1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2020 ARM Ltd. 4 */ 5 6 #include <linux/bitops.h> 7 #include <linux/cpu.h> 8 #include <linux/kernel.h> 9 #include <linux/mm.h> 10 #include <linux/prctl.h> 11 #include <linux/sched.h> 12 #include <linux/sched/mm.h> 13 #include <linux/string.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 #include <linux/thread_info.h> 17 #include <linux/types.h> 18 #include <linux/uaccess.h> 19 #include <linux/uio.h> 20 21 #include <asm/barrier.h> 22 #include <asm/cpufeature.h> 23 #include <asm/mte.h> 24 #include <asm/ptrace.h> 25 #include <asm/sysreg.h> 26 27 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred); 28 29 #ifdef CONFIG_KASAN_HW_TAGS 30 /* 31 * The asynchronous and asymmetric MTE modes have the same behavior for 32 * store operations. This flag is set when either of these modes is enabled. 33 */ 34 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode); 35 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode); 36 #endif 37 38 static void mte_sync_page_tags(struct page *page, pte_t old_pte, 39 bool check_swap, bool pte_is_tagged) 40 { 41 if (check_swap && is_swap_pte(old_pte)) { 42 swp_entry_t entry = pte_to_swp_entry(old_pte); 43 44 if (!non_swap_entry(entry)) 45 mte_restore_tags(entry, page); 46 } 47 48 if (!pte_is_tagged) 49 return; 50 51 if (try_page_mte_tagging(page)) { 52 mte_clear_page_tags(page_address(page)); 53 set_page_mte_tagged(page); 54 } 55 } 56 57 void mte_sync_tags(pte_t old_pte, pte_t pte) 58 { 59 struct page *page = pte_page(pte); 60 long i, nr_pages = compound_nr(page); 61 bool check_swap = nr_pages == 1; 62 bool pte_is_tagged = pte_tagged(pte); 63 64 /* Early out if there's nothing to do */ 65 if (!check_swap && !pte_is_tagged) 66 return; 67 68 /* if PG_mte_tagged is set, tags have already been initialised */ 69 for (i = 0; i < nr_pages; i++, page++) { 70 if (!page_mte_tagged(page)) { 71 mte_sync_page_tags(page, old_pte, check_swap, 72 pte_is_tagged); 73 set_page_mte_tagged(page); 74 } 75 } 76 77 /* ensure the tags are visible before the PTE is set */ 78 smp_wmb(); 79 } 80 81 int memcmp_pages(struct page *page1, struct page *page2) 82 { 83 char *addr1, *addr2; 84 int ret; 85 86 addr1 = page_address(page1); 87 addr2 = page_address(page2); 88 ret = memcmp(addr1, addr2, PAGE_SIZE); 89 90 if (!system_supports_mte() || ret) 91 return ret; 92 93 /* 94 * If the page content is identical but at least one of the pages is 95 * tagged, return non-zero to avoid KSM merging. If only one of the 96 * pages is tagged, set_pte_at() may zero or change the tags of the 97 * other page via mte_sync_tags(). 98 */ 99 if (page_mte_tagged(page1) || page_mte_tagged(page2)) 100 return addr1 != addr2; 101 102 return ret; 103 } 104 105 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf) 106 { 107 /* Enable MTE Sync Mode for EL1. */ 108 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK, 109 SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf)); 110 isb(); 111 112 pr_info_once("MTE: enabled in %s mode at EL1\n", mode); 113 } 114 115 #ifdef CONFIG_KASAN_HW_TAGS 116 void mte_enable_kernel_sync(void) 117 { 118 /* 119 * Make sure we enter this function when no PE has set 120 * async mode previously. 121 */ 122 WARN_ONCE(system_uses_mte_async_or_asymm_mode(), 123 "MTE async mode enabled system wide!"); 124 125 __mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC); 126 } 127 128 void mte_enable_kernel_async(void) 129 { 130 __mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC); 131 132 /* 133 * MTE async mode is set system wide by the first PE that 134 * executes this function. 135 * 136 * Note: If in future KASAN acquires a runtime switching 137 * mode in between sync and async, this strategy needs 138 * to be reviewed. 139 */ 140 if (!system_uses_mte_async_or_asymm_mode()) 141 static_branch_enable(&mte_async_or_asymm_mode); 142 } 143 144 void mte_enable_kernel_asymm(void) 145 { 146 if (cpus_have_cap(ARM64_MTE_ASYMM)) { 147 __mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM); 148 149 /* 150 * MTE asymm mode behaves as async mode for store 151 * operations. The mode is set system wide by the 152 * first PE that executes this function. 153 * 154 * Note: If in future KASAN acquires a runtime switching 155 * mode in between sync and async, this strategy needs 156 * to be reviewed. 157 */ 158 if (!system_uses_mte_async_or_asymm_mode()) 159 static_branch_enable(&mte_async_or_asymm_mode); 160 } else { 161 /* 162 * If the CPU does not support MTE asymmetric mode the 163 * kernel falls back on synchronous mode which is the 164 * default for kasan=on. 165 */ 166 mte_enable_kernel_sync(); 167 } 168 } 169 #endif 170 171 #ifdef CONFIG_KASAN_HW_TAGS 172 void mte_check_tfsr_el1(void) 173 { 174 u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1); 175 176 if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) { 177 /* 178 * Note: isb() is not required after this direct write 179 * because there is no indirect read subsequent to it 180 * (per ARM DDI 0487F.c table D13-1). 181 */ 182 write_sysreg_s(0, SYS_TFSR_EL1); 183 184 kasan_report_async(); 185 } 186 } 187 #endif 188 189 /* 190 * This is where we actually resolve the system and process MTE mode 191 * configuration into an actual value in SCTLR_EL1 that affects 192 * userspace. 193 */ 194 static void mte_update_sctlr_user(struct task_struct *task) 195 { 196 /* 197 * This must be called with preemption disabled and can only be called 198 * on the current or next task since the CPU must match where the thread 199 * is going to run. The caller is responsible for calling 200 * update_sctlr_el1() later in the same preemption disabled block. 201 */ 202 unsigned long sctlr = task->thread.sctlr_user; 203 unsigned long mte_ctrl = task->thread.mte_ctrl; 204 unsigned long pref, resolved_mte_tcf; 205 206 pref = __this_cpu_read(mte_tcf_preferred); 207 /* 208 * If there is no overlap between the system preferred and 209 * program requested values go with what was requested. 210 */ 211 resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl; 212 sctlr &= ~SCTLR_EL1_TCF0_MASK; 213 /* 214 * Pick an actual setting. The order in which we check for 215 * set bits and map into register values determines our 216 * default order. 217 */ 218 if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM) 219 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM); 220 else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC) 221 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC); 222 else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC) 223 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC); 224 task->thread.sctlr_user = sctlr; 225 } 226 227 static void mte_update_gcr_excl(struct task_struct *task) 228 { 229 /* 230 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by 231 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled. 232 */ 233 if (kasan_hw_tags_enabled()) 234 return; 235 236 write_sysreg_s( 237 ((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & 238 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND, 239 SYS_GCR_EL1); 240 } 241 242 #ifdef CONFIG_KASAN_HW_TAGS 243 /* Only called from assembly, silence sparse */ 244 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr, 245 __le32 *updptr, int nr_inst); 246 247 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr, 248 __le32 *updptr, int nr_inst) 249 { 250 BUG_ON(nr_inst != 1); /* Branch -> NOP */ 251 252 if (kasan_hw_tags_enabled()) 253 *updptr = cpu_to_le32(aarch64_insn_gen_nop()); 254 } 255 #endif 256 257 void mte_thread_init_user(void) 258 { 259 if (!system_supports_mte()) 260 return; 261 262 /* clear any pending asynchronous tag fault */ 263 dsb(ish); 264 write_sysreg_s(0, SYS_TFSRE0_EL1); 265 clear_thread_flag(TIF_MTE_ASYNC_FAULT); 266 /* disable tag checking and reset tag generation mask */ 267 set_mte_ctrl(current, 0); 268 } 269 270 void mte_thread_switch(struct task_struct *next) 271 { 272 if (!system_supports_mte()) 273 return; 274 275 mte_update_sctlr_user(next); 276 mte_update_gcr_excl(next); 277 278 /* TCO may not have been disabled on exception entry for the current task. */ 279 mte_disable_tco_entry(next); 280 281 /* 282 * Check if an async tag exception occurred at EL1. 283 * 284 * Note: On the context switch path we rely on the dsb() present 285 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1 286 * are synchronized before this point. 287 */ 288 isb(); 289 mte_check_tfsr_el1(); 290 } 291 292 void mte_cpu_setup(void) 293 { 294 u64 rgsr; 295 296 /* 297 * CnP must be enabled only after the MAIR_EL1 register has been set 298 * up. Inconsistent MAIR_EL1 between CPUs sharing the same TLB may 299 * lead to the wrong memory type being used for a brief window during 300 * CPU power-up. 301 * 302 * CnP is not a boot feature so MTE gets enabled before CnP, but let's 303 * make sure that is the case. 304 */ 305 BUG_ON(read_sysreg(ttbr0_el1) & TTBR_CNP_BIT); 306 BUG_ON(read_sysreg(ttbr1_el1) & TTBR_CNP_BIT); 307 308 /* Normal Tagged memory type at the corresponding MAIR index */ 309 sysreg_clear_set(mair_el1, 310 MAIR_ATTRIDX(MAIR_ATTR_MASK, MT_NORMAL_TAGGED), 311 MAIR_ATTRIDX(MAIR_ATTR_NORMAL_TAGGED, 312 MT_NORMAL_TAGGED)); 313 314 write_sysreg_s(KERNEL_GCR_EL1, SYS_GCR_EL1); 315 316 /* 317 * If GCR_EL1.RRND=1 is implemented the same way as RRND=0, then 318 * RGSR_EL1.SEED must be non-zero for IRG to produce 319 * pseudorandom numbers. As RGSR_EL1 is UNKNOWN out of reset, we 320 * must initialize it. 321 */ 322 rgsr = (read_sysreg(CNTVCT_EL0) & SYS_RGSR_EL1_SEED_MASK) << 323 SYS_RGSR_EL1_SEED_SHIFT; 324 if (rgsr == 0) 325 rgsr = 1 << SYS_RGSR_EL1_SEED_SHIFT; 326 write_sysreg_s(rgsr, SYS_RGSR_EL1); 327 328 /* clear any pending tag check faults in TFSR*_EL1 */ 329 write_sysreg_s(0, SYS_TFSR_EL1); 330 write_sysreg_s(0, SYS_TFSRE0_EL1); 331 332 local_flush_tlb_all(); 333 } 334 335 void mte_suspend_enter(void) 336 { 337 if (!system_supports_mte()) 338 return; 339 340 /* 341 * The barriers are required to guarantee that the indirect writes 342 * to TFSR_EL1 are synchronized before we report the state. 343 */ 344 dsb(nsh); 345 isb(); 346 347 /* Report SYS_TFSR_EL1 before suspend entry */ 348 mte_check_tfsr_el1(); 349 } 350 351 void mte_suspend_exit(void) 352 { 353 if (!system_supports_mte()) 354 return; 355 356 mte_cpu_setup(); 357 } 358 359 long set_mte_ctrl(struct task_struct *task, unsigned long arg) 360 { 361 u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) & 362 SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT; 363 364 if (!system_supports_mte()) 365 return 0; 366 367 if (arg & PR_MTE_TCF_ASYNC) 368 mte_ctrl |= MTE_CTRL_TCF_ASYNC; 369 if (arg & PR_MTE_TCF_SYNC) 370 mte_ctrl |= MTE_CTRL_TCF_SYNC; 371 372 /* 373 * If the system supports it and both sync and async modes are 374 * specified then implicitly enable asymmetric mode. 375 * Userspace could see a mix of both sync and async anyway due 376 * to differing or changing defaults on CPUs. 377 */ 378 if (cpus_have_cap(ARM64_MTE_ASYMM) && 379 (arg & PR_MTE_TCF_ASYNC) && 380 (arg & PR_MTE_TCF_SYNC)) 381 mte_ctrl |= MTE_CTRL_TCF_ASYMM; 382 383 task->thread.mte_ctrl = mte_ctrl; 384 if (task == current) { 385 preempt_disable(); 386 mte_update_sctlr_user(task); 387 mte_update_gcr_excl(task); 388 update_sctlr_el1(task->thread.sctlr_user); 389 preempt_enable(); 390 } 391 392 return 0; 393 } 394 395 long get_mte_ctrl(struct task_struct *task) 396 { 397 unsigned long ret; 398 u64 mte_ctrl = task->thread.mte_ctrl; 399 u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & 400 SYS_GCR_EL1_EXCL_MASK; 401 402 if (!system_supports_mte()) 403 return 0; 404 405 ret = incl << PR_MTE_TAG_SHIFT; 406 if (mte_ctrl & MTE_CTRL_TCF_ASYNC) 407 ret |= PR_MTE_TCF_ASYNC; 408 if (mte_ctrl & MTE_CTRL_TCF_SYNC) 409 ret |= PR_MTE_TCF_SYNC; 410 411 return ret; 412 } 413 414 /* 415 * Access MTE tags in another process' address space as given in mm. Update 416 * the number of tags copied. Return 0 if any tags copied, error otherwise. 417 * Inspired by __access_remote_vm(). 418 */ 419 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr, 420 struct iovec *kiov, unsigned int gup_flags) 421 { 422 struct vm_area_struct *vma; 423 void __user *buf = kiov->iov_base; 424 size_t len = kiov->iov_len; 425 int ret; 426 int write = gup_flags & FOLL_WRITE; 427 428 if (!access_ok(buf, len)) 429 return -EFAULT; 430 431 if (mmap_read_lock_killable(mm)) 432 return -EIO; 433 434 while (len) { 435 unsigned long tags, offset; 436 void *maddr; 437 struct page *page = NULL; 438 439 ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page, 440 &vma, NULL); 441 if (ret <= 0) 442 break; 443 444 /* 445 * Only copy tags if the page has been mapped as PROT_MTE 446 * (PG_mte_tagged set). Otherwise the tags are not valid and 447 * not accessible to user. Moreover, an mprotect(PROT_MTE) 448 * would cause the existing tags to be cleared if the page 449 * was never mapped with PROT_MTE. 450 */ 451 if (!(vma->vm_flags & VM_MTE)) { 452 ret = -EOPNOTSUPP; 453 put_page(page); 454 break; 455 } 456 WARN_ON_ONCE(!page_mte_tagged(page)); 457 458 /* limit access to the end of the page */ 459 offset = offset_in_page(addr); 460 tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE); 461 462 maddr = page_address(page); 463 if (write) { 464 tags = mte_copy_tags_from_user(maddr + offset, buf, tags); 465 set_page_dirty_lock(page); 466 } else { 467 tags = mte_copy_tags_to_user(buf, maddr + offset, tags); 468 } 469 put_page(page); 470 471 /* error accessing the tracer's buffer */ 472 if (!tags) 473 break; 474 475 len -= tags; 476 buf += tags; 477 addr += tags * MTE_GRANULE_SIZE; 478 } 479 mmap_read_unlock(mm); 480 481 /* return an error if no tags copied */ 482 kiov->iov_len = buf - kiov->iov_base; 483 if (!kiov->iov_len) { 484 /* check for error accessing the tracee's address space */ 485 if (ret <= 0) 486 return -EIO; 487 else 488 return -EFAULT; 489 } 490 491 return 0; 492 } 493 494 /* 495 * Copy MTE tags in another process' address space at 'addr' to/from tracer's 496 * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm(). 497 */ 498 static int access_remote_tags(struct task_struct *tsk, unsigned long addr, 499 struct iovec *kiov, unsigned int gup_flags) 500 { 501 struct mm_struct *mm; 502 int ret; 503 504 mm = get_task_mm(tsk); 505 if (!mm) 506 return -EPERM; 507 508 if (!tsk->ptrace || (current != tsk->parent) || 509 ((get_dumpable(mm) != SUID_DUMP_USER) && 510 !ptracer_capable(tsk, mm->user_ns))) { 511 mmput(mm); 512 return -EPERM; 513 } 514 515 ret = __access_remote_tags(mm, addr, kiov, gup_flags); 516 mmput(mm); 517 518 return ret; 519 } 520 521 int mte_ptrace_copy_tags(struct task_struct *child, long request, 522 unsigned long addr, unsigned long data) 523 { 524 int ret; 525 struct iovec kiov; 526 struct iovec __user *uiov = (void __user *)data; 527 unsigned int gup_flags = FOLL_FORCE; 528 529 if (!system_supports_mte()) 530 return -EIO; 531 532 if (get_user(kiov.iov_base, &uiov->iov_base) || 533 get_user(kiov.iov_len, &uiov->iov_len)) 534 return -EFAULT; 535 536 if (request == PTRACE_POKEMTETAGS) 537 gup_flags |= FOLL_WRITE; 538 539 /* align addr to the MTE tag granule */ 540 addr &= MTE_GRANULE_MASK; 541 542 ret = access_remote_tags(child, addr, &kiov, gup_flags); 543 if (!ret) 544 ret = put_user(kiov.iov_len, &uiov->iov_len); 545 546 return ret; 547 } 548 549 static ssize_t mte_tcf_preferred_show(struct device *dev, 550 struct device_attribute *attr, char *buf) 551 { 552 switch (per_cpu(mte_tcf_preferred, dev->id)) { 553 case MTE_CTRL_TCF_ASYNC: 554 return sysfs_emit(buf, "async\n"); 555 case MTE_CTRL_TCF_SYNC: 556 return sysfs_emit(buf, "sync\n"); 557 case MTE_CTRL_TCF_ASYMM: 558 return sysfs_emit(buf, "asymm\n"); 559 default: 560 return sysfs_emit(buf, "???\n"); 561 } 562 } 563 564 static ssize_t mte_tcf_preferred_store(struct device *dev, 565 struct device_attribute *attr, 566 const char *buf, size_t count) 567 { 568 u64 tcf; 569 570 if (sysfs_streq(buf, "async")) 571 tcf = MTE_CTRL_TCF_ASYNC; 572 else if (sysfs_streq(buf, "sync")) 573 tcf = MTE_CTRL_TCF_SYNC; 574 else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm")) 575 tcf = MTE_CTRL_TCF_ASYMM; 576 else 577 return -EINVAL; 578 579 device_lock(dev); 580 per_cpu(mte_tcf_preferred, dev->id) = tcf; 581 device_unlock(dev); 582 583 return count; 584 } 585 static DEVICE_ATTR_RW(mte_tcf_preferred); 586 587 static int register_mte_tcf_preferred_sysctl(void) 588 { 589 unsigned int cpu; 590 591 if (!system_supports_mte()) 592 return 0; 593 594 for_each_possible_cpu(cpu) { 595 per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC; 596 device_create_file(get_cpu_device(cpu), 597 &dev_attr_mte_tcf_preferred); 598 } 599 600 return 0; 601 } 602 subsys_initcall(register_mte_tcf_preferred_sysctl); 603 604 /* 605 * Return 0 on success, the number of bytes not probed otherwise. 606 */ 607 size_t mte_probe_user_range(const char __user *uaddr, size_t size) 608 { 609 const char __user *end = uaddr + size; 610 int err = 0; 611 char val; 612 613 __raw_get_user(val, uaddr, err); 614 if (err) 615 return size; 616 617 uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE); 618 while (uaddr < end) { 619 /* 620 * A read is sufficient for mte, the caller should have probed 621 * for the pte write permission if required. 622 */ 623 __raw_get_user(val, uaddr, err); 624 if (err) 625 return end - uaddr; 626 uaddr += MTE_GRANULE_SIZE; 627 } 628 (void)val; 629 630 return 0; 631 } 632