1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2020 ARM Ltd. 4 */ 5 6 #include <linux/bitops.h> 7 #include <linux/cpu.h> 8 #include <linux/kernel.h> 9 #include <linux/mm.h> 10 #include <linux/prctl.h> 11 #include <linux/sched.h> 12 #include <linux/sched/mm.h> 13 #include <linux/string.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 #include <linux/thread_info.h> 17 #include <linux/types.h> 18 #include <linux/uaccess.h> 19 #include <linux/uio.h> 20 21 #include <asm/barrier.h> 22 #include <asm/cpufeature.h> 23 #include <asm/mte.h> 24 #include <asm/ptrace.h> 25 #include <asm/sysreg.h> 26 27 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred); 28 29 #ifdef CONFIG_KASAN_HW_TAGS 30 /* 31 * The asynchronous and asymmetric MTE modes have the same behavior for 32 * store operations. This flag is set when either of these modes is enabled. 33 */ 34 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode); 35 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode); 36 #endif 37 38 void mte_sync_tags(pte_t pte, unsigned int nr_pages) 39 { 40 struct page *page = pte_page(pte); 41 unsigned int i; 42 43 /* if PG_mte_tagged is set, tags have already been initialised */ 44 for (i = 0; i < nr_pages; i++, page++) { 45 if (try_page_mte_tagging(page)) { 46 mte_clear_page_tags(page_address(page)); 47 set_page_mte_tagged(page); 48 } 49 } 50 51 /* ensure the tags are visible before the PTE is set */ 52 smp_wmb(); 53 } 54 55 int memcmp_pages(struct page *page1, struct page *page2) 56 { 57 char *addr1, *addr2; 58 int ret; 59 60 addr1 = page_address(page1); 61 addr2 = page_address(page2); 62 ret = memcmp(addr1, addr2, PAGE_SIZE); 63 64 if (!system_supports_mte() || ret) 65 return ret; 66 67 /* 68 * If the page content is identical but at least one of the pages is 69 * tagged, return non-zero to avoid KSM merging. If only one of the 70 * pages is tagged, __set_ptes() may zero or change the tags of the 71 * other page via mte_sync_tags(). 72 */ 73 if (page_mte_tagged(page1) || page_mte_tagged(page2)) 74 return addr1 != addr2; 75 76 return ret; 77 } 78 79 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf) 80 { 81 /* Enable MTE Sync Mode for EL1. */ 82 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK, 83 SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf)); 84 isb(); 85 86 pr_info_once("MTE: enabled in %s mode at EL1\n", mode); 87 } 88 89 #ifdef CONFIG_KASAN_HW_TAGS 90 void mte_enable_kernel_sync(void) 91 { 92 /* 93 * Make sure we enter this function when no PE has set 94 * async mode previously. 95 */ 96 WARN_ONCE(system_uses_mte_async_or_asymm_mode(), 97 "MTE async mode enabled system wide!"); 98 99 __mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC); 100 } 101 102 void mte_enable_kernel_async(void) 103 { 104 __mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC); 105 106 /* 107 * MTE async mode is set system wide by the first PE that 108 * executes this function. 109 * 110 * Note: If in future KASAN acquires a runtime switching 111 * mode in between sync and async, this strategy needs 112 * to be reviewed. 113 */ 114 if (!system_uses_mte_async_or_asymm_mode()) 115 static_branch_enable(&mte_async_or_asymm_mode); 116 } 117 118 void mte_enable_kernel_asymm(void) 119 { 120 if (cpus_have_cap(ARM64_MTE_ASYMM)) { 121 __mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM); 122 123 /* 124 * MTE asymm mode behaves as async mode for store 125 * operations. The mode is set system wide by the 126 * first PE that executes this function. 127 * 128 * Note: If in future KASAN acquires a runtime switching 129 * mode in between sync and async, this strategy needs 130 * to be reviewed. 131 */ 132 if (!system_uses_mte_async_or_asymm_mode()) 133 static_branch_enable(&mte_async_or_asymm_mode); 134 } else { 135 /* 136 * If the CPU does not support MTE asymmetric mode the 137 * kernel falls back on synchronous mode which is the 138 * default for kasan=on. 139 */ 140 mte_enable_kernel_sync(); 141 } 142 } 143 #endif 144 145 #ifdef CONFIG_KASAN_HW_TAGS 146 void mte_check_tfsr_el1(void) 147 { 148 u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1); 149 150 if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) { 151 /* 152 * Note: isb() is not required after this direct write 153 * because there is no indirect read subsequent to it 154 * (per ARM DDI 0487F.c table D13-1). 155 */ 156 write_sysreg_s(0, SYS_TFSR_EL1); 157 158 kasan_report_async(); 159 } 160 } 161 #endif 162 163 /* 164 * This is where we actually resolve the system and process MTE mode 165 * configuration into an actual value in SCTLR_EL1 that affects 166 * userspace. 167 */ 168 static void mte_update_sctlr_user(struct task_struct *task) 169 { 170 /* 171 * This must be called with preemption disabled and can only be called 172 * on the current or next task since the CPU must match where the thread 173 * is going to run. The caller is responsible for calling 174 * update_sctlr_el1() later in the same preemption disabled block. 175 */ 176 unsigned long sctlr = task->thread.sctlr_user; 177 unsigned long mte_ctrl = task->thread.mte_ctrl; 178 unsigned long pref, resolved_mte_tcf; 179 180 pref = __this_cpu_read(mte_tcf_preferred); 181 /* 182 * If there is no overlap between the system preferred and 183 * program requested values go with what was requested. 184 */ 185 resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl; 186 sctlr &= ~SCTLR_EL1_TCF0_MASK; 187 /* 188 * Pick an actual setting. The order in which we check for 189 * set bits and map into register values determines our 190 * default order. 191 */ 192 if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM) 193 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM); 194 else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC) 195 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC); 196 else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC) 197 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC); 198 task->thread.sctlr_user = sctlr; 199 } 200 201 static void mte_update_gcr_excl(struct task_struct *task) 202 { 203 /* 204 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by 205 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled. 206 */ 207 if (kasan_hw_tags_enabled()) 208 return; 209 210 write_sysreg_s( 211 ((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & 212 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND, 213 SYS_GCR_EL1); 214 } 215 216 #ifdef CONFIG_KASAN_HW_TAGS 217 /* Only called from assembly, silence sparse */ 218 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr, 219 __le32 *updptr, int nr_inst); 220 221 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr, 222 __le32 *updptr, int nr_inst) 223 { 224 BUG_ON(nr_inst != 1); /* Branch -> NOP */ 225 226 if (kasan_hw_tags_enabled()) 227 *updptr = cpu_to_le32(aarch64_insn_gen_nop()); 228 } 229 #endif 230 231 void mte_thread_init_user(void) 232 { 233 if (!system_supports_mte()) 234 return; 235 236 /* clear any pending asynchronous tag fault */ 237 dsb(ish); 238 write_sysreg_s(0, SYS_TFSRE0_EL1); 239 clear_thread_flag(TIF_MTE_ASYNC_FAULT); 240 /* disable tag checking and reset tag generation mask */ 241 set_mte_ctrl(current, 0); 242 } 243 244 void mte_thread_switch(struct task_struct *next) 245 { 246 if (!system_supports_mte()) 247 return; 248 249 mte_update_sctlr_user(next); 250 mte_update_gcr_excl(next); 251 252 /* TCO may not have been disabled on exception entry for the current task. */ 253 mte_disable_tco_entry(next); 254 255 /* 256 * Check if an async tag exception occurred at EL1. 257 * 258 * Note: On the context switch path we rely on the dsb() present 259 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1 260 * are synchronized before this point. 261 */ 262 isb(); 263 mte_check_tfsr_el1(); 264 } 265 266 void mte_cpu_setup(void) 267 { 268 u64 rgsr; 269 270 /* 271 * CnP must be enabled only after the MAIR_EL1 register has been set 272 * up. Inconsistent MAIR_EL1 between CPUs sharing the same TLB may 273 * lead to the wrong memory type being used for a brief window during 274 * CPU power-up. 275 * 276 * CnP is not a boot feature so MTE gets enabled before CnP, but let's 277 * make sure that is the case. 278 */ 279 BUG_ON(read_sysreg(ttbr0_el1) & TTBR_CNP_BIT); 280 BUG_ON(read_sysreg(ttbr1_el1) & TTBR_CNP_BIT); 281 282 /* Normal Tagged memory type at the corresponding MAIR index */ 283 sysreg_clear_set(mair_el1, 284 MAIR_ATTRIDX(MAIR_ATTR_MASK, MT_NORMAL_TAGGED), 285 MAIR_ATTRIDX(MAIR_ATTR_NORMAL_TAGGED, 286 MT_NORMAL_TAGGED)); 287 288 write_sysreg_s(KERNEL_GCR_EL1, SYS_GCR_EL1); 289 290 /* 291 * If GCR_EL1.RRND=1 is implemented the same way as RRND=0, then 292 * RGSR_EL1.SEED must be non-zero for IRG to produce 293 * pseudorandom numbers. As RGSR_EL1 is UNKNOWN out of reset, we 294 * must initialize it. 295 */ 296 rgsr = (read_sysreg(CNTVCT_EL0) & SYS_RGSR_EL1_SEED_MASK) << 297 SYS_RGSR_EL1_SEED_SHIFT; 298 if (rgsr == 0) 299 rgsr = 1 << SYS_RGSR_EL1_SEED_SHIFT; 300 write_sysreg_s(rgsr, SYS_RGSR_EL1); 301 302 /* clear any pending tag check faults in TFSR*_EL1 */ 303 write_sysreg_s(0, SYS_TFSR_EL1); 304 write_sysreg_s(0, SYS_TFSRE0_EL1); 305 306 local_flush_tlb_all(); 307 } 308 309 void mte_suspend_enter(void) 310 { 311 if (!system_supports_mte()) 312 return; 313 314 /* 315 * The barriers are required to guarantee that the indirect writes 316 * to TFSR_EL1 are synchronized before we report the state. 317 */ 318 dsb(nsh); 319 isb(); 320 321 /* Report SYS_TFSR_EL1 before suspend entry */ 322 mte_check_tfsr_el1(); 323 } 324 325 void mte_suspend_exit(void) 326 { 327 if (!system_supports_mte()) 328 return; 329 330 mte_cpu_setup(); 331 } 332 333 long set_mte_ctrl(struct task_struct *task, unsigned long arg) 334 { 335 u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) & 336 SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT; 337 338 if (!system_supports_mte()) 339 return 0; 340 341 if (arg & PR_MTE_TCF_ASYNC) 342 mte_ctrl |= MTE_CTRL_TCF_ASYNC; 343 if (arg & PR_MTE_TCF_SYNC) 344 mte_ctrl |= MTE_CTRL_TCF_SYNC; 345 346 /* 347 * If the system supports it and both sync and async modes are 348 * specified then implicitly enable asymmetric mode. 349 * Userspace could see a mix of both sync and async anyway due 350 * to differing or changing defaults on CPUs. 351 */ 352 if (cpus_have_cap(ARM64_MTE_ASYMM) && 353 (arg & PR_MTE_TCF_ASYNC) && 354 (arg & PR_MTE_TCF_SYNC)) 355 mte_ctrl |= MTE_CTRL_TCF_ASYMM; 356 357 task->thread.mte_ctrl = mte_ctrl; 358 if (task == current) { 359 preempt_disable(); 360 mte_update_sctlr_user(task); 361 mte_update_gcr_excl(task); 362 update_sctlr_el1(task->thread.sctlr_user); 363 preempt_enable(); 364 } 365 366 return 0; 367 } 368 369 long get_mte_ctrl(struct task_struct *task) 370 { 371 unsigned long ret; 372 u64 mte_ctrl = task->thread.mte_ctrl; 373 u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & 374 SYS_GCR_EL1_EXCL_MASK; 375 376 if (!system_supports_mte()) 377 return 0; 378 379 ret = incl << PR_MTE_TAG_SHIFT; 380 if (mte_ctrl & MTE_CTRL_TCF_ASYNC) 381 ret |= PR_MTE_TCF_ASYNC; 382 if (mte_ctrl & MTE_CTRL_TCF_SYNC) 383 ret |= PR_MTE_TCF_SYNC; 384 385 return ret; 386 } 387 388 /* 389 * Access MTE tags in another process' address space as given in mm. Update 390 * the number of tags copied. Return 0 if any tags copied, error otherwise. 391 * Inspired by __access_remote_vm(). 392 */ 393 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr, 394 struct iovec *kiov, unsigned int gup_flags) 395 { 396 void __user *buf = kiov->iov_base; 397 size_t len = kiov->iov_len; 398 int err = 0; 399 int write = gup_flags & FOLL_WRITE; 400 401 if (!access_ok(buf, len)) 402 return -EFAULT; 403 404 if (mmap_read_lock_killable(mm)) 405 return -EIO; 406 407 while (len) { 408 struct vm_area_struct *vma; 409 unsigned long tags, offset; 410 void *maddr; 411 struct page *page = get_user_page_vma_remote(mm, addr, 412 gup_flags, &vma); 413 414 if (IS_ERR(page)) { 415 err = PTR_ERR(page); 416 break; 417 } 418 419 /* 420 * Only copy tags if the page has been mapped as PROT_MTE 421 * (PG_mte_tagged set). Otherwise the tags are not valid and 422 * not accessible to user. Moreover, an mprotect(PROT_MTE) 423 * would cause the existing tags to be cleared if the page 424 * was never mapped with PROT_MTE. 425 */ 426 if (!(vma->vm_flags & VM_MTE)) { 427 err = -EOPNOTSUPP; 428 put_page(page); 429 break; 430 } 431 WARN_ON_ONCE(!page_mte_tagged(page)); 432 433 /* limit access to the end of the page */ 434 offset = offset_in_page(addr); 435 tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE); 436 437 maddr = page_address(page); 438 if (write) { 439 tags = mte_copy_tags_from_user(maddr + offset, buf, tags); 440 set_page_dirty_lock(page); 441 } else { 442 tags = mte_copy_tags_to_user(buf, maddr + offset, tags); 443 } 444 put_page(page); 445 446 /* error accessing the tracer's buffer */ 447 if (!tags) 448 break; 449 450 len -= tags; 451 buf += tags; 452 addr += tags * MTE_GRANULE_SIZE; 453 } 454 mmap_read_unlock(mm); 455 456 /* return an error if no tags copied */ 457 kiov->iov_len = buf - kiov->iov_base; 458 if (!kiov->iov_len) { 459 /* check for error accessing the tracee's address space */ 460 if (err) 461 return -EIO; 462 else 463 return -EFAULT; 464 } 465 466 return 0; 467 } 468 469 /* 470 * Copy MTE tags in another process' address space at 'addr' to/from tracer's 471 * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm(). 472 */ 473 static int access_remote_tags(struct task_struct *tsk, unsigned long addr, 474 struct iovec *kiov, unsigned int gup_flags) 475 { 476 struct mm_struct *mm; 477 int ret; 478 479 mm = get_task_mm(tsk); 480 if (!mm) 481 return -EPERM; 482 483 if (!tsk->ptrace || (current != tsk->parent) || 484 ((get_dumpable(mm) != SUID_DUMP_USER) && 485 !ptracer_capable(tsk, mm->user_ns))) { 486 mmput(mm); 487 return -EPERM; 488 } 489 490 ret = __access_remote_tags(mm, addr, kiov, gup_flags); 491 mmput(mm); 492 493 return ret; 494 } 495 496 int mte_ptrace_copy_tags(struct task_struct *child, long request, 497 unsigned long addr, unsigned long data) 498 { 499 int ret; 500 struct iovec kiov; 501 struct iovec __user *uiov = (void __user *)data; 502 unsigned int gup_flags = FOLL_FORCE; 503 504 if (!system_supports_mte()) 505 return -EIO; 506 507 if (get_user(kiov.iov_base, &uiov->iov_base) || 508 get_user(kiov.iov_len, &uiov->iov_len)) 509 return -EFAULT; 510 511 if (request == PTRACE_POKEMTETAGS) 512 gup_flags |= FOLL_WRITE; 513 514 /* align addr to the MTE tag granule */ 515 addr &= MTE_GRANULE_MASK; 516 517 ret = access_remote_tags(child, addr, &kiov, gup_flags); 518 if (!ret) 519 ret = put_user(kiov.iov_len, &uiov->iov_len); 520 521 return ret; 522 } 523 524 static ssize_t mte_tcf_preferred_show(struct device *dev, 525 struct device_attribute *attr, char *buf) 526 { 527 switch (per_cpu(mte_tcf_preferred, dev->id)) { 528 case MTE_CTRL_TCF_ASYNC: 529 return sysfs_emit(buf, "async\n"); 530 case MTE_CTRL_TCF_SYNC: 531 return sysfs_emit(buf, "sync\n"); 532 case MTE_CTRL_TCF_ASYMM: 533 return sysfs_emit(buf, "asymm\n"); 534 default: 535 return sysfs_emit(buf, "???\n"); 536 } 537 } 538 539 static ssize_t mte_tcf_preferred_store(struct device *dev, 540 struct device_attribute *attr, 541 const char *buf, size_t count) 542 { 543 u64 tcf; 544 545 if (sysfs_streq(buf, "async")) 546 tcf = MTE_CTRL_TCF_ASYNC; 547 else if (sysfs_streq(buf, "sync")) 548 tcf = MTE_CTRL_TCF_SYNC; 549 else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm")) 550 tcf = MTE_CTRL_TCF_ASYMM; 551 else 552 return -EINVAL; 553 554 device_lock(dev); 555 per_cpu(mte_tcf_preferred, dev->id) = tcf; 556 device_unlock(dev); 557 558 return count; 559 } 560 static DEVICE_ATTR_RW(mte_tcf_preferred); 561 562 static int register_mte_tcf_preferred_sysctl(void) 563 { 564 unsigned int cpu; 565 566 if (!system_supports_mte()) 567 return 0; 568 569 for_each_possible_cpu(cpu) { 570 per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC; 571 device_create_file(get_cpu_device(cpu), 572 &dev_attr_mte_tcf_preferred); 573 } 574 575 return 0; 576 } 577 subsys_initcall(register_mte_tcf_preferred_sysctl); 578 579 /* 580 * Return 0 on success, the number of bytes not probed otherwise. 581 */ 582 size_t mte_probe_user_range(const char __user *uaddr, size_t size) 583 { 584 const char __user *end = uaddr + size; 585 char val; 586 587 __raw_get_user(val, uaddr, efault); 588 589 uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE); 590 while (uaddr < end) { 591 /* 592 * A read is sufficient for mte, the caller should have probed 593 * for the pte write permission if required. 594 */ 595 __raw_get_user(val, uaddr, efault); 596 uaddr += MTE_GRANULE_SIZE; 597 } 598 (void)val; 599 600 return 0; 601 602 efault: 603 return end - uaddr; 604 } 605