xref: /linux/arch/arm64/kernel/process.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Based on arch/arm/kernel/process.c
3  *
4  * Original Copyright (C) 1995  Linus Torvalds
5  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
6  * Copyright (C) 2012 ARM Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <stdarg.h>
22 
23 #include <linux/compat.h>
24 #include <linux/efi.h>
25 #include <linux/export.h>
26 #include <linux/sched.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/stddef.h>
30 #include <linux/unistd.h>
31 #include <linux/user.h>
32 #include <linux/delay.h>
33 #include <linux/reboot.h>
34 #include <linux/interrupt.h>
35 #include <linux/kallsyms.h>
36 #include <linux/init.h>
37 #include <linux/cpu.h>
38 #include <linux/elfcore.h>
39 #include <linux/pm.h>
40 #include <linux/tick.h>
41 #include <linux/utsname.h>
42 #include <linux/uaccess.h>
43 #include <linux/random.h>
44 #include <linux/hw_breakpoint.h>
45 #include <linux/personality.h>
46 #include <linux/notifier.h>
47 #include <trace/events/power.h>
48 
49 #include <asm/alternative.h>
50 #include <asm/compat.h>
51 #include <asm/cacheflush.h>
52 #include <asm/fpsimd.h>
53 #include <asm/mmu_context.h>
54 #include <asm/processor.h>
55 #include <asm/stacktrace.h>
56 
57 #ifdef CONFIG_CC_STACKPROTECTOR
58 #include <linux/stackprotector.h>
59 unsigned long __stack_chk_guard __read_mostly;
60 EXPORT_SYMBOL(__stack_chk_guard);
61 #endif
62 
63 /*
64  * Function pointers to optional machine specific functions
65  */
66 void (*pm_power_off)(void);
67 EXPORT_SYMBOL_GPL(pm_power_off);
68 
69 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
70 
71 /*
72  * This is our default idle handler.
73  */
74 void arch_cpu_idle(void)
75 {
76 	/*
77 	 * This should do all the clock switching and wait for interrupt
78 	 * tricks
79 	 */
80 	trace_cpu_idle_rcuidle(1, smp_processor_id());
81 	cpu_do_idle();
82 	local_irq_enable();
83 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
84 }
85 
86 #ifdef CONFIG_HOTPLUG_CPU
87 void arch_cpu_idle_dead(void)
88 {
89        cpu_die();
90 }
91 #endif
92 
93 /*
94  * Called by kexec, immediately prior to machine_kexec().
95  *
96  * This must completely disable all secondary CPUs; simply causing those CPUs
97  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
98  * kexec'd kernel to use any and all RAM as it sees fit, without having to
99  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
100  * functionality embodied in disable_nonboot_cpus() to achieve this.
101  */
102 void machine_shutdown(void)
103 {
104 	disable_nonboot_cpus();
105 }
106 
107 /*
108  * Halting simply requires that the secondary CPUs stop performing any
109  * activity (executing tasks, handling interrupts). smp_send_stop()
110  * achieves this.
111  */
112 void machine_halt(void)
113 {
114 	local_irq_disable();
115 	smp_send_stop();
116 	while (1);
117 }
118 
119 /*
120  * Power-off simply requires that the secondary CPUs stop performing any
121  * activity (executing tasks, handling interrupts). smp_send_stop()
122  * achieves this. When the system power is turned off, it will take all CPUs
123  * with it.
124  */
125 void machine_power_off(void)
126 {
127 	local_irq_disable();
128 	smp_send_stop();
129 	if (pm_power_off)
130 		pm_power_off();
131 }
132 
133 /*
134  * Restart requires that the secondary CPUs stop performing any activity
135  * while the primary CPU resets the system. Systems with multiple CPUs must
136  * provide a HW restart implementation, to ensure that all CPUs reset at once.
137  * This is required so that any code running after reset on the primary CPU
138  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
139  * executing pre-reset code, and using RAM that the primary CPU's code wishes
140  * to use. Implementing such co-ordination would be essentially impossible.
141  */
142 void machine_restart(char *cmd)
143 {
144 	/* Disable interrupts first */
145 	local_irq_disable();
146 	smp_send_stop();
147 
148 	/*
149 	 * UpdateCapsule() depends on the system being reset via
150 	 * ResetSystem().
151 	 */
152 	if (efi_enabled(EFI_RUNTIME_SERVICES))
153 		efi_reboot(reboot_mode, NULL);
154 
155 	/* Now call the architecture specific reboot code. */
156 	if (arm_pm_restart)
157 		arm_pm_restart(reboot_mode, cmd);
158 	else
159 		do_kernel_restart(cmd);
160 
161 	/*
162 	 * Whoops - the architecture was unable to reboot.
163 	 */
164 	printk("Reboot failed -- System halted\n");
165 	while (1);
166 }
167 
168 void __show_regs(struct pt_regs *regs)
169 {
170 	int i, top_reg;
171 	u64 lr, sp;
172 
173 	if (compat_user_mode(regs)) {
174 		lr = regs->compat_lr;
175 		sp = regs->compat_sp;
176 		top_reg = 12;
177 	} else {
178 		lr = regs->regs[30];
179 		sp = regs->sp;
180 		top_reg = 29;
181 	}
182 
183 	show_regs_print_info(KERN_DEFAULT);
184 	print_symbol("PC is at %s\n", instruction_pointer(regs));
185 	print_symbol("LR is at %s\n", lr);
186 	printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n",
187 	       regs->pc, lr, regs->pstate);
188 	printk("sp : %016llx\n", sp);
189 	for (i = top_reg; i >= 0; i--) {
190 		printk("x%-2d: %016llx ", i, regs->regs[i]);
191 		if (i % 2 == 0)
192 			printk("\n");
193 	}
194 	printk("\n");
195 }
196 
197 void show_regs(struct pt_regs * regs)
198 {
199 	printk("\n");
200 	__show_regs(regs);
201 }
202 
203 static void tls_thread_flush(void)
204 {
205 	asm ("msr tpidr_el0, xzr");
206 
207 	if (is_compat_task()) {
208 		current->thread.tp_value = 0;
209 
210 		/*
211 		 * We need to ensure ordering between the shadow state and the
212 		 * hardware state, so that we don't corrupt the hardware state
213 		 * with a stale shadow state during context switch.
214 		 */
215 		barrier();
216 		asm ("msr tpidrro_el0, xzr");
217 	}
218 }
219 
220 void flush_thread(void)
221 {
222 	fpsimd_flush_thread();
223 	tls_thread_flush();
224 	flush_ptrace_hw_breakpoint(current);
225 }
226 
227 void release_thread(struct task_struct *dead_task)
228 {
229 }
230 
231 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
232 {
233 	if (current->mm)
234 		fpsimd_preserve_current_state();
235 	*dst = *src;
236 	return 0;
237 }
238 
239 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
240 
241 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
242 		unsigned long stk_sz, struct task_struct *p)
243 {
244 	struct pt_regs *childregs = task_pt_regs(p);
245 
246 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
247 
248 	if (likely(!(p->flags & PF_KTHREAD))) {
249 		*childregs = *current_pt_regs();
250 		childregs->regs[0] = 0;
251 
252 		/*
253 		 * Read the current TLS pointer from tpidr_el0 as it may be
254 		 * out-of-sync with the saved value.
255 		 */
256 		asm("mrs %0, tpidr_el0" : "=r" (*task_user_tls(p)));
257 
258 		if (stack_start) {
259 			if (is_compat_thread(task_thread_info(p)))
260 				childregs->compat_sp = stack_start;
261 			else
262 				childregs->sp = stack_start;
263 		}
264 
265 		/*
266 		 * If a TLS pointer was passed to clone (4th argument), use it
267 		 * for the new thread.
268 		 */
269 		if (clone_flags & CLONE_SETTLS)
270 			p->thread.tp_value = childregs->regs[3];
271 	} else {
272 		memset(childregs, 0, sizeof(struct pt_regs));
273 		childregs->pstate = PSR_MODE_EL1h;
274 		if (IS_ENABLED(CONFIG_ARM64_UAO) &&
275 		    cpus_have_cap(ARM64_HAS_UAO))
276 			childregs->pstate |= PSR_UAO_BIT;
277 		p->thread.cpu_context.x19 = stack_start;
278 		p->thread.cpu_context.x20 = stk_sz;
279 	}
280 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
281 	p->thread.cpu_context.sp = (unsigned long)childregs;
282 
283 	ptrace_hw_copy_thread(p);
284 
285 	return 0;
286 }
287 
288 static void tls_thread_switch(struct task_struct *next)
289 {
290 	unsigned long tpidr, tpidrro;
291 
292 	asm("mrs %0, tpidr_el0" : "=r" (tpidr));
293 	*task_user_tls(current) = tpidr;
294 
295 	tpidr = *task_user_tls(next);
296 	tpidrro = is_compat_thread(task_thread_info(next)) ?
297 		  next->thread.tp_value : 0;
298 
299 	asm(
300 	"	msr	tpidr_el0, %0\n"
301 	"	msr	tpidrro_el0, %1"
302 	: : "r" (tpidr), "r" (tpidrro));
303 }
304 
305 /* Restore the UAO state depending on next's addr_limit */
306 static void uao_thread_switch(struct task_struct *next)
307 {
308 	if (IS_ENABLED(CONFIG_ARM64_UAO)) {
309 		if (task_thread_info(next)->addr_limit == KERNEL_DS)
310 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
311 		else
312 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
313 	}
314 }
315 
316 /*
317  * Thread switching.
318  */
319 struct task_struct *__switch_to(struct task_struct *prev,
320 				struct task_struct *next)
321 {
322 	struct task_struct *last;
323 
324 	fpsimd_thread_switch(next);
325 	tls_thread_switch(next);
326 	hw_breakpoint_thread_switch(next);
327 	contextidr_thread_switch(next);
328 	uao_thread_switch(next);
329 
330 	/*
331 	 * Complete any pending TLB or cache maintenance on this CPU in case
332 	 * the thread migrates to a different CPU.
333 	 */
334 	dsb(ish);
335 
336 	/* the actual thread switch */
337 	last = cpu_switch_to(prev, next);
338 
339 	return last;
340 }
341 
342 unsigned long get_wchan(struct task_struct *p)
343 {
344 	struct stackframe frame;
345 	unsigned long stack_page;
346 	int count = 0;
347 	if (!p || p == current || p->state == TASK_RUNNING)
348 		return 0;
349 
350 	frame.fp = thread_saved_fp(p);
351 	frame.sp = thread_saved_sp(p);
352 	frame.pc = thread_saved_pc(p);
353 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
354 	frame.graph = p->curr_ret_stack;
355 #endif
356 	stack_page = (unsigned long)task_stack_page(p);
357 	do {
358 		if (frame.sp < stack_page ||
359 		    frame.sp >= stack_page + THREAD_SIZE ||
360 		    unwind_frame(p, &frame))
361 			return 0;
362 		if (!in_sched_functions(frame.pc))
363 			return frame.pc;
364 	} while (count ++ < 16);
365 	return 0;
366 }
367 
368 unsigned long arch_align_stack(unsigned long sp)
369 {
370 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
371 		sp -= get_random_int() & ~PAGE_MASK;
372 	return sp & ~0xf;
373 }
374 
375 unsigned long arch_randomize_brk(struct mm_struct *mm)
376 {
377 	unsigned long range_end = mm->brk;
378 
379 	if (is_compat_task())
380 		range_end += 0x02000000;
381 	else
382 		range_end += 0x40000000;
383 
384 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
385 }
386