xref: /linux/arch/arm64/kernel/probes/kprobes.c (revision 1f2367a39f17bd553a75e179a747f9b257bc9478)
1 /*
2  * arch/arm64/kernel/probes/kprobes.c
3  *
4  * Kprobes support for ARM64
5  *
6  * Copyright (C) 2013 Linaro Limited.
7  * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  */
19 #include <linux/kasan.h>
20 #include <linux/kernel.h>
21 #include <linux/kprobes.h>
22 #include <linux/extable.h>
23 #include <linux/slab.h>
24 #include <linux/stop_machine.h>
25 #include <linux/sched/debug.h>
26 #include <linux/set_memory.h>
27 #include <linux/stringify.h>
28 #include <linux/vmalloc.h>
29 #include <asm/traps.h>
30 #include <asm/ptrace.h>
31 #include <asm/cacheflush.h>
32 #include <asm/debug-monitors.h>
33 #include <asm/system_misc.h>
34 #include <asm/insn.h>
35 #include <linux/uaccess.h>
36 #include <asm/irq.h>
37 #include <asm/sections.h>
38 
39 #include "decode-insn.h"
40 
41 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
42 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43 
44 static void __kprobes
45 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
46 
47 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
48 {
49 	void *addrs[1];
50 	u32 insns[1];
51 
52 	addrs[0] = addr;
53 	insns[0] = opcode;
54 
55 	return aarch64_insn_patch_text(addrs, insns, 1);
56 }
57 
58 static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
59 {
60 	/* prepare insn slot */
61 	patch_text(p->ainsn.api.insn, p->opcode);
62 
63 	flush_icache_range((uintptr_t) (p->ainsn.api.insn),
64 			   (uintptr_t) (p->ainsn.api.insn) +
65 			   MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
66 
67 	/*
68 	 * Needs restoring of return address after stepping xol.
69 	 */
70 	p->ainsn.api.restore = (unsigned long) p->addr +
71 	  sizeof(kprobe_opcode_t);
72 }
73 
74 static void __kprobes arch_prepare_simulate(struct kprobe *p)
75 {
76 	/* This instructions is not executed xol. No need to adjust the PC */
77 	p->ainsn.api.restore = 0;
78 }
79 
80 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
81 {
82 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
83 
84 	if (p->ainsn.api.handler)
85 		p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs);
86 
87 	/* single step simulated, now go for post processing */
88 	post_kprobe_handler(kcb, regs);
89 }
90 
91 int __kprobes arch_prepare_kprobe(struct kprobe *p)
92 {
93 	unsigned long probe_addr = (unsigned long)p->addr;
94 	extern char __start_rodata[];
95 	extern char __end_rodata[];
96 
97 	if (probe_addr & 0x3)
98 		return -EINVAL;
99 
100 	/* copy instruction */
101 	p->opcode = le32_to_cpu(*p->addr);
102 
103 	if (in_exception_text(probe_addr))
104 		return -EINVAL;
105 	if (probe_addr >= (unsigned long) __start_rodata &&
106 	    probe_addr <= (unsigned long) __end_rodata)
107 		return -EINVAL;
108 
109 	/* decode instruction */
110 	switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) {
111 	case INSN_REJECTED:	/* insn not supported */
112 		return -EINVAL;
113 
114 	case INSN_GOOD_NO_SLOT:	/* insn need simulation */
115 		p->ainsn.api.insn = NULL;
116 		break;
117 
118 	case INSN_GOOD:	/* instruction uses slot */
119 		p->ainsn.api.insn = get_insn_slot();
120 		if (!p->ainsn.api.insn)
121 			return -ENOMEM;
122 		break;
123 	}
124 
125 	/* prepare the instruction */
126 	if (p->ainsn.api.insn)
127 		arch_prepare_ss_slot(p);
128 	else
129 		arch_prepare_simulate(p);
130 
131 	return 0;
132 }
133 
134 void *alloc_insn_page(void)
135 {
136 	void *page;
137 
138 	page = vmalloc_exec(PAGE_SIZE);
139 	if (page)
140 		set_memory_ro((unsigned long)page, 1);
141 
142 	return page;
143 }
144 
145 /* arm kprobe: install breakpoint in text */
146 void __kprobes arch_arm_kprobe(struct kprobe *p)
147 {
148 	patch_text(p->addr, BRK64_OPCODE_KPROBES);
149 }
150 
151 /* disarm kprobe: remove breakpoint from text */
152 void __kprobes arch_disarm_kprobe(struct kprobe *p)
153 {
154 	patch_text(p->addr, p->opcode);
155 }
156 
157 void __kprobes arch_remove_kprobe(struct kprobe *p)
158 {
159 	if (p->ainsn.api.insn) {
160 		free_insn_slot(p->ainsn.api.insn, 0);
161 		p->ainsn.api.insn = NULL;
162 	}
163 }
164 
165 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
166 {
167 	kcb->prev_kprobe.kp = kprobe_running();
168 	kcb->prev_kprobe.status = kcb->kprobe_status;
169 }
170 
171 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
172 {
173 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
174 	kcb->kprobe_status = kcb->prev_kprobe.status;
175 }
176 
177 static void __kprobes set_current_kprobe(struct kprobe *p)
178 {
179 	__this_cpu_write(current_kprobe, p);
180 }
181 
182 /*
183  * When PSTATE.D is set (masked), then software step exceptions can not be
184  * generated.
185  * SPSR's D bit shows the value of PSTATE.D immediately before the
186  * exception was taken. PSTATE.D is set while entering into any exception
187  * mode, however software clears it for any normal (none-debug-exception)
188  * mode in the exception entry. Therefore, when we are entering into kprobe
189  * breakpoint handler from any normal mode then SPSR.D bit is already
190  * cleared, however it is set when we are entering from any debug exception
191  * mode.
192  * Since we always need to generate single step exception after a kprobe
193  * breakpoint exception therefore we need to clear it unconditionally, when
194  * we become sure that the current breakpoint exception is for kprobe.
195  */
196 static void __kprobes
197 spsr_set_debug_flag(struct pt_regs *regs, int mask)
198 {
199 	unsigned long spsr = regs->pstate;
200 
201 	if (mask)
202 		spsr |= PSR_D_BIT;
203 	else
204 		spsr &= ~PSR_D_BIT;
205 
206 	regs->pstate = spsr;
207 }
208 
209 /*
210  * Interrupts need to be disabled before single-step mode is set, and not
211  * reenabled until after single-step mode ends.
212  * Without disabling interrupt on local CPU, there is a chance of
213  * interrupt occurrence in the period of exception return and  start of
214  * out-of-line single-step, that result in wrongly single stepping
215  * into the interrupt handler.
216  */
217 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
218 						struct pt_regs *regs)
219 {
220 	kcb->saved_irqflag = regs->pstate;
221 	regs->pstate |= PSR_I_BIT;
222 }
223 
224 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
225 						struct pt_regs *regs)
226 {
227 	if (kcb->saved_irqflag & PSR_I_BIT)
228 		regs->pstate |= PSR_I_BIT;
229 	else
230 		regs->pstate &= ~PSR_I_BIT;
231 }
232 
233 static void __kprobes
234 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr)
235 {
236 	kcb->ss_ctx.ss_pending = true;
237 	kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t);
238 }
239 
240 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
241 {
242 	kcb->ss_ctx.ss_pending = false;
243 	kcb->ss_ctx.match_addr = 0;
244 }
245 
246 static void __kprobes setup_singlestep(struct kprobe *p,
247 				       struct pt_regs *regs,
248 				       struct kprobe_ctlblk *kcb, int reenter)
249 {
250 	unsigned long slot;
251 
252 	if (reenter) {
253 		save_previous_kprobe(kcb);
254 		set_current_kprobe(p);
255 		kcb->kprobe_status = KPROBE_REENTER;
256 	} else {
257 		kcb->kprobe_status = KPROBE_HIT_SS;
258 	}
259 
260 
261 	if (p->ainsn.api.insn) {
262 		/* prepare for single stepping */
263 		slot = (unsigned long)p->ainsn.api.insn;
264 
265 		set_ss_context(kcb, slot);	/* mark pending ss */
266 
267 		spsr_set_debug_flag(regs, 0);
268 
269 		/* IRQs and single stepping do not mix well. */
270 		kprobes_save_local_irqflag(kcb, regs);
271 		kernel_enable_single_step(regs);
272 		instruction_pointer_set(regs, slot);
273 	} else {
274 		/* insn simulation */
275 		arch_simulate_insn(p, regs);
276 	}
277 }
278 
279 static int __kprobes reenter_kprobe(struct kprobe *p,
280 				    struct pt_regs *regs,
281 				    struct kprobe_ctlblk *kcb)
282 {
283 	switch (kcb->kprobe_status) {
284 	case KPROBE_HIT_SSDONE:
285 	case KPROBE_HIT_ACTIVE:
286 		kprobes_inc_nmissed_count(p);
287 		setup_singlestep(p, regs, kcb, 1);
288 		break;
289 	case KPROBE_HIT_SS:
290 	case KPROBE_REENTER:
291 		pr_warn("Unrecoverable kprobe detected.\n");
292 		dump_kprobe(p);
293 		BUG();
294 		break;
295 	default:
296 		WARN_ON(1);
297 		return 0;
298 	}
299 
300 	return 1;
301 }
302 
303 static void __kprobes
304 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
305 {
306 	struct kprobe *cur = kprobe_running();
307 
308 	if (!cur)
309 		return;
310 
311 	/* return addr restore if non-branching insn */
312 	if (cur->ainsn.api.restore != 0)
313 		instruction_pointer_set(regs, cur->ainsn.api.restore);
314 
315 	/* restore back original saved kprobe variables and continue */
316 	if (kcb->kprobe_status == KPROBE_REENTER) {
317 		restore_previous_kprobe(kcb);
318 		return;
319 	}
320 	/* call post handler */
321 	kcb->kprobe_status = KPROBE_HIT_SSDONE;
322 	if (cur->post_handler)	{
323 		/* post_handler can hit breakpoint and single step
324 		 * again, so we enable D-flag for recursive exception.
325 		 */
326 		cur->post_handler(cur, regs, 0);
327 	}
328 
329 	reset_current_kprobe();
330 }
331 
332 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
333 {
334 	struct kprobe *cur = kprobe_running();
335 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
336 
337 	switch (kcb->kprobe_status) {
338 	case KPROBE_HIT_SS:
339 	case KPROBE_REENTER:
340 		/*
341 		 * We are here because the instruction being single
342 		 * stepped caused a page fault. We reset the current
343 		 * kprobe and the ip points back to the probe address
344 		 * and allow the page fault handler to continue as a
345 		 * normal page fault.
346 		 */
347 		instruction_pointer_set(regs, (unsigned long) cur->addr);
348 		if (!instruction_pointer(regs))
349 			BUG();
350 
351 		kernel_disable_single_step();
352 
353 		if (kcb->kprobe_status == KPROBE_REENTER)
354 			restore_previous_kprobe(kcb);
355 		else
356 			reset_current_kprobe();
357 
358 		break;
359 	case KPROBE_HIT_ACTIVE:
360 	case KPROBE_HIT_SSDONE:
361 		/*
362 		 * We increment the nmissed count for accounting,
363 		 * we can also use npre/npostfault count for accounting
364 		 * these specific fault cases.
365 		 */
366 		kprobes_inc_nmissed_count(cur);
367 
368 		/*
369 		 * We come here because instructions in the pre/post
370 		 * handler caused the page_fault, this could happen
371 		 * if handler tries to access user space by
372 		 * copy_from_user(), get_user() etc. Let the
373 		 * user-specified handler try to fix it first.
374 		 */
375 		if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
376 			return 1;
377 
378 		/*
379 		 * In case the user-specified fault handler returned
380 		 * zero, try to fix up.
381 		 */
382 		if (fixup_exception(regs))
383 			return 1;
384 	}
385 	return 0;
386 }
387 
388 static void __kprobes kprobe_handler(struct pt_regs *regs)
389 {
390 	struct kprobe *p, *cur_kprobe;
391 	struct kprobe_ctlblk *kcb;
392 	unsigned long addr = instruction_pointer(regs);
393 
394 	kcb = get_kprobe_ctlblk();
395 	cur_kprobe = kprobe_running();
396 
397 	p = get_kprobe((kprobe_opcode_t *) addr);
398 
399 	if (p) {
400 		if (cur_kprobe) {
401 			if (reenter_kprobe(p, regs, kcb))
402 				return;
403 		} else {
404 			/* Probe hit */
405 			set_current_kprobe(p);
406 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
407 
408 			/*
409 			 * If we have no pre-handler or it returned 0, we
410 			 * continue with normal processing.  If we have a
411 			 * pre-handler and it returned non-zero, it will
412 			 * modify the execution path and no need to single
413 			 * stepping. Let's just reset current kprobe and exit.
414 			 *
415 			 * pre_handler can hit a breakpoint and can step thru
416 			 * before return, keep PSTATE D-flag enabled until
417 			 * pre_handler return back.
418 			 */
419 			if (!p->pre_handler || !p->pre_handler(p, regs)) {
420 				setup_singlestep(p, regs, kcb, 0);
421 			} else
422 				reset_current_kprobe();
423 		}
424 	}
425 	/*
426 	 * The breakpoint instruction was removed right
427 	 * after we hit it.  Another cpu has removed
428 	 * either a probepoint or a debugger breakpoint
429 	 * at this address.  In either case, no further
430 	 * handling of this interrupt is appropriate.
431 	 * Return back to original instruction, and continue.
432 	 */
433 }
434 
435 static int __kprobes
436 kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr)
437 {
438 	if ((kcb->ss_ctx.ss_pending)
439 	    && (kcb->ss_ctx.match_addr == addr)) {
440 		clear_ss_context(kcb);	/* clear pending ss */
441 		return DBG_HOOK_HANDLED;
442 	}
443 	/* not ours, kprobes should ignore it */
444 	return DBG_HOOK_ERROR;
445 }
446 
447 int __kprobes
448 kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr)
449 {
450 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
451 	int retval;
452 
453 	if (user_mode(regs))
454 		return DBG_HOOK_ERROR;
455 
456 	/* return error if this is not our step */
457 	retval = kprobe_ss_hit(kcb, instruction_pointer(regs));
458 
459 	if (retval == DBG_HOOK_HANDLED) {
460 		kprobes_restore_local_irqflag(kcb, regs);
461 		kernel_disable_single_step();
462 
463 		post_kprobe_handler(kcb, regs);
464 	}
465 
466 	return retval;
467 }
468 
469 int __kprobes
470 kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr)
471 {
472 	if (user_mode(regs))
473 		return DBG_HOOK_ERROR;
474 
475 	kprobe_handler(regs);
476 	return DBG_HOOK_HANDLED;
477 }
478 
479 bool arch_within_kprobe_blacklist(unsigned long addr)
480 {
481 	if ((addr >= (unsigned long)__kprobes_text_start &&
482 	    addr < (unsigned long)__kprobes_text_end) ||
483 	    (addr >= (unsigned long)__entry_text_start &&
484 	    addr < (unsigned long)__entry_text_end) ||
485 	    (addr >= (unsigned long)__idmap_text_start &&
486 	    addr < (unsigned long)__idmap_text_end) ||
487 	    (addr >= (unsigned long)__hyp_text_start &&
488 	    addr < (unsigned long)__hyp_text_end) ||
489 	    !!search_exception_tables(addr))
490 		return true;
491 
492 	if (!is_kernel_in_hyp_mode()) {
493 		if ((addr >= (unsigned long)__hyp_idmap_text_start &&
494 		    addr < (unsigned long)__hyp_idmap_text_end))
495 			return true;
496 	}
497 
498 	return false;
499 }
500 
501 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
502 {
503 	struct kretprobe_instance *ri = NULL;
504 	struct hlist_head *head, empty_rp;
505 	struct hlist_node *tmp;
506 	unsigned long flags, orig_ret_address = 0;
507 	unsigned long trampoline_address =
508 		(unsigned long)&kretprobe_trampoline;
509 	kprobe_opcode_t *correct_ret_addr = NULL;
510 
511 	INIT_HLIST_HEAD(&empty_rp);
512 	kretprobe_hash_lock(current, &head, &flags);
513 
514 	/*
515 	 * It is possible to have multiple instances associated with a given
516 	 * task either because multiple functions in the call path have
517 	 * return probes installed on them, and/or more than one
518 	 * return probe was registered for a target function.
519 	 *
520 	 * We can handle this because:
521 	 *     - instances are always pushed into the head of the list
522 	 *     - when multiple return probes are registered for the same
523 	 *	 function, the (chronologically) first instance's ret_addr
524 	 *	 will be the real return address, and all the rest will
525 	 *	 point to kretprobe_trampoline.
526 	 */
527 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
528 		if (ri->task != current)
529 			/* another task is sharing our hash bucket */
530 			continue;
531 
532 		orig_ret_address = (unsigned long)ri->ret_addr;
533 
534 		if (orig_ret_address != trampoline_address)
535 			/*
536 			 * This is the real return address. Any other
537 			 * instances associated with this task are for
538 			 * other calls deeper on the call stack
539 			 */
540 			break;
541 	}
542 
543 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
544 
545 	correct_ret_addr = ri->ret_addr;
546 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
547 		if (ri->task != current)
548 			/* another task is sharing our hash bucket */
549 			continue;
550 
551 		orig_ret_address = (unsigned long)ri->ret_addr;
552 		if (ri->rp && ri->rp->handler) {
553 			__this_cpu_write(current_kprobe, &ri->rp->kp);
554 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
555 			ri->ret_addr = correct_ret_addr;
556 			ri->rp->handler(ri, regs);
557 			__this_cpu_write(current_kprobe, NULL);
558 		}
559 
560 		recycle_rp_inst(ri, &empty_rp);
561 
562 		if (orig_ret_address != trampoline_address)
563 			/*
564 			 * This is the real return address. Any other
565 			 * instances associated with this task are for
566 			 * other calls deeper on the call stack
567 			 */
568 			break;
569 	}
570 
571 	kretprobe_hash_unlock(current, &flags);
572 
573 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
574 		hlist_del(&ri->hlist);
575 		kfree(ri);
576 	}
577 	return (void *)orig_ret_address;
578 }
579 
580 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
581 				      struct pt_regs *regs)
582 {
583 	ri->ret_addr = (kprobe_opcode_t *)regs->regs[30];
584 
585 	/* replace return addr (x30) with trampoline */
586 	regs->regs[30] = (long)&kretprobe_trampoline;
587 }
588 
589 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
590 {
591 	return 0;
592 }
593 
594 int __init arch_init_kprobes(void)
595 {
596 	return 0;
597 }
598