1 /* 2 * arch/arm64/kernel/probes/kprobes.c 3 * 4 * Kprobes support for ARM64 5 * 6 * Copyright (C) 2013 Linaro Limited. 7 * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 */ 19 #include <linux/kasan.h> 20 #include <linux/kernel.h> 21 #include <linux/kprobes.h> 22 #include <linux/module.h> 23 #include <linux/slab.h> 24 #include <linux/stop_machine.h> 25 #include <linux/stringify.h> 26 #include <asm/traps.h> 27 #include <asm/ptrace.h> 28 #include <asm/cacheflush.h> 29 #include <asm/debug-monitors.h> 30 #include <asm/system_misc.h> 31 #include <asm/insn.h> 32 #include <asm/uaccess.h> 33 #include <asm/irq.h> 34 #include <asm-generic/sections.h> 35 36 #include "decode-insn.h" 37 38 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 39 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 40 41 static void __kprobes 42 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *); 43 44 static inline unsigned long min_stack_size(unsigned long addr) 45 { 46 unsigned long size; 47 48 if (on_irq_stack(addr, raw_smp_processor_id())) 49 size = IRQ_STACK_PTR(raw_smp_processor_id()) - addr; 50 else 51 size = (unsigned long)current_thread_info() + THREAD_START_SP - addr; 52 53 return min(size, FIELD_SIZEOF(struct kprobe_ctlblk, jprobes_stack)); 54 } 55 56 static void __kprobes arch_prepare_ss_slot(struct kprobe *p) 57 { 58 /* prepare insn slot */ 59 p->ainsn.insn[0] = cpu_to_le32(p->opcode); 60 61 flush_icache_range((uintptr_t) (p->ainsn.insn), 62 (uintptr_t) (p->ainsn.insn) + 63 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 64 65 /* 66 * Needs restoring of return address after stepping xol. 67 */ 68 p->ainsn.restore = (unsigned long) p->addr + 69 sizeof(kprobe_opcode_t); 70 } 71 72 static void __kprobes arch_prepare_simulate(struct kprobe *p) 73 { 74 /* This instructions is not executed xol. No need to adjust the PC */ 75 p->ainsn.restore = 0; 76 } 77 78 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs) 79 { 80 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 81 82 if (p->ainsn.handler) 83 p->ainsn.handler((u32)p->opcode, (long)p->addr, regs); 84 85 /* single step simulated, now go for post processing */ 86 post_kprobe_handler(kcb, regs); 87 } 88 89 int __kprobes arch_prepare_kprobe(struct kprobe *p) 90 { 91 unsigned long probe_addr = (unsigned long)p->addr; 92 extern char __start_rodata[]; 93 extern char __end_rodata[]; 94 95 if (probe_addr & 0x3) 96 return -EINVAL; 97 98 /* copy instruction */ 99 p->opcode = le32_to_cpu(*p->addr); 100 101 if (in_exception_text(probe_addr)) 102 return -EINVAL; 103 if (probe_addr >= (unsigned long) __start_rodata && 104 probe_addr <= (unsigned long) __end_rodata) 105 return -EINVAL; 106 107 /* decode instruction */ 108 switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) { 109 case INSN_REJECTED: /* insn not supported */ 110 return -EINVAL; 111 112 case INSN_GOOD_NO_SLOT: /* insn need simulation */ 113 p->ainsn.insn = NULL; 114 break; 115 116 case INSN_GOOD: /* instruction uses slot */ 117 p->ainsn.insn = get_insn_slot(); 118 if (!p->ainsn.insn) 119 return -ENOMEM; 120 break; 121 }; 122 123 /* prepare the instruction */ 124 if (p->ainsn.insn) 125 arch_prepare_ss_slot(p); 126 else 127 arch_prepare_simulate(p); 128 129 return 0; 130 } 131 132 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode) 133 { 134 void *addrs[1]; 135 u32 insns[1]; 136 137 addrs[0] = (void *)addr; 138 insns[0] = (u32)opcode; 139 140 return aarch64_insn_patch_text(addrs, insns, 1); 141 } 142 143 /* arm kprobe: install breakpoint in text */ 144 void __kprobes arch_arm_kprobe(struct kprobe *p) 145 { 146 patch_text(p->addr, BRK64_OPCODE_KPROBES); 147 } 148 149 /* disarm kprobe: remove breakpoint from text */ 150 void __kprobes arch_disarm_kprobe(struct kprobe *p) 151 { 152 patch_text(p->addr, p->opcode); 153 } 154 155 void __kprobes arch_remove_kprobe(struct kprobe *p) 156 { 157 if (p->ainsn.insn) { 158 free_insn_slot(p->ainsn.insn, 0); 159 p->ainsn.insn = NULL; 160 } 161 } 162 163 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 164 { 165 kcb->prev_kprobe.kp = kprobe_running(); 166 kcb->prev_kprobe.status = kcb->kprobe_status; 167 } 168 169 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 170 { 171 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 172 kcb->kprobe_status = kcb->prev_kprobe.status; 173 } 174 175 static void __kprobes set_current_kprobe(struct kprobe *p) 176 { 177 __this_cpu_write(current_kprobe, p); 178 } 179 180 /* 181 * The D-flag (Debug mask) is set (masked) upon debug exception entry. 182 * Kprobes needs to clear (unmask) D-flag -ONLY- in case of recursive 183 * probe i.e. when probe hit from kprobe handler context upon 184 * executing the pre/post handlers. In this case we return with 185 * D-flag clear so that single-stepping can be carried-out. 186 * 187 * Leave D-flag set in all other cases. 188 */ 189 static void __kprobes 190 spsr_set_debug_flag(struct pt_regs *regs, int mask) 191 { 192 unsigned long spsr = regs->pstate; 193 194 if (mask) 195 spsr |= PSR_D_BIT; 196 else 197 spsr &= ~PSR_D_BIT; 198 199 regs->pstate = spsr; 200 } 201 202 /* 203 * Interrupts need to be disabled before single-step mode is set, and not 204 * reenabled until after single-step mode ends. 205 * Without disabling interrupt on local CPU, there is a chance of 206 * interrupt occurrence in the period of exception return and start of 207 * out-of-line single-step, that result in wrongly single stepping 208 * into the interrupt handler. 209 */ 210 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb, 211 struct pt_regs *regs) 212 { 213 kcb->saved_irqflag = regs->pstate; 214 regs->pstate |= PSR_I_BIT; 215 } 216 217 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb, 218 struct pt_regs *regs) 219 { 220 if (kcb->saved_irqflag & PSR_I_BIT) 221 regs->pstate |= PSR_I_BIT; 222 else 223 regs->pstate &= ~PSR_I_BIT; 224 } 225 226 static void __kprobes 227 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr) 228 { 229 kcb->ss_ctx.ss_pending = true; 230 kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t); 231 } 232 233 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb) 234 { 235 kcb->ss_ctx.ss_pending = false; 236 kcb->ss_ctx.match_addr = 0; 237 } 238 239 static void __kprobes setup_singlestep(struct kprobe *p, 240 struct pt_regs *regs, 241 struct kprobe_ctlblk *kcb, int reenter) 242 { 243 unsigned long slot; 244 245 if (reenter) { 246 save_previous_kprobe(kcb); 247 set_current_kprobe(p); 248 kcb->kprobe_status = KPROBE_REENTER; 249 } else { 250 kcb->kprobe_status = KPROBE_HIT_SS; 251 } 252 253 254 if (p->ainsn.insn) { 255 /* prepare for single stepping */ 256 slot = (unsigned long)p->ainsn.insn; 257 258 set_ss_context(kcb, slot); /* mark pending ss */ 259 260 if (kcb->kprobe_status == KPROBE_REENTER) 261 spsr_set_debug_flag(regs, 0); 262 else 263 WARN_ON(regs->pstate & PSR_D_BIT); 264 265 /* IRQs and single stepping do not mix well. */ 266 kprobes_save_local_irqflag(kcb, regs); 267 kernel_enable_single_step(regs); 268 instruction_pointer_set(regs, slot); 269 } else { 270 /* insn simulation */ 271 arch_simulate_insn(p, regs); 272 } 273 } 274 275 static int __kprobes reenter_kprobe(struct kprobe *p, 276 struct pt_regs *regs, 277 struct kprobe_ctlblk *kcb) 278 { 279 switch (kcb->kprobe_status) { 280 case KPROBE_HIT_SSDONE: 281 case KPROBE_HIT_ACTIVE: 282 kprobes_inc_nmissed_count(p); 283 setup_singlestep(p, regs, kcb, 1); 284 break; 285 case KPROBE_HIT_SS: 286 case KPROBE_REENTER: 287 pr_warn("Unrecoverable kprobe detected at %p.\n", p->addr); 288 dump_kprobe(p); 289 BUG(); 290 break; 291 default: 292 WARN_ON(1); 293 return 0; 294 } 295 296 return 1; 297 } 298 299 static void __kprobes 300 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs) 301 { 302 struct kprobe *cur = kprobe_running(); 303 304 if (!cur) 305 return; 306 307 /* return addr restore if non-branching insn */ 308 if (cur->ainsn.restore != 0) 309 instruction_pointer_set(regs, cur->ainsn.restore); 310 311 /* restore back original saved kprobe variables and continue */ 312 if (kcb->kprobe_status == KPROBE_REENTER) { 313 restore_previous_kprobe(kcb); 314 return; 315 } 316 /* call post handler */ 317 kcb->kprobe_status = KPROBE_HIT_SSDONE; 318 if (cur->post_handler) { 319 /* post_handler can hit breakpoint and single step 320 * again, so we enable D-flag for recursive exception. 321 */ 322 cur->post_handler(cur, regs, 0); 323 } 324 325 reset_current_kprobe(); 326 } 327 328 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr) 329 { 330 struct kprobe *cur = kprobe_running(); 331 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 332 333 switch (kcb->kprobe_status) { 334 case KPROBE_HIT_SS: 335 case KPROBE_REENTER: 336 /* 337 * We are here because the instruction being single 338 * stepped caused a page fault. We reset the current 339 * kprobe and the ip points back to the probe address 340 * and allow the page fault handler to continue as a 341 * normal page fault. 342 */ 343 instruction_pointer_set(regs, (unsigned long) cur->addr); 344 if (!instruction_pointer(regs)) 345 BUG(); 346 347 kernel_disable_single_step(); 348 if (kcb->kprobe_status == KPROBE_REENTER) 349 spsr_set_debug_flag(regs, 1); 350 351 if (kcb->kprobe_status == KPROBE_REENTER) 352 restore_previous_kprobe(kcb); 353 else 354 reset_current_kprobe(); 355 356 break; 357 case KPROBE_HIT_ACTIVE: 358 case KPROBE_HIT_SSDONE: 359 /* 360 * We increment the nmissed count for accounting, 361 * we can also use npre/npostfault count for accounting 362 * these specific fault cases. 363 */ 364 kprobes_inc_nmissed_count(cur); 365 366 /* 367 * We come here because instructions in the pre/post 368 * handler caused the page_fault, this could happen 369 * if handler tries to access user space by 370 * copy_from_user(), get_user() etc. Let the 371 * user-specified handler try to fix it first. 372 */ 373 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr)) 374 return 1; 375 376 /* 377 * In case the user-specified fault handler returned 378 * zero, try to fix up. 379 */ 380 if (fixup_exception(regs)) 381 return 1; 382 } 383 return 0; 384 } 385 386 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 387 unsigned long val, void *data) 388 { 389 return NOTIFY_DONE; 390 } 391 392 static void __kprobes kprobe_handler(struct pt_regs *regs) 393 { 394 struct kprobe *p, *cur_kprobe; 395 struct kprobe_ctlblk *kcb; 396 unsigned long addr = instruction_pointer(regs); 397 398 kcb = get_kprobe_ctlblk(); 399 cur_kprobe = kprobe_running(); 400 401 p = get_kprobe((kprobe_opcode_t *) addr); 402 403 if (p) { 404 if (cur_kprobe) { 405 if (reenter_kprobe(p, regs, kcb)) 406 return; 407 } else { 408 /* Probe hit */ 409 set_current_kprobe(p); 410 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 411 412 /* 413 * If we have no pre-handler or it returned 0, we 414 * continue with normal processing. If we have a 415 * pre-handler and it returned non-zero, it prepped 416 * for calling the break_handler below on re-entry, 417 * so get out doing nothing more here. 418 * 419 * pre_handler can hit a breakpoint and can step thru 420 * before return, keep PSTATE D-flag enabled until 421 * pre_handler return back. 422 */ 423 if (!p->pre_handler || !p->pre_handler(p, regs)) { 424 setup_singlestep(p, regs, kcb, 0); 425 return; 426 } 427 } 428 } else if ((le32_to_cpu(*(kprobe_opcode_t *) addr) == 429 BRK64_OPCODE_KPROBES) && cur_kprobe) { 430 /* We probably hit a jprobe. Call its break handler. */ 431 if (cur_kprobe->break_handler && 432 cur_kprobe->break_handler(cur_kprobe, regs)) { 433 setup_singlestep(cur_kprobe, regs, kcb, 0); 434 return; 435 } 436 } 437 /* 438 * The breakpoint instruction was removed right 439 * after we hit it. Another cpu has removed 440 * either a probepoint or a debugger breakpoint 441 * at this address. In either case, no further 442 * handling of this interrupt is appropriate. 443 * Return back to original instruction, and continue. 444 */ 445 } 446 447 static int __kprobes 448 kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr) 449 { 450 if ((kcb->ss_ctx.ss_pending) 451 && (kcb->ss_ctx.match_addr == addr)) { 452 clear_ss_context(kcb); /* clear pending ss */ 453 return DBG_HOOK_HANDLED; 454 } 455 /* not ours, kprobes should ignore it */ 456 return DBG_HOOK_ERROR; 457 } 458 459 int __kprobes 460 kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr) 461 { 462 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 463 int retval; 464 465 /* return error if this is not our step */ 466 retval = kprobe_ss_hit(kcb, instruction_pointer(regs)); 467 468 if (retval == DBG_HOOK_HANDLED) { 469 kprobes_restore_local_irqflag(kcb, regs); 470 kernel_disable_single_step(); 471 472 if (kcb->kprobe_status == KPROBE_REENTER) 473 spsr_set_debug_flag(regs, 1); 474 475 post_kprobe_handler(kcb, regs); 476 } 477 478 return retval; 479 } 480 481 int __kprobes 482 kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr) 483 { 484 kprobe_handler(regs); 485 return DBG_HOOK_HANDLED; 486 } 487 488 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 489 { 490 struct jprobe *jp = container_of(p, struct jprobe, kp); 491 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 492 long stack_ptr = kernel_stack_pointer(regs); 493 494 kcb->jprobe_saved_regs = *regs; 495 /* 496 * As Linus pointed out, gcc assumes that the callee 497 * owns the argument space and could overwrite it, e.g. 498 * tailcall optimization. So, to be absolutely safe 499 * we also save and restore enough stack bytes to cover 500 * the argument area. 501 */ 502 kasan_disable_current(); 503 memcpy(kcb->jprobes_stack, (void *)stack_ptr, 504 min_stack_size(stack_ptr)); 505 kasan_enable_current(); 506 507 instruction_pointer_set(regs, (unsigned long) jp->entry); 508 preempt_disable(); 509 pause_graph_tracing(); 510 return 1; 511 } 512 513 void __kprobes jprobe_return(void) 514 { 515 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 516 517 /* 518 * Jprobe handler return by entering break exception, 519 * encoded same as kprobe, but with following conditions 520 * -a special PC to identify it from the other kprobes. 521 * -restore stack addr to original saved pt_regs 522 */ 523 asm volatile(" mov sp, %0 \n" 524 "jprobe_return_break: brk %1 \n" 525 : 526 : "r" (kcb->jprobe_saved_regs.sp), 527 "I" (BRK64_ESR_KPROBES) 528 : "memory"); 529 530 unreachable(); 531 } 532 533 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 534 { 535 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 536 long stack_addr = kcb->jprobe_saved_regs.sp; 537 long orig_sp = kernel_stack_pointer(regs); 538 struct jprobe *jp = container_of(p, struct jprobe, kp); 539 extern const char jprobe_return_break[]; 540 541 if (instruction_pointer(regs) != (u64) jprobe_return_break) 542 return 0; 543 544 if (orig_sp != stack_addr) { 545 struct pt_regs *saved_regs = 546 (struct pt_regs *)kcb->jprobe_saved_regs.sp; 547 pr_err("current sp %lx does not match saved sp %lx\n", 548 orig_sp, stack_addr); 549 pr_err("Saved registers for jprobe %p\n", jp); 550 show_regs(saved_regs); 551 pr_err("Current registers\n"); 552 show_regs(regs); 553 BUG(); 554 } 555 unpause_graph_tracing(); 556 *regs = kcb->jprobe_saved_regs; 557 kasan_disable_current(); 558 memcpy((void *)stack_addr, kcb->jprobes_stack, 559 min_stack_size(stack_addr)); 560 kasan_enable_current(); 561 preempt_enable_no_resched(); 562 return 1; 563 } 564 565 bool arch_within_kprobe_blacklist(unsigned long addr) 566 { 567 extern char __idmap_text_start[], __idmap_text_end[]; 568 extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[]; 569 570 if ((addr >= (unsigned long)__kprobes_text_start && 571 addr < (unsigned long)__kprobes_text_end) || 572 (addr >= (unsigned long)__entry_text_start && 573 addr < (unsigned long)__entry_text_end) || 574 (addr >= (unsigned long)__idmap_text_start && 575 addr < (unsigned long)__idmap_text_end) || 576 !!search_exception_tables(addr)) 577 return true; 578 579 if (!is_kernel_in_hyp_mode()) { 580 if ((addr >= (unsigned long)__hyp_text_start && 581 addr < (unsigned long)__hyp_text_end) || 582 (addr >= (unsigned long)__hyp_idmap_text_start && 583 addr < (unsigned long)__hyp_idmap_text_end)) 584 return true; 585 } 586 587 return false; 588 } 589 590 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs) 591 { 592 struct kretprobe_instance *ri = NULL; 593 struct hlist_head *head, empty_rp; 594 struct hlist_node *tmp; 595 unsigned long flags, orig_ret_address = 0; 596 unsigned long trampoline_address = 597 (unsigned long)&kretprobe_trampoline; 598 kprobe_opcode_t *correct_ret_addr = NULL; 599 600 INIT_HLIST_HEAD(&empty_rp); 601 kretprobe_hash_lock(current, &head, &flags); 602 603 /* 604 * It is possible to have multiple instances associated with a given 605 * task either because multiple functions in the call path have 606 * return probes installed on them, and/or more than one 607 * return probe was registered for a target function. 608 * 609 * We can handle this because: 610 * - instances are always pushed into the head of the list 611 * - when multiple return probes are registered for the same 612 * function, the (chronologically) first instance's ret_addr 613 * will be the real return address, and all the rest will 614 * point to kretprobe_trampoline. 615 */ 616 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 617 if (ri->task != current) 618 /* another task is sharing our hash bucket */ 619 continue; 620 621 orig_ret_address = (unsigned long)ri->ret_addr; 622 623 if (orig_ret_address != trampoline_address) 624 /* 625 * This is the real return address. Any other 626 * instances associated with this task are for 627 * other calls deeper on the call stack 628 */ 629 break; 630 } 631 632 kretprobe_assert(ri, orig_ret_address, trampoline_address); 633 634 correct_ret_addr = ri->ret_addr; 635 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 636 if (ri->task != current) 637 /* another task is sharing our hash bucket */ 638 continue; 639 640 orig_ret_address = (unsigned long)ri->ret_addr; 641 if (ri->rp && ri->rp->handler) { 642 __this_cpu_write(current_kprobe, &ri->rp->kp); 643 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 644 ri->ret_addr = correct_ret_addr; 645 ri->rp->handler(ri, regs); 646 __this_cpu_write(current_kprobe, NULL); 647 } 648 649 recycle_rp_inst(ri, &empty_rp); 650 651 if (orig_ret_address != trampoline_address) 652 /* 653 * This is the real return address. Any other 654 * instances associated with this task are for 655 * other calls deeper on the call stack 656 */ 657 break; 658 } 659 660 kretprobe_hash_unlock(current, &flags); 661 662 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 663 hlist_del(&ri->hlist); 664 kfree(ri); 665 } 666 return (void *)orig_ret_address; 667 } 668 669 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 670 struct pt_regs *regs) 671 { 672 ri->ret_addr = (kprobe_opcode_t *)regs->regs[30]; 673 674 /* replace return addr (x30) with trampoline */ 675 regs->regs[30] = (long)&kretprobe_trampoline; 676 } 677 678 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 679 { 680 return 0; 681 } 682 683 int __init arch_init_kprobes(void) 684 { 685 return 0; 686 } 687