xref: /linux/arch/arm64/kernel/probes/kprobes.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * arch/arm64/kernel/probes/kprobes.c
3  *
4  * Kprobes support for ARM64
5  *
6  * Copyright (C) 2013 Linaro Limited.
7  * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  */
19 #include <linux/kasan.h>
20 #include <linux/kernel.h>
21 #include <linux/kprobes.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/stop_machine.h>
25 #include <linux/stringify.h>
26 #include <asm/traps.h>
27 #include <asm/ptrace.h>
28 #include <asm/cacheflush.h>
29 #include <asm/debug-monitors.h>
30 #include <asm/system_misc.h>
31 #include <asm/insn.h>
32 #include <asm/uaccess.h>
33 #include <asm/irq.h>
34 #include <asm-generic/sections.h>
35 
36 #include "decode-insn.h"
37 
38 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
39 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
40 
41 static void __kprobes
42 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
43 
44 static inline unsigned long min_stack_size(unsigned long addr)
45 {
46 	unsigned long size;
47 
48 	if (on_irq_stack(addr, raw_smp_processor_id()))
49 		size = IRQ_STACK_PTR(raw_smp_processor_id()) - addr;
50 	else
51 		size = (unsigned long)current_thread_info() + THREAD_START_SP - addr;
52 
53 	return min(size, FIELD_SIZEOF(struct kprobe_ctlblk, jprobes_stack));
54 }
55 
56 static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
57 {
58 	/* prepare insn slot */
59 	p->ainsn.insn[0] = cpu_to_le32(p->opcode);
60 
61 	flush_icache_range((uintptr_t) (p->ainsn.insn),
62 			   (uintptr_t) (p->ainsn.insn) +
63 			   MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
64 
65 	/*
66 	 * Needs restoring of return address after stepping xol.
67 	 */
68 	p->ainsn.restore = (unsigned long) p->addr +
69 	  sizeof(kprobe_opcode_t);
70 }
71 
72 static void __kprobes arch_prepare_simulate(struct kprobe *p)
73 {
74 	/* This instructions is not executed xol. No need to adjust the PC */
75 	p->ainsn.restore = 0;
76 }
77 
78 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
79 {
80 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
81 
82 	if (p->ainsn.handler)
83 		p->ainsn.handler((u32)p->opcode, (long)p->addr, regs);
84 
85 	/* single step simulated, now go for post processing */
86 	post_kprobe_handler(kcb, regs);
87 }
88 
89 int __kprobes arch_prepare_kprobe(struct kprobe *p)
90 {
91 	unsigned long probe_addr = (unsigned long)p->addr;
92 	extern char __start_rodata[];
93 	extern char __end_rodata[];
94 
95 	if (probe_addr & 0x3)
96 		return -EINVAL;
97 
98 	/* copy instruction */
99 	p->opcode = le32_to_cpu(*p->addr);
100 
101 	if (in_exception_text(probe_addr))
102 		return -EINVAL;
103 	if (probe_addr >= (unsigned long) __start_rodata &&
104 	    probe_addr <= (unsigned long) __end_rodata)
105 		return -EINVAL;
106 
107 	/* decode instruction */
108 	switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) {
109 	case INSN_REJECTED:	/* insn not supported */
110 		return -EINVAL;
111 
112 	case INSN_GOOD_NO_SLOT:	/* insn need simulation */
113 		p->ainsn.insn = NULL;
114 		break;
115 
116 	case INSN_GOOD:	/* instruction uses slot */
117 		p->ainsn.insn = get_insn_slot();
118 		if (!p->ainsn.insn)
119 			return -ENOMEM;
120 		break;
121 	};
122 
123 	/* prepare the instruction */
124 	if (p->ainsn.insn)
125 		arch_prepare_ss_slot(p);
126 	else
127 		arch_prepare_simulate(p);
128 
129 	return 0;
130 }
131 
132 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
133 {
134 	void *addrs[1];
135 	u32 insns[1];
136 
137 	addrs[0] = (void *)addr;
138 	insns[0] = (u32)opcode;
139 
140 	return aarch64_insn_patch_text(addrs, insns, 1);
141 }
142 
143 /* arm kprobe: install breakpoint in text */
144 void __kprobes arch_arm_kprobe(struct kprobe *p)
145 {
146 	patch_text(p->addr, BRK64_OPCODE_KPROBES);
147 }
148 
149 /* disarm kprobe: remove breakpoint from text */
150 void __kprobes arch_disarm_kprobe(struct kprobe *p)
151 {
152 	patch_text(p->addr, p->opcode);
153 }
154 
155 void __kprobes arch_remove_kprobe(struct kprobe *p)
156 {
157 	if (p->ainsn.insn) {
158 		free_insn_slot(p->ainsn.insn, 0);
159 		p->ainsn.insn = NULL;
160 	}
161 }
162 
163 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
164 {
165 	kcb->prev_kprobe.kp = kprobe_running();
166 	kcb->prev_kprobe.status = kcb->kprobe_status;
167 }
168 
169 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
170 {
171 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
172 	kcb->kprobe_status = kcb->prev_kprobe.status;
173 }
174 
175 static void __kprobes set_current_kprobe(struct kprobe *p)
176 {
177 	__this_cpu_write(current_kprobe, p);
178 }
179 
180 /*
181  * The D-flag (Debug mask) is set (masked) upon debug exception entry.
182  * Kprobes needs to clear (unmask) D-flag -ONLY- in case of recursive
183  * probe i.e. when probe hit from kprobe handler context upon
184  * executing the pre/post handlers. In this case we return with
185  * D-flag clear so that single-stepping can be carried-out.
186  *
187  * Leave D-flag set in all other cases.
188  */
189 static void __kprobes
190 spsr_set_debug_flag(struct pt_regs *regs, int mask)
191 {
192 	unsigned long spsr = regs->pstate;
193 
194 	if (mask)
195 		spsr |= PSR_D_BIT;
196 	else
197 		spsr &= ~PSR_D_BIT;
198 
199 	regs->pstate = spsr;
200 }
201 
202 /*
203  * Interrupts need to be disabled before single-step mode is set, and not
204  * reenabled until after single-step mode ends.
205  * Without disabling interrupt on local CPU, there is a chance of
206  * interrupt occurrence in the period of exception return and  start of
207  * out-of-line single-step, that result in wrongly single stepping
208  * into the interrupt handler.
209  */
210 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
211 						struct pt_regs *regs)
212 {
213 	kcb->saved_irqflag = regs->pstate;
214 	regs->pstate |= PSR_I_BIT;
215 }
216 
217 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
218 						struct pt_regs *regs)
219 {
220 	if (kcb->saved_irqflag & PSR_I_BIT)
221 		regs->pstate |= PSR_I_BIT;
222 	else
223 		regs->pstate &= ~PSR_I_BIT;
224 }
225 
226 static void __kprobes
227 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr)
228 {
229 	kcb->ss_ctx.ss_pending = true;
230 	kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t);
231 }
232 
233 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
234 {
235 	kcb->ss_ctx.ss_pending = false;
236 	kcb->ss_ctx.match_addr = 0;
237 }
238 
239 static void __kprobes setup_singlestep(struct kprobe *p,
240 				       struct pt_regs *regs,
241 				       struct kprobe_ctlblk *kcb, int reenter)
242 {
243 	unsigned long slot;
244 
245 	if (reenter) {
246 		save_previous_kprobe(kcb);
247 		set_current_kprobe(p);
248 		kcb->kprobe_status = KPROBE_REENTER;
249 	} else {
250 		kcb->kprobe_status = KPROBE_HIT_SS;
251 	}
252 
253 
254 	if (p->ainsn.insn) {
255 		/* prepare for single stepping */
256 		slot = (unsigned long)p->ainsn.insn;
257 
258 		set_ss_context(kcb, slot);	/* mark pending ss */
259 
260 		if (kcb->kprobe_status == KPROBE_REENTER)
261 			spsr_set_debug_flag(regs, 0);
262 		else
263 			WARN_ON(regs->pstate & PSR_D_BIT);
264 
265 		/* IRQs and single stepping do not mix well. */
266 		kprobes_save_local_irqflag(kcb, regs);
267 		kernel_enable_single_step(regs);
268 		instruction_pointer_set(regs, slot);
269 	} else {
270 		/* insn simulation */
271 		arch_simulate_insn(p, regs);
272 	}
273 }
274 
275 static int __kprobes reenter_kprobe(struct kprobe *p,
276 				    struct pt_regs *regs,
277 				    struct kprobe_ctlblk *kcb)
278 {
279 	switch (kcb->kprobe_status) {
280 	case KPROBE_HIT_SSDONE:
281 	case KPROBE_HIT_ACTIVE:
282 		kprobes_inc_nmissed_count(p);
283 		setup_singlestep(p, regs, kcb, 1);
284 		break;
285 	case KPROBE_HIT_SS:
286 	case KPROBE_REENTER:
287 		pr_warn("Unrecoverable kprobe detected at %p.\n", p->addr);
288 		dump_kprobe(p);
289 		BUG();
290 		break;
291 	default:
292 		WARN_ON(1);
293 		return 0;
294 	}
295 
296 	return 1;
297 }
298 
299 static void __kprobes
300 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
301 {
302 	struct kprobe *cur = kprobe_running();
303 
304 	if (!cur)
305 		return;
306 
307 	/* return addr restore if non-branching insn */
308 	if (cur->ainsn.restore != 0)
309 		instruction_pointer_set(regs, cur->ainsn.restore);
310 
311 	/* restore back original saved kprobe variables and continue */
312 	if (kcb->kprobe_status == KPROBE_REENTER) {
313 		restore_previous_kprobe(kcb);
314 		return;
315 	}
316 	/* call post handler */
317 	kcb->kprobe_status = KPROBE_HIT_SSDONE;
318 	if (cur->post_handler)	{
319 		/* post_handler can hit breakpoint and single step
320 		 * again, so we enable D-flag for recursive exception.
321 		 */
322 		cur->post_handler(cur, regs, 0);
323 	}
324 
325 	reset_current_kprobe();
326 }
327 
328 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
329 {
330 	struct kprobe *cur = kprobe_running();
331 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
332 
333 	switch (kcb->kprobe_status) {
334 	case KPROBE_HIT_SS:
335 	case KPROBE_REENTER:
336 		/*
337 		 * We are here because the instruction being single
338 		 * stepped caused a page fault. We reset the current
339 		 * kprobe and the ip points back to the probe address
340 		 * and allow the page fault handler to continue as a
341 		 * normal page fault.
342 		 */
343 		instruction_pointer_set(regs, (unsigned long) cur->addr);
344 		if (!instruction_pointer(regs))
345 			BUG();
346 
347 		kernel_disable_single_step();
348 		if (kcb->kprobe_status == KPROBE_REENTER)
349 			spsr_set_debug_flag(regs, 1);
350 
351 		if (kcb->kprobe_status == KPROBE_REENTER)
352 			restore_previous_kprobe(kcb);
353 		else
354 			reset_current_kprobe();
355 
356 		break;
357 	case KPROBE_HIT_ACTIVE:
358 	case KPROBE_HIT_SSDONE:
359 		/*
360 		 * We increment the nmissed count for accounting,
361 		 * we can also use npre/npostfault count for accounting
362 		 * these specific fault cases.
363 		 */
364 		kprobes_inc_nmissed_count(cur);
365 
366 		/*
367 		 * We come here because instructions in the pre/post
368 		 * handler caused the page_fault, this could happen
369 		 * if handler tries to access user space by
370 		 * copy_from_user(), get_user() etc. Let the
371 		 * user-specified handler try to fix it first.
372 		 */
373 		if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
374 			return 1;
375 
376 		/*
377 		 * In case the user-specified fault handler returned
378 		 * zero, try to fix up.
379 		 */
380 		if (fixup_exception(regs))
381 			return 1;
382 	}
383 	return 0;
384 }
385 
386 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
387 				       unsigned long val, void *data)
388 {
389 	return NOTIFY_DONE;
390 }
391 
392 static void __kprobes kprobe_handler(struct pt_regs *regs)
393 {
394 	struct kprobe *p, *cur_kprobe;
395 	struct kprobe_ctlblk *kcb;
396 	unsigned long addr = instruction_pointer(regs);
397 
398 	kcb = get_kprobe_ctlblk();
399 	cur_kprobe = kprobe_running();
400 
401 	p = get_kprobe((kprobe_opcode_t *) addr);
402 
403 	if (p) {
404 		if (cur_kprobe) {
405 			if (reenter_kprobe(p, regs, kcb))
406 				return;
407 		} else {
408 			/* Probe hit */
409 			set_current_kprobe(p);
410 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
411 
412 			/*
413 			 * If we have no pre-handler or it returned 0, we
414 			 * continue with normal processing.  If we have a
415 			 * pre-handler and it returned non-zero, it prepped
416 			 * for calling the break_handler below on re-entry,
417 			 * so get out doing nothing more here.
418 			 *
419 			 * pre_handler can hit a breakpoint and can step thru
420 			 * before return, keep PSTATE D-flag enabled until
421 			 * pre_handler return back.
422 			 */
423 			if (!p->pre_handler || !p->pre_handler(p, regs)) {
424 				setup_singlestep(p, regs, kcb, 0);
425 				return;
426 			}
427 		}
428 	} else if ((le32_to_cpu(*(kprobe_opcode_t *) addr) ==
429 	    BRK64_OPCODE_KPROBES) && cur_kprobe) {
430 		/* We probably hit a jprobe.  Call its break handler. */
431 		if (cur_kprobe->break_handler  &&
432 		     cur_kprobe->break_handler(cur_kprobe, regs)) {
433 			setup_singlestep(cur_kprobe, regs, kcb, 0);
434 			return;
435 		}
436 	}
437 	/*
438 	 * The breakpoint instruction was removed right
439 	 * after we hit it.  Another cpu has removed
440 	 * either a probepoint or a debugger breakpoint
441 	 * at this address.  In either case, no further
442 	 * handling of this interrupt is appropriate.
443 	 * Return back to original instruction, and continue.
444 	 */
445 }
446 
447 static int __kprobes
448 kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr)
449 {
450 	if ((kcb->ss_ctx.ss_pending)
451 	    && (kcb->ss_ctx.match_addr == addr)) {
452 		clear_ss_context(kcb);	/* clear pending ss */
453 		return DBG_HOOK_HANDLED;
454 	}
455 	/* not ours, kprobes should ignore it */
456 	return DBG_HOOK_ERROR;
457 }
458 
459 int __kprobes
460 kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr)
461 {
462 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
463 	int retval;
464 
465 	/* return error if this is not our step */
466 	retval = kprobe_ss_hit(kcb, instruction_pointer(regs));
467 
468 	if (retval == DBG_HOOK_HANDLED) {
469 		kprobes_restore_local_irqflag(kcb, regs);
470 		kernel_disable_single_step();
471 
472 		if (kcb->kprobe_status == KPROBE_REENTER)
473 			spsr_set_debug_flag(regs, 1);
474 
475 		post_kprobe_handler(kcb, regs);
476 	}
477 
478 	return retval;
479 }
480 
481 int __kprobes
482 kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr)
483 {
484 	kprobe_handler(regs);
485 	return DBG_HOOK_HANDLED;
486 }
487 
488 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
489 {
490 	struct jprobe *jp = container_of(p, struct jprobe, kp);
491 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
492 	long stack_ptr = kernel_stack_pointer(regs);
493 
494 	kcb->jprobe_saved_regs = *regs;
495 	/*
496 	 * As Linus pointed out, gcc assumes that the callee
497 	 * owns the argument space and could overwrite it, e.g.
498 	 * tailcall optimization. So, to be absolutely safe
499 	 * we also save and restore enough stack bytes to cover
500 	 * the argument area.
501 	 */
502 	kasan_disable_current();
503 	memcpy(kcb->jprobes_stack, (void *)stack_ptr,
504 	       min_stack_size(stack_ptr));
505 	kasan_enable_current();
506 
507 	instruction_pointer_set(regs, (unsigned long) jp->entry);
508 	preempt_disable();
509 	pause_graph_tracing();
510 	return 1;
511 }
512 
513 void __kprobes jprobe_return(void)
514 {
515 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
516 
517 	/*
518 	 * Jprobe handler return by entering break exception,
519 	 * encoded same as kprobe, but with following conditions
520 	 * -a special PC to identify it from the other kprobes.
521 	 * -restore stack addr to original saved pt_regs
522 	 */
523 	asm volatile("				mov sp, %0	\n"
524 		     "jprobe_return_break:	brk %1		\n"
525 		     :
526 		     : "r" (kcb->jprobe_saved_regs.sp),
527 		       "I" (BRK64_ESR_KPROBES)
528 		     : "memory");
529 
530 	unreachable();
531 }
532 
533 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
534 {
535 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
536 	long stack_addr = kcb->jprobe_saved_regs.sp;
537 	long orig_sp = kernel_stack_pointer(regs);
538 	struct jprobe *jp = container_of(p, struct jprobe, kp);
539 	extern const char jprobe_return_break[];
540 
541 	if (instruction_pointer(regs) != (u64) jprobe_return_break)
542 		return 0;
543 
544 	if (orig_sp != stack_addr) {
545 		struct pt_regs *saved_regs =
546 		    (struct pt_regs *)kcb->jprobe_saved_regs.sp;
547 		pr_err("current sp %lx does not match saved sp %lx\n",
548 		       orig_sp, stack_addr);
549 		pr_err("Saved registers for jprobe %p\n", jp);
550 		show_regs(saved_regs);
551 		pr_err("Current registers\n");
552 		show_regs(regs);
553 		BUG();
554 	}
555 	unpause_graph_tracing();
556 	*regs = kcb->jprobe_saved_regs;
557 	kasan_disable_current();
558 	memcpy((void *)stack_addr, kcb->jprobes_stack,
559 	       min_stack_size(stack_addr));
560 	kasan_enable_current();
561 	preempt_enable_no_resched();
562 	return 1;
563 }
564 
565 bool arch_within_kprobe_blacklist(unsigned long addr)
566 {
567 	extern char __idmap_text_start[], __idmap_text_end[];
568 	extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
569 
570 	if ((addr >= (unsigned long)__kprobes_text_start &&
571 	    addr < (unsigned long)__kprobes_text_end) ||
572 	    (addr >= (unsigned long)__entry_text_start &&
573 	    addr < (unsigned long)__entry_text_end) ||
574 	    (addr >= (unsigned long)__idmap_text_start &&
575 	    addr < (unsigned long)__idmap_text_end) ||
576 	    !!search_exception_tables(addr))
577 		return true;
578 
579 	if (!is_kernel_in_hyp_mode()) {
580 		if ((addr >= (unsigned long)__hyp_text_start &&
581 		    addr < (unsigned long)__hyp_text_end) ||
582 		    (addr >= (unsigned long)__hyp_idmap_text_start &&
583 		    addr < (unsigned long)__hyp_idmap_text_end))
584 			return true;
585 	}
586 
587 	return false;
588 }
589 
590 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
591 {
592 	struct kretprobe_instance *ri = NULL;
593 	struct hlist_head *head, empty_rp;
594 	struct hlist_node *tmp;
595 	unsigned long flags, orig_ret_address = 0;
596 	unsigned long trampoline_address =
597 		(unsigned long)&kretprobe_trampoline;
598 	kprobe_opcode_t *correct_ret_addr = NULL;
599 
600 	INIT_HLIST_HEAD(&empty_rp);
601 	kretprobe_hash_lock(current, &head, &flags);
602 
603 	/*
604 	 * It is possible to have multiple instances associated with a given
605 	 * task either because multiple functions in the call path have
606 	 * return probes installed on them, and/or more than one
607 	 * return probe was registered for a target function.
608 	 *
609 	 * We can handle this because:
610 	 *     - instances are always pushed into the head of the list
611 	 *     - when multiple return probes are registered for the same
612 	 *	 function, the (chronologically) first instance's ret_addr
613 	 *	 will be the real return address, and all the rest will
614 	 *	 point to kretprobe_trampoline.
615 	 */
616 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
617 		if (ri->task != current)
618 			/* another task is sharing our hash bucket */
619 			continue;
620 
621 		orig_ret_address = (unsigned long)ri->ret_addr;
622 
623 		if (orig_ret_address != trampoline_address)
624 			/*
625 			 * This is the real return address. Any other
626 			 * instances associated with this task are for
627 			 * other calls deeper on the call stack
628 			 */
629 			break;
630 	}
631 
632 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
633 
634 	correct_ret_addr = ri->ret_addr;
635 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
636 		if (ri->task != current)
637 			/* another task is sharing our hash bucket */
638 			continue;
639 
640 		orig_ret_address = (unsigned long)ri->ret_addr;
641 		if (ri->rp && ri->rp->handler) {
642 			__this_cpu_write(current_kprobe, &ri->rp->kp);
643 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
644 			ri->ret_addr = correct_ret_addr;
645 			ri->rp->handler(ri, regs);
646 			__this_cpu_write(current_kprobe, NULL);
647 		}
648 
649 		recycle_rp_inst(ri, &empty_rp);
650 
651 		if (orig_ret_address != trampoline_address)
652 			/*
653 			 * This is the real return address. Any other
654 			 * instances associated with this task are for
655 			 * other calls deeper on the call stack
656 			 */
657 			break;
658 	}
659 
660 	kretprobe_hash_unlock(current, &flags);
661 
662 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
663 		hlist_del(&ri->hlist);
664 		kfree(ri);
665 	}
666 	return (void *)orig_ret_address;
667 }
668 
669 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
670 				      struct pt_regs *regs)
671 {
672 	ri->ret_addr = (kprobe_opcode_t *)regs->regs[30];
673 
674 	/* replace return addr (x30) with trampoline */
675 	regs->regs[30] = (long)&kretprobe_trampoline;
676 }
677 
678 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
679 {
680 	return 0;
681 }
682 
683 int __init arch_init_kprobes(void)
684 {
685 	return 0;
686 }
687