xref: /linux/arch/arm64/kernel/probes/kprobes.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  * arch/arm64/kernel/probes/kprobes.c
3  *
4  * Kprobes support for ARM64
5  *
6  * Copyright (C) 2013 Linaro Limited.
7  * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  */
19 #include <linux/kasan.h>
20 #include <linux/kernel.h>
21 #include <linux/kprobes.h>
22 #include <linux/extable.h>
23 #include <linux/slab.h>
24 #include <linux/stop_machine.h>
25 #include <linux/sched/debug.h>
26 #include <linux/set_memory.h>
27 #include <linux/stringify.h>
28 #include <linux/vmalloc.h>
29 #include <asm/traps.h>
30 #include <asm/ptrace.h>
31 #include <asm/cacheflush.h>
32 #include <asm/debug-monitors.h>
33 #include <asm/system_misc.h>
34 #include <asm/insn.h>
35 #include <linux/uaccess.h>
36 #include <asm/irq.h>
37 #include <asm/sections.h>
38 
39 #include "decode-insn.h"
40 
41 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
42 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43 
44 static void __kprobes
45 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
46 
47 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
48 {
49 	void *addrs[1];
50 	u32 insns[1];
51 
52 	addrs[0] = addr;
53 	insns[0] = opcode;
54 
55 	return aarch64_insn_patch_text(addrs, insns, 1);
56 }
57 
58 static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
59 {
60 	/* prepare insn slot */
61 	patch_text(p->ainsn.api.insn, p->opcode);
62 
63 	flush_icache_range((uintptr_t) (p->ainsn.api.insn),
64 			   (uintptr_t) (p->ainsn.api.insn) +
65 			   MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
66 
67 	/*
68 	 * Needs restoring of return address after stepping xol.
69 	 */
70 	p->ainsn.api.restore = (unsigned long) p->addr +
71 	  sizeof(kprobe_opcode_t);
72 }
73 
74 static void __kprobes arch_prepare_simulate(struct kprobe *p)
75 {
76 	/* This instructions is not executed xol. No need to adjust the PC */
77 	p->ainsn.api.restore = 0;
78 }
79 
80 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
81 {
82 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
83 
84 	if (p->ainsn.api.handler)
85 		p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs);
86 
87 	/* single step simulated, now go for post processing */
88 	post_kprobe_handler(kcb, regs);
89 }
90 
91 int __kprobes arch_prepare_kprobe(struct kprobe *p)
92 {
93 	unsigned long probe_addr = (unsigned long)p->addr;
94 
95 	if (probe_addr & 0x3)
96 		return -EINVAL;
97 
98 	/* copy instruction */
99 	p->opcode = le32_to_cpu(*p->addr);
100 
101 	if (search_exception_tables(probe_addr))
102 		return -EINVAL;
103 
104 	/* decode instruction */
105 	switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) {
106 	case INSN_REJECTED:	/* insn not supported */
107 		return -EINVAL;
108 
109 	case INSN_GOOD_NO_SLOT:	/* insn need simulation */
110 		p->ainsn.api.insn = NULL;
111 		break;
112 
113 	case INSN_GOOD:	/* instruction uses slot */
114 		p->ainsn.api.insn = get_insn_slot();
115 		if (!p->ainsn.api.insn)
116 			return -ENOMEM;
117 		break;
118 	}
119 
120 	/* prepare the instruction */
121 	if (p->ainsn.api.insn)
122 		arch_prepare_ss_slot(p);
123 	else
124 		arch_prepare_simulate(p);
125 
126 	return 0;
127 }
128 
129 void *alloc_insn_page(void)
130 {
131 	void *page;
132 
133 	page = vmalloc_exec(PAGE_SIZE);
134 	if (page)
135 		set_memory_ro((unsigned long)page, 1);
136 
137 	return page;
138 }
139 
140 /* arm kprobe: install breakpoint in text */
141 void __kprobes arch_arm_kprobe(struct kprobe *p)
142 {
143 	patch_text(p->addr, BRK64_OPCODE_KPROBES);
144 }
145 
146 /* disarm kprobe: remove breakpoint from text */
147 void __kprobes arch_disarm_kprobe(struct kprobe *p)
148 {
149 	patch_text(p->addr, p->opcode);
150 }
151 
152 void __kprobes arch_remove_kprobe(struct kprobe *p)
153 {
154 	if (p->ainsn.api.insn) {
155 		free_insn_slot(p->ainsn.api.insn, 0);
156 		p->ainsn.api.insn = NULL;
157 	}
158 }
159 
160 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
161 {
162 	kcb->prev_kprobe.kp = kprobe_running();
163 	kcb->prev_kprobe.status = kcb->kprobe_status;
164 }
165 
166 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
167 {
168 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
169 	kcb->kprobe_status = kcb->prev_kprobe.status;
170 }
171 
172 static void __kprobes set_current_kprobe(struct kprobe *p)
173 {
174 	__this_cpu_write(current_kprobe, p);
175 }
176 
177 /*
178  * When PSTATE.D is set (masked), then software step exceptions can not be
179  * generated.
180  * SPSR's D bit shows the value of PSTATE.D immediately before the
181  * exception was taken. PSTATE.D is set while entering into any exception
182  * mode, however software clears it for any normal (none-debug-exception)
183  * mode in the exception entry. Therefore, when we are entering into kprobe
184  * breakpoint handler from any normal mode then SPSR.D bit is already
185  * cleared, however it is set when we are entering from any debug exception
186  * mode.
187  * Since we always need to generate single step exception after a kprobe
188  * breakpoint exception therefore we need to clear it unconditionally, when
189  * we become sure that the current breakpoint exception is for kprobe.
190  */
191 static void __kprobes
192 spsr_set_debug_flag(struct pt_regs *regs, int mask)
193 {
194 	unsigned long spsr = regs->pstate;
195 
196 	if (mask)
197 		spsr |= PSR_D_BIT;
198 	else
199 		spsr &= ~PSR_D_BIT;
200 
201 	regs->pstate = spsr;
202 }
203 
204 /*
205  * Interrupts need to be disabled before single-step mode is set, and not
206  * reenabled until after single-step mode ends.
207  * Without disabling interrupt on local CPU, there is a chance of
208  * interrupt occurrence in the period of exception return and  start of
209  * out-of-line single-step, that result in wrongly single stepping
210  * into the interrupt handler.
211  */
212 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
213 						struct pt_regs *regs)
214 {
215 	kcb->saved_irqflag = regs->pstate;
216 	regs->pstate |= PSR_I_BIT;
217 }
218 
219 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
220 						struct pt_regs *regs)
221 {
222 	if (kcb->saved_irqflag & PSR_I_BIT)
223 		regs->pstate |= PSR_I_BIT;
224 	else
225 		regs->pstate &= ~PSR_I_BIT;
226 }
227 
228 static void __kprobes
229 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr)
230 {
231 	kcb->ss_ctx.ss_pending = true;
232 	kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t);
233 }
234 
235 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
236 {
237 	kcb->ss_ctx.ss_pending = false;
238 	kcb->ss_ctx.match_addr = 0;
239 }
240 
241 static void __kprobes setup_singlestep(struct kprobe *p,
242 				       struct pt_regs *regs,
243 				       struct kprobe_ctlblk *kcb, int reenter)
244 {
245 	unsigned long slot;
246 
247 	if (reenter) {
248 		save_previous_kprobe(kcb);
249 		set_current_kprobe(p);
250 		kcb->kprobe_status = KPROBE_REENTER;
251 	} else {
252 		kcb->kprobe_status = KPROBE_HIT_SS;
253 	}
254 
255 
256 	if (p->ainsn.api.insn) {
257 		/* prepare for single stepping */
258 		slot = (unsigned long)p->ainsn.api.insn;
259 
260 		set_ss_context(kcb, slot);	/* mark pending ss */
261 
262 		spsr_set_debug_flag(regs, 0);
263 
264 		/* IRQs and single stepping do not mix well. */
265 		kprobes_save_local_irqflag(kcb, regs);
266 		kernel_enable_single_step(regs);
267 		instruction_pointer_set(regs, slot);
268 	} else {
269 		/* insn simulation */
270 		arch_simulate_insn(p, regs);
271 	}
272 }
273 
274 static int __kprobes reenter_kprobe(struct kprobe *p,
275 				    struct pt_regs *regs,
276 				    struct kprobe_ctlblk *kcb)
277 {
278 	switch (kcb->kprobe_status) {
279 	case KPROBE_HIT_SSDONE:
280 	case KPROBE_HIT_ACTIVE:
281 		kprobes_inc_nmissed_count(p);
282 		setup_singlestep(p, regs, kcb, 1);
283 		break;
284 	case KPROBE_HIT_SS:
285 	case KPROBE_REENTER:
286 		pr_warn("Unrecoverable kprobe detected.\n");
287 		dump_kprobe(p);
288 		BUG();
289 		break;
290 	default:
291 		WARN_ON(1);
292 		return 0;
293 	}
294 
295 	return 1;
296 }
297 
298 static void __kprobes
299 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
300 {
301 	struct kprobe *cur = kprobe_running();
302 
303 	if (!cur)
304 		return;
305 
306 	/* return addr restore if non-branching insn */
307 	if (cur->ainsn.api.restore != 0)
308 		instruction_pointer_set(regs, cur->ainsn.api.restore);
309 
310 	/* restore back original saved kprobe variables and continue */
311 	if (kcb->kprobe_status == KPROBE_REENTER) {
312 		restore_previous_kprobe(kcb);
313 		return;
314 	}
315 	/* call post handler */
316 	kcb->kprobe_status = KPROBE_HIT_SSDONE;
317 	if (cur->post_handler)	{
318 		/* post_handler can hit breakpoint and single step
319 		 * again, so we enable D-flag for recursive exception.
320 		 */
321 		cur->post_handler(cur, regs, 0);
322 	}
323 
324 	reset_current_kprobe();
325 }
326 
327 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
328 {
329 	struct kprobe *cur = kprobe_running();
330 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
331 
332 	switch (kcb->kprobe_status) {
333 	case KPROBE_HIT_SS:
334 	case KPROBE_REENTER:
335 		/*
336 		 * We are here because the instruction being single
337 		 * stepped caused a page fault. We reset the current
338 		 * kprobe and the ip points back to the probe address
339 		 * and allow the page fault handler to continue as a
340 		 * normal page fault.
341 		 */
342 		instruction_pointer_set(regs, (unsigned long) cur->addr);
343 		if (!instruction_pointer(regs))
344 			BUG();
345 
346 		kernel_disable_single_step();
347 
348 		if (kcb->kprobe_status == KPROBE_REENTER)
349 			restore_previous_kprobe(kcb);
350 		else
351 			reset_current_kprobe();
352 
353 		break;
354 	case KPROBE_HIT_ACTIVE:
355 	case KPROBE_HIT_SSDONE:
356 		/*
357 		 * We increment the nmissed count for accounting,
358 		 * we can also use npre/npostfault count for accounting
359 		 * these specific fault cases.
360 		 */
361 		kprobes_inc_nmissed_count(cur);
362 
363 		/*
364 		 * We come here because instructions in the pre/post
365 		 * handler caused the page_fault, this could happen
366 		 * if handler tries to access user space by
367 		 * copy_from_user(), get_user() etc. Let the
368 		 * user-specified handler try to fix it first.
369 		 */
370 		if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
371 			return 1;
372 
373 		/*
374 		 * In case the user-specified fault handler returned
375 		 * zero, try to fix up.
376 		 */
377 		if (fixup_exception(regs))
378 			return 1;
379 	}
380 	return 0;
381 }
382 
383 static void __kprobes kprobe_handler(struct pt_regs *regs)
384 {
385 	struct kprobe *p, *cur_kprobe;
386 	struct kprobe_ctlblk *kcb;
387 	unsigned long addr = instruction_pointer(regs);
388 
389 	kcb = get_kprobe_ctlblk();
390 	cur_kprobe = kprobe_running();
391 
392 	p = get_kprobe((kprobe_opcode_t *) addr);
393 
394 	if (p) {
395 		if (cur_kprobe) {
396 			if (reenter_kprobe(p, regs, kcb))
397 				return;
398 		} else {
399 			/* Probe hit */
400 			set_current_kprobe(p);
401 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
402 
403 			/*
404 			 * If we have no pre-handler or it returned 0, we
405 			 * continue with normal processing.  If we have a
406 			 * pre-handler and it returned non-zero, it will
407 			 * modify the execution path and no need to single
408 			 * stepping. Let's just reset current kprobe and exit.
409 			 *
410 			 * pre_handler can hit a breakpoint and can step thru
411 			 * before return, keep PSTATE D-flag enabled until
412 			 * pre_handler return back.
413 			 */
414 			if (!p->pre_handler || !p->pre_handler(p, regs)) {
415 				setup_singlestep(p, regs, kcb, 0);
416 			} else
417 				reset_current_kprobe();
418 		}
419 	}
420 	/*
421 	 * The breakpoint instruction was removed right
422 	 * after we hit it.  Another cpu has removed
423 	 * either a probepoint or a debugger breakpoint
424 	 * at this address.  In either case, no further
425 	 * handling of this interrupt is appropriate.
426 	 * Return back to original instruction, and continue.
427 	 */
428 }
429 
430 static int __kprobes
431 kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr)
432 {
433 	if ((kcb->ss_ctx.ss_pending)
434 	    && (kcb->ss_ctx.match_addr == addr)) {
435 		clear_ss_context(kcb);	/* clear pending ss */
436 		return DBG_HOOK_HANDLED;
437 	}
438 	/* not ours, kprobes should ignore it */
439 	return DBG_HOOK_ERROR;
440 }
441 
442 int __kprobes
443 kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr)
444 {
445 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
446 	int retval;
447 
448 	if (user_mode(regs))
449 		return DBG_HOOK_ERROR;
450 
451 	/* return error if this is not our step */
452 	retval = kprobe_ss_hit(kcb, instruction_pointer(regs));
453 
454 	if (retval == DBG_HOOK_HANDLED) {
455 		kprobes_restore_local_irqflag(kcb, regs);
456 		kernel_disable_single_step();
457 
458 		post_kprobe_handler(kcb, regs);
459 	}
460 
461 	return retval;
462 }
463 
464 int __kprobes
465 kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr)
466 {
467 	if (user_mode(regs))
468 		return DBG_HOOK_ERROR;
469 
470 	kprobe_handler(regs);
471 	return DBG_HOOK_HANDLED;
472 }
473 
474 /*
475  * Provide a blacklist of symbols identifying ranges which cannot be kprobed.
476  * This blacklist is exposed to userspace via debugfs (kprobes/blacklist).
477  */
478 int __init arch_populate_kprobe_blacklist(void)
479 {
480 	int ret;
481 
482 	ret = kprobe_add_area_blacklist((unsigned long)__entry_text_start,
483 					(unsigned long)__entry_text_end);
484 	if (ret)
485 		return ret;
486 	ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
487 					(unsigned long)__irqentry_text_end);
488 	if (ret)
489 		return ret;
490 	ret = kprobe_add_area_blacklist((unsigned long)__exception_text_start,
491 					(unsigned long)__exception_text_end);
492 	if (ret)
493 		return ret;
494 	ret = kprobe_add_area_blacklist((unsigned long)__idmap_text_start,
495 					(unsigned long)__idmap_text_end);
496 	if (ret)
497 		return ret;
498 	ret = kprobe_add_area_blacklist((unsigned long)__hyp_text_start,
499 					(unsigned long)__hyp_text_end);
500 	if (ret || is_kernel_in_hyp_mode())
501 		return ret;
502 	ret = kprobe_add_area_blacklist((unsigned long)__hyp_idmap_text_start,
503 					(unsigned long)__hyp_idmap_text_end);
504 	return ret;
505 }
506 
507 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
508 {
509 	struct kretprobe_instance *ri = NULL;
510 	struct hlist_head *head, empty_rp;
511 	struct hlist_node *tmp;
512 	unsigned long flags, orig_ret_address = 0;
513 	unsigned long trampoline_address =
514 		(unsigned long)&kretprobe_trampoline;
515 	kprobe_opcode_t *correct_ret_addr = NULL;
516 
517 	INIT_HLIST_HEAD(&empty_rp);
518 	kretprobe_hash_lock(current, &head, &flags);
519 
520 	/*
521 	 * It is possible to have multiple instances associated with a given
522 	 * task either because multiple functions in the call path have
523 	 * return probes installed on them, and/or more than one
524 	 * return probe was registered for a target function.
525 	 *
526 	 * We can handle this because:
527 	 *     - instances are always pushed into the head of the list
528 	 *     - when multiple return probes are registered for the same
529 	 *	 function, the (chronologically) first instance's ret_addr
530 	 *	 will be the real return address, and all the rest will
531 	 *	 point to kretprobe_trampoline.
532 	 */
533 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
534 		if (ri->task != current)
535 			/* another task is sharing our hash bucket */
536 			continue;
537 
538 		orig_ret_address = (unsigned long)ri->ret_addr;
539 
540 		if (orig_ret_address != trampoline_address)
541 			/*
542 			 * This is the real return address. Any other
543 			 * instances associated with this task are for
544 			 * other calls deeper on the call stack
545 			 */
546 			break;
547 	}
548 
549 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
550 
551 	correct_ret_addr = ri->ret_addr;
552 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
553 		if (ri->task != current)
554 			/* another task is sharing our hash bucket */
555 			continue;
556 
557 		orig_ret_address = (unsigned long)ri->ret_addr;
558 		if (ri->rp && ri->rp->handler) {
559 			__this_cpu_write(current_kprobe, &ri->rp->kp);
560 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
561 			ri->ret_addr = correct_ret_addr;
562 			ri->rp->handler(ri, regs);
563 			__this_cpu_write(current_kprobe, NULL);
564 		}
565 
566 		recycle_rp_inst(ri, &empty_rp);
567 
568 		if (orig_ret_address != trampoline_address)
569 			/*
570 			 * This is the real return address. Any other
571 			 * instances associated with this task are for
572 			 * other calls deeper on the call stack
573 			 */
574 			break;
575 	}
576 
577 	kretprobe_hash_unlock(current, &flags);
578 
579 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
580 		hlist_del(&ri->hlist);
581 		kfree(ri);
582 	}
583 	return (void *)orig_ret_address;
584 }
585 
586 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
587 				      struct pt_regs *regs)
588 {
589 	ri->ret_addr = (kprobe_opcode_t *)regs->regs[30];
590 
591 	/* replace return addr (x30) with trampoline */
592 	regs->regs[30] = (long)&kretprobe_trampoline;
593 }
594 
595 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
596 {
597 	return 0;
598 }
599 
600 int __init arch_init_kprobes(void)
601 {
602 	return 0;
603 }
604