /* 543 * MTE thread switching must happen after the DSB above to ensure that 544 * any asynchronous tag check faults have been logged in the TFSR*_EL1 545 * registers. 546 */ 547 mte_thread_switch(next); 548 /* avoid expensive SCTLR_EL1 accesses if no change */ 549 if (prev->thread.sctlr_user != next->thread.sctlr_user) 550 update_sctlr_el1(next->thread.sctlr_user); 551 552 /* the actual thread switch */ 553 last = cpu_switch_to(prev, next); 554 555 return last; 556 } 557 558 struct wchan_info { 559 unsigned long pc; 560 int count; 561 }; 562 563 static bool get_wchan_cb(void *arg, unsigned long pc) 564 { 565 struct wchan_info *wchan_info = arg; 566 567 if (!in_sched_functions(pc)) { 568 wchan_info->pc = pc; 569 return false; 570 } 571 return wchan_info->count++ < 16; 572 } 573 574 unsigned long __get_wchan(struct task_struct *p) 575 { 576 struct wchan_info wchan_info = { 577 .pc = 0, 578 .count = 0, 579 }; 580 581 if (!try_get_task_stack(p)) 582 return 0; 583 584 arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL); 585 586 put_task_stack(p); 587 588 return wchan_info.pc; 589 } 590 591 unsigned long arch_align_stack(unsigned long sp) 592 { 593 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 594 sp -= get_random_u32_below(PAGE_SIZE); 595 return sp & ~0xf; 596 } 597 598 #ifdef CONFIG_COMPAT 599 int compat_elf_check_arch(const struct elf32_hdr *hdr) 600 { 601 if (!system_supports_32bit_el0()) 602 return false; 603 604 if ((hdr)->e_machine != EM_ARM) 605 return false; 606 607 if (!((hdr)->e_flags & EF_ARM_EABI_MASK)) 608 return false; 609 610 /* 611 * Prevent execve() of a 32-bit program from a deadline task 612 * if the restricted affinity mask would be inadmissible on an 613 * asymmetric system. 614 */ 615 return !static_branch_unlikely(&arm64_mismatched_32bit_el0) || 616 !dl_task_check_affinity(current, system_32bit_el0_cpumask()); 617 } 618 #endif 619 620 /* 621 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 622 */ 623 void arch_setup_new_exec(void) 624 { 625 unsigned long mmflags = 0; 626 627 if (is_compat_task()) { 628 mmflags = MMCF_AARCH32; 629 630 /* 631 * Restrict the CPU affinity mask for a 32-bit task so that 632 * it contains only 32-bit-capable CPUs. 633 * 634 * From the perspective of the task, this looks similar to 635 * what would happen if the 64-bit-only CPUs were hot-unplugged 636 * at the point of execve(), although we try a bit harder to 637 * honour the cpuset hierarchy. 638 */ 639 if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) 640 force_compatible_cpus_allowed_ptr(current); 641 } else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) { 642 relax_compatible_cpus_allowed_ptr(current); 643 } 644 645 current->mm->context.flags = mmflags; 646 ptrauth_thread_init_user(); 647 mte_thread_init_user(); 648 erratum_1418040_new_exec(); 649 650 if (task_spec_ssb_noexec(current)) { 651 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS, 652 PR_SPEC_ENABLE); 653 } 654 } 655 656 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 657 /* 658 * Control the relaxed ABI allowing tagged user addresses into the kernel. 659 */ 660 static unsigned int tagged_addr_disabled; 661 662 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg) 663 { 664 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE; 665 struct thread_info *ti = task_thread_info(task); 666 667 if (is_compat_thread(ti)) 668 return -EINVAL; 669 670 if (system_supports_mte()) 671 valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \ 672 | PR_MTE_TAG_MASK; 673 674 if (arg & ~valid_mask) 675 return -EINVAL; 676 677 /* 678 * Do not allow the enabling of the tagged address ABI if globally 679 * disabled via sysctl abi.tagged_addr_disabled. 680 */ 681 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled) 682 return -EINVAL; 683 684 if (set_mte_ctrl(task, arg) != 0) 685 return -EINVAL; 686 687 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE); 688 689 return 0; 690 } 691 692 long get_tagged_addr_ctrl(struct task_struct *task) 693 { 694 long ret = 0; 695 struct thread_info *ti = task_thread_info(task); 696 697 if (is_compat_thread(ti)) 698 return -EINVAL; 699 700 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR)) 701 ret = PR_TAGGED_ADDR_ENABLE; 702 703 ret |= get_mte_ctrl(task); 704 705 return ret; 706 } 707 708 /* 709 * Global sysctl to disable the tagged user addresses support. This control 710 * only prevents the tagged address ABI enabling via prctl() and does not 711 * disable it for tasks that already opted in to the relaxed ABI. 712 */ 713 714 static struct ctl_table tagged_addr_sysctl_table[] = { 715 { 716 .procname = "tagged_addr_disabled", 717 .mode = 0644, 718 .data = &tagged_addr_disabled, 719 .maxlen = sizeof(int), 720 .proc_handler = proc_dointvec_minmax, 721 .extra1 = SYSCTL_ZERO, 722 .extra2 = SYSCTL_ONE, 723 }, 724 }; 725 726 static int __init tagged_addr_init(void) 727 { 728 if (!register_sysctl("abi", tagged_addr_sysctl_table)) 729 return -EINVAL; 730 return 0; 731 } 732 733 core_initcall(tagged_addr_init); 734 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */ 735 736 #ifdef CONFIG_BINFMT_ELF 737 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state, 738 bool has_interp, bool is_interp) 739 { 740 /* 741 * For dynamically linked executables the interpreter is 742 * responsible for setting PROT_BTI on everything except 743 * itself. 744 */ 745 if (is_interp != has_interp) 746 return prot; 747 748 if (!(state->flags & ARM64_ELF_BTI)) 749 return prot; 750 751 if (prot & PROT_EXEC) 752 prot |= PROT_BTI; 753 754 return prot; 755 } 756 #endif 757