xref: /linux/arch/arm64/kernel/probes/kprobes.c (revision 17cfcb68af3bc7d5e8ae08779b1853310a2949f3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * arch/arm64/kernel/probes/kprobes.c
4  *
5  * Kprobes support for ARM64
6  *
7  * Copyright (C) 2013 Linaro Limited.
8  * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org>
9  */
10 #include <linux/kasan.h>
11 #include <linux/kernel.h>
12 #include <linux/kprobes.h>
13 #include <linux/extable.h>
14 #include <linux/slab.h>
15 #include <linux/stop_machine.h>
16 #include <linux/sched/debug.h>
17 #include <linux/set_memory.h>
18 #include <linux/stringify.h>
19 #include <linux/vmalloc.h>
20 #include <asm/traps.h>
21 #include <asm/ptrace.h>
22 #include <asm/cacheflush.h>
23 #include <asm/debug-monitors.h>
24 #include <asm/daifflags.h>
25 #include <asm/system_misc.h>
26 #include <asm/insn.h>
27 #include <linux/uaccess.h>
28 #include <asm/irq.h>
29 #include <asm/sections.h>
30 
31 #include "decode-insn.h"
32 
33 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
34 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
35 
36 static void __kprobes
37 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
38 
39 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
40 {
41 	void *addrs[1];
42 	u32 insns[1];
43 
44 	addrs[0] = addr;
45 	insns[0] = opcode;
46 
47 	return aarch64_insn_patch_text(addrs, insns, 1);
48 }
49 
50 static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
51 {
52 	/* prepare insn slot */
53 	patch_text(p->ainsn.api.insn, p->opcode);
54 
55 	flush_icache_range((uintptr_t) (p->ainsn.api.insn),
56 			   (uintptr_t) (p->ainsn.api.insn) +
57 			   MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
58 
59 	/*
60 	 * Needs restoring of return address after stepping xol.
61 	 */
62 	p->ainsn.api.restore = (unsigned long) p->addr +
63 	  sizeof(kprobe_opcode_t);
64 }
65 
66 static void __kprobes arch_prepare_simulate(struct kprobe *p)
67 {
68 	/* This instructions is not executed xol. No need to adjust the PC */
69 	p->ainsn.api.restore = 0;
70 }
71 
72 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
73 {
74 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
75 
76 	if (p->ainsn.api.handler)
77 		p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs);
78 
79 	/* single step simulated, now go for post processing */
80 	post_kprobe_handler(kcb, regs);
81 }
82 
83 int __kprobes arch_prepare_kprobe(struct kprobe *p)
84 {
85 	unsigned long probe_addr = (unsigned long)p->addr;
86 
87 	if (probe_addr & 0x3)
88 		return -EINVAL;
89 
90 	/* copy instruction */
91 	p->opcode = le32_to_cpu(*p->addr);
92 
93 	if (search_exception_tables(probe_addr))
94 		return -EINVAL;
95 
96 	/* decode instruction */
97 	switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) {
98 	case INSN_REJECTED:	/* insn not supported */
99 		return -EINVAL;
100 
101 	case INSN_GOOD_NO_SLOT:	/* insn need simulation */
102 		p->ainsn.api.insn = NULL;
103 		break;
104 
105 	case INSN_GOOD:	/* instruction uses slot */
106 		p->ainsn.api.insn = get_insn_slot();
107 		if (!p->ainsn.api.insn)
108 			return -ENOMEM;
109 		break;
110 	}
111 
112 	/* prepare the instruction */
113 	if (p->ainsn.api.insn)
114 		arch_prepare_ss_slot(p);
115 	else
116 		arch_prepare_simulate(p);
117 
118 	return 0;
119 }
120 
121 void *alloc_insn_page(void)
122 {
123 	void *page;
124 
125 	page = vmalloc_exec(PAGE_SIZE);
126 	if (page) {
127 		set_memory_ro((unsigned long)page, 1);
128 		set_vm_flush_reset_perms(page);
129 	}
130 
131 	return page;
132 }
133 
134 /* arm kprobe: install breakpoint in text */
135 void __kprobes arch_arm_kprobe(struct kprobe *p)
136 {
137 	patch_text(p->addr, BRK64_OPCODE_KPROBES);
138 }
139 
140 /* disarm kprobe: remove breakpoint from text */
141 void __kprobes arch_disarm_kprobe(struct kprobe *p)
142 {
143 	patch_text(p->addr, p->opcode);
144 }
145 
146 void __kprobes arch_remove_kprobe(struct kprobe *p)
147 {
148 	if (p->ainsn.api.insn) {
149 		free_insn_slot(p->ainsn.api.insn, 0);
150 		p->ainsn.api.insn = NULL;
151 	}
152 }
153 
154 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
155 {
156 	kcb->prev_kprobe.kp = kprobe_running();
157 	kcb->prev_kprobe.status = kcb->kprobe_status;
158 }
159 
160 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
161 {
162 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
163 	kcb->kprobe_status = kcb->prev_kprobe.status;
164 }
165 
166 static void __kprobes set_current_kprobe(struct kprobe *p)
167 {
168 	__this_cpu_write(current_kprobe, p);
169 }
170 
171 /*
172  * Interrupts need to be disabled before single-step mode is set, and not
173  * reenabled until after single-step mode ends.
174  * Without disabling interrupt on local CPU, there is a chance of
175  * interrupt occurrence in the period of exception return and  start of
176  * out-of-line single-step, that result in wrongly single stepping
177  * into the interrupt handler.
178  */
179 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
180 						struct pt_regs *regs)
181 {
182 	kcb->saved_irqflag = regs->pstate & DAIF_MASK;
183 	regs->pstate |= PSR_I_BIT;
184 	/* Unmask PSTATE.D for enabling software step exceptions. */
185 	regs->pstate &= ~PSR_D_BIT;
186 }
187 
188 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
189 						struct pt_regs *regs)
190 {
191 	regs->pstate &= ~DAIF_MASK;
192 	regs->pstate |= kcb->saved_irqflag;
193 }
194 
195 static void __kprobes
196 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr)
197 {
198 	kcb->ss_ctx.ss_pending = true;
199 	kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t);
200 }
201 
202 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
203 {
204 	kcb->ss_ctx.ss_pending = false;
205 	kcb->ss_ctx.match_addr = 0;
206 }
207 
208 static void __kprobes setup_singlestep(struct kprobe *p,
209 				       struct pt_regs *regs,
210 				       struct kprobe_ctlblk *kcb, int reenter)
211 {
212 	unsigned long slot;
213 
214 	if (reenter) {
215 		save_previous_kprobe(kcb);
216 		set_current_kprobe(p);
217 		kcb->kprobe_status = KPROBE_REENTER;
218 	} else {
219 		kcb->kprobe_status = KPROBE_HIT_SS;
220 	}
221 
222 
223 	if (p->ainsn.api.insn) {
224 		/* prepare for single stepping */
225 		slot = (unsigned long)p->ainsn.api.insn;
226 
227 		set_ss_context(kcb, slot);	/* mark pending ss */
228 
229 		/* IRQs and single stepping do not mix well. */
230 		kprobes_save_local_irqflag(kcb, regs);
231 		kernel_enable_single_step(regs);
232 		instruction_pointer_set(regs, slot);
233 	} else {
234 		/* insn simulation */
235 		arch_simulate_insn(p, regs);
236 	}
237 }
238 
239 static int __kprobes reenter_kprobe(struct kprobe *p,
240 				    struct pt_regs *regs,
241 				    struct kprobe_ctlblk *kcb)
242 {
243 	switch (kcb->kprobe_status) {
244 	case KPROBE_HIT_SSDONE:
245 	case KPROBE_HIT_ACTIVE:
246 		kprobes_inc_nmissed_count(p);
247 		setup_singlestep(p, regs, kcb, 1);
248 		break;
249 	case KPROBE_HIT_SS:
250 	case KPROBE_REENTER:
251 		pr_warn("Unrecoverable kprobe detected.\n");
252 		dump_kprobe(p);
253 		BUG();
254 		break;
255 	default:
256 		WARN_ON(1);
257 		return 0;
258 	}
259 
260 	return 1;
261 }
262 
263 static void __kprobes
264 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
265 {
266 	struct kprobe *cur = kprobe_running();
267 
268 	if (!cur)
269 		return;
270 
271 	/* return addr restore if non-branching insn */
272 	if (cur->ainsn.api.restore != 0)
273 		instruction_pointer_set(regs, cur->ainsn.api.restore);
274 
275 	/* restore back original saved kprobe variables and continue */
276 	if (kcb->kprobe_status == KPROBE_REENTER) {
277 		restore_previous_kprobe(kcb);
278 		return;
279 	}
280 	/* call post handler */
281 	kcb->kprobe_status = KPROBE_HIT_SSDONE;
282 	if (cur->post_handler)	{
283 		/* post_handler can hit breakpoint and single step
284 		 * again, so we enable D-flag for recursive exception.
285 		 */
286 		cur->post_handler(cur, regs, 0);
287 	}
288 
289 	reset_current_kprobe();
290 }
291 
292 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
293 {
294 	struct kprobe *cur = kprobe_running();
295 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
296 
297 	switch (kcb->kprobe_status) {
298 	case KPROBE_HIT_SS:
299 	case KPROBE_REENTER:
300 		/*
301 		 * We are here because the instruction being single
302 		 * stepped caused a page fault. We reset the current
303 		 * kprobe and the ip points back to the probe address
304 		 * and allow the page fault handler to continue as a
305 		 * normal page fault.
306 		 */
307 		instruction_pointer_set(regs, (unsigned long) cur->addr);
308 		if (!instruction_pointer(regs))
309 			BUG();
310 
311 		kernel_disable_single_step();
312 
313 		if (kcb->kprobe_status == KPROBE_REENTER)
314 			restore_previous_kprobe(kcb);
315 		else
316 			reset_current_kprobe();
317 
318 		break;
319 	case KPROBE_HIT_ACTIVE:
320 	case KPROBE_HIT_SSDONE:
321 		/*
322 		 * We increment the nmissed count for accounting,
323 		 * we can also use npre/npostfault count for accounting
324 		 * these specific fault cases.
325 		 */
326 		kprobes_inc_nmissed_count(cur);
327 
328 		/*
329 		 * We come here because instructions in the pre/post
330 		 * handler caused the page_fault, this could happen
331 		 * if handler tries to access user space by
332 		 * copy_from_user(), get_user() etc. Let the
333 		 * user-specified handler try to fix it first.
334 		 */
335 		if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
336 			return 1;
337 
338 		/*
339 		 * In case the user-specified fault handler returned
340 		 * zero, try to fix up.
341 		 */
342 		if (fixup_exception(regs))
343 			return 1;
344 	}
345 	return 0;
346 }
347 
348 static void __kprobes kprobe_handler(struct pt_regs *regs)
349 {
350 	struct kprobe *p, *cur_kprobe;
351 	struct kprobe_ctlblk *kcb;
352 	unsigned long addr = instruction_pointer(regs);
353 
354 	kcb = get_kprobe_ctlblk();
355 	cur_kprobe = kprobe_running();
356 
357 	p = get_kprobe((kprobe_opcode_t *) addr);
358 
359 	if (p) {
360 		if (cur_kprobe) {
361 			if (reenter_kprobe(p, regs, kcb))
362 				return;
363 		} else {
364 			/* Probe hit */
365 			set_current_kprobe(p);
366 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
367 
368 			/*
369 			 * If we have no pre-handler or it returned 0, we
370 			 * continue with normal processing.  If we have a
371 			 * pre-handler and it returned non-zero, it will
372 			 * modify the execution path and no need to single
373 			 * stepping. Let's just reset current kprobe and exit.
374 			 *
375 			 * pre_handler can hit a breakpoint and can step thru
376 			 * before return, keep PSTATE D-flag enabled until
377 			 * pre_handler return back.
378 			 */
379 			if (!p->pre_handler || !p->pre_handler(p, regs)) {
380 				setup_singlestep(p, regs, kcb, 0);
381 			} else
382 				reset_current_kprobe();
383 		}
384 	}
385 	/*
386 	 * The breakpoint instruction was removed right
387 	 * after we hit it.  Another cpu has removed
388 	 * either a probepoint or a debugger breakpoint
389 	 * at this address.  In either case, no further
390 	 * handling of this interrupt is appropriate.
391 	 * Return back to original instruction, and continue.
392 	 */
393 }
394 
395 static int __kprobes
396 kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr)
397 {
398 	if ((kcb->ss_ctx.ss_pending)
399 	    && (kcb->ss_ctx.match_addr == addr)) {
400 		clear_ss_context(kcb);	/* clear pending ss */
401 		return DBG_HOOK_HANDLED;
402 	}
403 	/* not ours, kprobes should ignore it */
404 	return DBG_HOOK_ERROR;
405 }
406 
407 static int __kprobes
408 kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr)
409 {
410 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
411 	int retval;
412 
413 	/* return error if this is not our step */
414 	retval = kprobe_ss_hit(kcb, instruction_pointer(regs));
415 
416 	if (retval == DBG_HOOK_HANDLED) {
417 		kprobes_restore_local_irqflag(kcb, regs);
418 		kernel_disable_single_step();
419 
420 		post_kprobe_handler(kcb, regs);
421 	}
422 
423 	return retval;
424 }
425 
426 static struct step_hook kprobes_step_hook = {
427 	.fn = kprobe_single_step_handler,
428 };
429 
430 static int __kprobes
431 kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr)
432 {
433 	kprobe_handler(regs);
434 	return DBG_HOOK_HANDLED;
435 }
436 
437 static struct break_hook kprobes_break_hook = {
438 	.imm = KPROBES_BRK_IMM,
439 	.fn = kprobe_breakpoint_handler,
440 };
441 
442 /*
443  * Provide a blacklist of symbols identifying ranges which cannot be kprobed.
444  * This blacklist is exposed to userspace via debugfs (kprobes/blacklist).
445  */
446 int __init arch_populate_kprobe_blacklist(void)
447 {
448 	int ret;
449 
450 	ret = kprobe_add_area_blacklist((unsigned long)__entry_text_start,
451 					(unsigned long)__entry_text_end);
452 	if (ret)
453 		return ret;
454 	ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
455 					(unsigned long)__irqentry_text_end);
456 	if (ret)
457 		return ret;
458 	ret = kprobe_add_area_blacklist((unsigned long)__exception_text_start,
459 					(unsigned long)__exception_text_end);
460 	if (ret)
461 		return ret;
462 	ret = kprobe_add_area_blacklist((unsigned long)__idmap_text_start,
463 					(unsigned long)__idmap_text_end);
464 	if (ret)
465 		return ret;
466 	ret = kprobe_add_area_blacklist((unsigned long)__hyp_text_start,
467 					(unsigned long)__hyp_text_end);
468 	if (ret || is_kernel_in_hyp_mode())
469 		return ret;
470 	ret = kprobe_add_area_blacklist((unsigned long)__hyp_idmap_text_start,
471 					(unsigned long)__hyp_idmap_text_end);
472 	return ret;
473 }
474 
475 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
476 {
477 	struct kretprobe_instance *ri = NULL;
478 	struct hlist_head *head, empty_rp;
479 	struct hlist_node *tmp;
480 	unsigned long flags, orig_ret_address = 0;
481 	unsigned long trampoline_address =
482 		(unsigned long)&kretprobe_trampoline;
483 	kprobe_opcode_t *correct_ret_addr = NULL;
484 
485 	INIT_HLIST_HEAD(&empty_rp);
486 	kretprobe_hash_lock(current, &head, &flags);
487 
488 	/*
489 	 * It is possible to have multiple instances associated with a given
490 	 * task either because multiple functions in the call path have
491 	 * return probes installed on them, and/or more than one
492 	 * return probe was registered for a target function.
493 	 *
494 	 * We can handle this because:
495 	 *     - instances are always pushed into the head of the list
496 	 *     - when multiple return probes are registered for the same
497 	 *	 function, the (chronologically) first instance's ret_addr
498 	 *	 will be the real return address, and all the rest will
499 	 *	 point to kretprobe_trampoline.
500 	 */
501 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
502 		if (ri->task != current)
503 			/* another task is sharing our hash bucket */
504 			continue;
505 
506 		orig_ret_address = (unsigned long)ri->ret_addr;
507 
508 		if (orig_ret_address != trampoline_address)
509 			/*
510 			 * This is the real return address. Any other
511 			 * instances associated with this task are for
512 			 * other calls deeper on the call stack
513 			 */
514 			break;
515 	}
516 
517 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
518 
519 	correct_ret_addr = ri->ret_addr;
520 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
521 		if (ri->task != current)
522 			/* another task is sharing our hash bucket */
523 			continue;
524 
525 		orig_ret_address = (unsigned long)ri->ret_addr;
526 		if (ri->rp && ri->rp->handler) {
527 			__this_cpu_write(current_kprobe, &ri->rp->kp);
528 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
529 			ri->ret_addr = correct_ret_addr;
530 			ri->rp->handler(ri, regs);
531 			__this_cpu_write(current_kprobe, NULL);
532 		}
533 
534 		recycle_rp_inst(ri, &empty_rp);
535 
536 		if (orig_ret_address != trampoline_address)
537 			/*
538 			 * This is the real return address. Any other
539 			 * instances associated with this task are for
540 			 * other calls deeper on the call stack
541 			 */
542 			break;
543 	}
544 
545 	kretprobe_hash_unlock(current, &flags);
546 
547 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
548 		hlist_del(&ri->hlist);
549 		kfree(ri);
550 	}
551 	return (void *)orig_ret_address;
552 }
553 
554 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
555 				      struct pt_regs *regs)
556 {
557 	ri->ret_addr = (kprobe_opcode_t *)regs->regs[30];
558 
559 	/* replace return addr (x30) with trampoline */
560 	regs->regs[30] = (long)&kretprobe_trampoline;
561 }
562 
563 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
564 {
565 	return 0;
566 }
567 
568 int __init arch_init_kprobes(void)
569 {
570 	register_kernel_break_hook(&kprobes_break_hook);
571 	register_kernel_step_hook(&kprobes_step_hook);
572 
573 	return 0;
574 }
575