1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2020 ARM Ltd. 4 */ 5 6 #include <linux/bitops.h> 7 #include <linux/cpu.h> 8 #include <linux/kernel.h> 9 #include <linux/mm.h> 10 #include <linux/prctl.h> 11 #include <linux/sched.h> 12 #include <linux/sched/mm.h> 13 #include <linux/string.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 #include <linux/thread_info.h> 17 #include <linux/types.h> 18 #include <linux/uaccess.h> 19 #include <linux/uio.h> 20 21 #include <asm/barrier.h> 22 #include <asm/cpufeature.h> 23 #include <asm/mte.h> 24 #include <asm/ptrace.h> 25 #include <asm/sysreg.h> 26 27 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred); 28 29 #ifdef CONFIG_KASAN_HW_TAGS 30 /* 31 * The asynchronous and asymmetric MTE modes have the same behavior for 32 * store operations. This flag is set when either of these modes is enabled. 33 */ 34 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode); 35 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode); 36 #endif 37 38 void mte_sync_tags(pte_t pte, unsigned int nr_pages) 39 { 40 struct page *page = pte_page(pte); 41 struct folio *folio = page_folio(page); 42 unsigned long i; 43 44 if (folio_test_hugetlb(folio)) { 45 unsigned long nr = folio_nr_pages(folio); 46 47 /* Hugetlb MTE flags are set for head page only */ 48 if (folio_try_hugetlb_mte_tagging(folio)) { 49 for (i = 0; i < nr; i++, page++) 50 mte_clear_page_tags(page_address(page)); 51 folio_set_hugetlb_mte_tagged(folio); 52 } 53 54 /* ensure the tags are visible before the PTE is set */ 55 smp_wmb(); 56 57 return; 58 } 59 60 /* if PG_mte_tagged is set, tags have already been initialised */ 61 for (i = 0; i < nr_pages; i++, page++) { 62 if (try_page_mte_tagging(page)) { 63 mte_clear_page_tags(page_address(page)); 64 set_page_mte_tagged(page); 65 } 66 } 67 68 /* ensure the tags are visible before the PTE is set */ 69 smp_wmb(); 70 } 71 72 int memcmp_pages(struct page *page1, struct page *page2) 73 { 74 char *addr1, *addr2; 75 int ret; 76 77 addr1 = page_address(page1); 78 addr2 = page_address(page2); 79 ret = memcmp(addr1, addr2, PAGE_SIZE); 80 81 if (!system_supports_mte() || ret) 82 return ret; 83 84 /* 85 * If the page content is identical but at least one of the pages is 86 * tagged, return non-zero to avoid KSM merging. If only one of the 87 * pages is tagged, __set_ptes() may zero or change the tags of the 88 * other page via mte_sync_tags(). 89 */ 90 if (page_mte_tagged(page1) || page_mte_tagged(page2)) 91 return addr1 != addr2; 92 93 return ret; 94 } 95 96 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf) 97 { 98 /* Enable MTE Sync Mode for EL1. */ 99 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK, 100 SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf)); 101 isb(); 102 103 pr_info_once("MTE: enabled in %s mode at EL1\n", mode); 104 } 105 106 #ifdef CONFIG_KASAN_HW_TAGS 107 void mte_enable_kernel_sync(void) 108 { 109 /* 110 * Make sure we enter this function when no PE has set 111 * async mode previously. 112 */ 113 WARN_ONCE(system_uses_mte_async_or_asymm_mode(), 114 "MTE async mode enabled system wide!"); 115 116 __mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC); 117 } 118 119 void mte_enable_kernel_async(void) 120 { 121 __mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC); 122 123 /* 124 * MTE async mode is set system wide by the first PE that 125 * executes this function. 126 * 127 * Note: If in future KASAN acquires a runtime switching 128 * mode in between sync and async, this strategy needs 129 * to be reviewed. 130 */ 131 if (!system_uses_mte_async_or_asymm_mode()) 132 static_branch_enable(&mte_async_or_asymm_mode); 133 } 134 135 void mte_enable_kernel_asymm(void) 136 { 137 if (cpus_have_cap(ARM64_MTE_ASYMM)) { 138 __mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM); 139 140 /* 141 * MTE asymm mode behaves as async mode for store 142 * operations. The mode is set system wide by the 143 * first PE that executes this function. 144 * 145 * Note: If in future KASAN acquires a runtime switching 146 * mode in between sync and async, this strategy needs 147 * to be reviewed. 148 */ 149 if (!system_uses_mte_async_or_asymm_mode()) 150 static_branch_enable(&mte_async_or_asymm_mode); 151 } else { 152 /* 153 * If the CPU does not support MTE asymmetric mode the 154 * kernel falls back on synchronous mode which is the 155 * default for kasan=on. 156 */ 157 mte_enable_kernel_sync(); 158 } 159 } 160 #endif 161 162 #ifdef CONFIG_KASAN_HW_TAGS 163 void mte_check_tfsr_el1(void) 164 { 165 u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1); 166 167 if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) { 168 /* 169 * Note: isb() is not required after this direct write 170 * because there is no indirect read subsequent to it 171 * (per ARM DDI 0487F.c table D13-1). 172 */ 173 write_sysreg_s(0, SYS_TFSR_EL1); 174 175 kasan_report_async(); 176 } 177 } 178 #endif 179 180 /* 181 * This is where we actually resolve the system and process MTE mode 182 * configuration into an actual value in SCTLR_EL1 that affects 183 * userspace. 184 */ 185 static void mte_update_sctlr_user(struct task_struct *task) 186 { 187 /* 188 * This must be called with preemption disabled and can only be called 189 * on the current or next task since the CPU must match where the thread 190 * is going to run. The caller is responsible for calling 191 * update_sctlr_el1() later in the same preemption disabled block. 192 */ 193 unsigned long sctlr = task->thread.sctlr_user; 194 unsigned long mte_ctrl = task->thread.mte_ctrl; 195 unsigned long pref, resolved_mte_tcf; 196 197 pref = __this_cpu_read(mte_tcf_preferred); 198 /* 199 * If there is no overlap between the system preferred and 200 * program requested values go with what was requested. 201 */ 202 resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl; 203 sctlr &= ~(SCTLR_EL1_TCF0_MASK | SCTLR_EL1_TCSO0_MASK); 204 /* 205 * Pick an actual setting. The order in which we check for 206 * set bits and map into register values determines our 207 * default order. 208 */ 209 if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM) 210 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM); 211 else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC) 212 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC); 213 else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC) 214 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC); 215 216 if (mte_ctrl & MTE_CTRL_STORE_ONLY) 217 sctlr |= SYS_FIELD_PREP(SCTLR_EL1, TCSO0, 1); 218 219 task->thread.sctlr_user = sctlr; 220 } 221 222 static void mte_update_gcr_excl(struct task_struct *task) 223 { 224 /* 225 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by 226 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled. 227 */ 228 if (kasan_hw_tags_enabled()) 229 return; 230 231 write_sysreg_s( 232 ((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & 233 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND, 234 SYS_GCR_EL1); 235 } 236 237 #ifdef CONFIG_KASAN_HW_TAGS 238 /* Only called from assembly, silence sparse */ 239 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr, 240 __le32 *updptr, int nr_inst); 241 242 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr, 243 __le32 *updptr, int nr_inst) 244 { 245 BUG_ON(nr_inst != 1); /* Branch -> NOP */ 246 247 if (kasan_hw_tags_enabled()) 248 *updptr = cpu_to_le32(aarch64_insn_gen_nop()); 249 } 250 #endif 251 252 void mte_thread_init_user(void) 253 { 254 if (!system_supports_mte()) 255 return; 256 257 /* clear any pending asynchronous tag fault */ 258 dsb(ish); 259 write_sysreg_s(0, SYS_TFSRE0_EL1); 260 clear_thread_flag(TIF_MTE_ASYNC_FAULT); 261 /* disable tag checking and reset tag generation mask */ 262 set_mte_ctrl(current, 0); 263 } 264 265 void mte_thread_switch(struct task_struct *next) 266 { 267 if (!system_supports_mte()) 268 return; 269 270 mte_update_sctlr_user(next); 271 mte_update_gcr_excl(next); 272 273 /* TCO may not have been disabled on exception entry for the current task. */ 274 mte_disable_tco_entry(next); 275 276 /* 277 * Check if an async tag exception occurred at EL1. 278 * 279 * Note: On the context switch path we rely on the dsb() present 280 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1 281 * are synchronized before this point. 282 */ 283 isb(); 284 mte_check_tfsr_el1(); 285 } 286 287 void mte_cpu_setup(void) 288 { 289 u64 rgsr; 290 291 /* 292 * CnP must be enabled only after the MAIR_EL1 register has been set 293 * up. Inconsistent MAIR_EL1 between CPUs sharing the same TLB may 294 * lead to the wrong memory type being used for a brief window during 295 * CPU power-up. 296 * 297 * CnP is not a boot feature so MTE gets enabled before CnP, but let's 298 * make sure that is the case. 299 */ 300 BUG_ON(read_sysreg(ttbr0_el1) & TTBR_CNP_BIT); 301 BUG_ON(read_sysreg(ttbr1_el1) & TTBR_CNP_BIT); 302 303 /* Normal Tagged memory type at the corresponding MAIR index */ 304 sysreg_clear_set(mair_el1, 305 MAIR_ATTRIDX(MAIR_ATTR_MASK, MT_NORMAL_TAGGED), 306 MAIR_ATTRIDX(MAIR_ATTR_NORMAL_TAGGED, 307 MT_NORMAL_TAGGED)); 308 309 write_sysreg_s(KERNEL_GCR_EL1, SYS_GCR_EL1); 310 311 /* 312 * If GCR_EL1.RRND=1 is implemented the same way as RRND=0, then 313 * RGSR_EL1.SEED must be non-zero for IRG to produce 314 * pseudorandom numbers. As RGSR_EL1 is UNKNOWN out of reset, we 315 * must initialize it. 316 */ 317 rgsr = (read_sysreg(CNTVCT_EL0) & SYS_RGSR_EL1_SEED_MASK) << 318 SYS_RGSR_EL1_SEED_SHIFT; 319 if (rgsr == 0) 320 rgsr = 1 << SYS_RGSR_EL1_SEED_SHIFT; 321 write_sysreg_s(rgsr, SYS_RGSR_EL1); 322 323 /* clear any pending tag check faults in TFSR*_EL1 */ 324 write_sysreg_s(0, SYS_TFSR_EL1); 325 write_sysreg_s(0, SYS_TFSRE0_EL1); 326 327 local_flush_tlb_all(); 328 } 329 330 void mte_suspend_enter(void) 331 { 332 if (!system_supports_mte()) 333 return; 334 335 /* 336 * The barriers are required to guarantee that the indirect writes 337 * to TFSR_EL1 are synchronized before we report the state. 338 */ 339 dsb(nsh); 340 isb(); 341 342 /* Report SYS_TFSR_EL1 before suspend entry */ 343 mte_check_tfsr_el1(); 344 } 345 346 void mte_suspend_exit(void) 347 { 348 if (!system_supports_mte()) 349 return; 350 351 mte_cpu_setup(); 352 } 353 354 long set_mte_ctrl(struct task_struct *task, unsigned long arg) 355 { 356 u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) & 357 SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT; 358 359 if (!system_supports_mte()) 360 return 0; 361 362 if (arg & PR_MTE_TCF_ASYNC) 363 mte_ctrl |= MTE_CTRL_TCF_ASYNC; 364 if (arg & PR_MTE_TCF_SYNC) 365 mte_ctrl |= MTE_CTRL_TCF_SYNC; 366 367 /* 368 * If the system supports it and both sync and async modes are 369 * specified then implicitly enable asymmetric mode. 370 * Userspace could see a mix of both sync and async anyway due 371 * to differing or changing defaults on CPUs. 372 */ 373 if (cpus_have_cap(ARM64_MTE_ASYMM) && 374 (arg & PR_MTE_TCF_ASYNC) && 375 (arg & PR_MTE_TCF_SYNC)) 376 mte_ctrl |= MTE_CTRL_TCF_ASYMM; 377 378 if (arg & PR_MTE_STORE_ONLY) 379 mte_ctrl |= MTE_CTRL_STORE_ONLY; 380 381 task->thread.mte_ctrl = mte_ctrl; 382 if (task == current) { 383 preempt_disable(); 384 mte_update_sctlr_user(task); 385 mte_update_gcr_excl(task); 386 update_sctlr_el1(task->thread.sctlr_user); 387 preempt_enable(); 388 } 389 390 return 0; 391 } 392 393 long get_mte_ctrl(struct task_struct *task) 394 { 395 unsigned long ret; 396 u64 mte_ctrl = task->thread.mte_ctrl; 397 u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & 398 SYS_GCR_EL1_EXCL_MASK; 399 400 if (!system_supports_mte()) 401 return 0; 402 403 ret = incl << PR_MTE_TAG_SHIFT; 404 if (mte_ctrl & MTE_CTRL_TCF_ASYNC) 405 ret |= PR_MTE_TCF_ASYNC; 406 if (mte_ctrl & MTE_CTRL_TCF_SYNC) 407 ret |= PR_MTE_TCF_SYNC; 408 if (mte_ctrl & MTE_CTRL_STORE_ONLY) 409 ret |= PR_MTE_STORE_ONLY; 410 411 return ret; 412 } 413 414 /* 415 * Access MTE tags in another process' address space as given in mm. Update 416 * the number of tags copied. Return 0 if any tags copied, error otherwise. 417 * Inspired by __access_remote_vm(). 418 */ 419 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr, 420 struct iovec *kiov, unsigned int gup_flags) 421 { 422 void __user *buf = kiov->iov_base; 423 size_t len = kiov->iov_len; 424 int err = 0; 425 int write = gup_flags & FOLL_WRITE; 426 427 if (!access_ok(buf, len)) 428 return -EFAULT; 429 430 if (mmap_read_lock_killable(mm)) 431 return -EIO; 432 433 while (len) { 434 struct vm_area_struct *vma; 435 unsigned long tags, offset; 436 void *maddr; 437 struct page *page = get_user_page_vma_remote(mm, addr, 438 gup_flags, &vma); 439 struct folio *folio; 440 441 if (IS_ERR(page)) { 442 err = PTR_ERR(page); 443 break; 444 } 445 446 /* 447 * Only copy tags if the page has been mapped as PROT_MTE 448 * (PG_mte_tagged set). Otherwise the tags are not valid and 449 * not accessible to user. Moreover, an mprotect(PROT_MTE) 450 * would cause the existing tags to be cleared if the page 451 * was never mapped with PROT_MTE. 452 */ 453 if (!(vma->vm_flags & VM_MTE)) { 454 err = -EOPNOTSUPP; 455 put_page(page); 456 break; 457 } 458 459 folio = page_folio(page); 460 if (folio_test_hugetlb(folio)) 461 WARN_ON_ONCE(!folio_test_hugetlb_mte_tagged(folio)); 462 else 463 WARN_ON_ONCE(!page_mte_tagged(page)); 464 465 /* limit access to the end of the page */ 466 offset = offset_in_page(addr); 467 tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE); 468 469 maddr = page_address(page); 470 if (write) { 471 tags = mte_copy_tags_from_user(maddr + offset, buf, tags); 472 set_page_dirty_lock(page); 473 } else { 474 tags = mte_copy_tags_to_user(buf, maddr + offset, tags); 475 } 476 put_page(page); 477 478 /* error accessing the tracer's buffer */ 479 if (!tags) 480 break; 481 482 len -= tags; 483 buf += tags; 484 addr += tags * MTE_GRANULE_SIZE; 485 } 486 mmap_read_unlock(mm); 487 488 /* return an error if no tags copied */ 489 kiov->iov_len = buf - kiov->iov_base; 490 if (!kiov->iov_len) { 491 /* check for error accessing the tracee's address space */ 492 if (err) 493 return -EIO; 494 else 495 return -EFAULT; 496 } 497 498 return 0; 499 } 500 501 /* 502 * Copy MTE tags in another process' address space at 'addr' to/from tracer's 503 * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm(). 504 */ 505 static int access_remote_tags(struct task_struct *tsk, unsigned long addr, 506 struct iovec *kiov, unsigned int gup_flags) 507 { 508 struct mm_struct *mm; 509 int ret; 510 511 mm = get_task_mm(tsk); 512 if (!mm) 513 return -EPERM; 514 515 if (!tsk->ptrace || (current != tsk->parent) || 516 ((get_dumpable(mm) != SUID_DUMP_USER) && 517 !ptracer_capable(tsk, mm->user_ns))) { 518 mmput(mm); 519 return -EPERM; 520 } 521 522 ret = __access_remote_tags(mm, addr, kiov, gup_flags); 523 mmput(mm); 524 525 return ret; 526 } 527 528 int mte_ptrace_copy_tags(struct task_struct *child, long request, 529 unsigned long addr, unsigned long data) 530 { 531 int ret; 532 struct iovec kiov; 533 struct iovec __user *uiov = (void __user *)data; 534 unsigned int gup_flags = FOLL_FORCE; 535 536 if (!system_supports_mte()) 537 return -EIO; 538 539 if (get_user(kiov.iov_base, &uiov->iov_base) || 540 get_user(kiov.iov_len, &uiov->iov_len)) 541 return -EFAULT; 542 543 if (request == PTRACE_POKEMTETAGS) 544 gup_flags |= FOLL_WRITE; 545 546 /* align addr to the MTE tag granule */ 547 addr &= MTE_GRANULE_MASK; 548 549 ret = access_remote_tags(child, addr, &kiov, gup_flags); 550 if (!ret) 551 ret = put_user(kiov.iov_len, &uiov->iov_len); 552 553 return ret; 554 } 555 556 static ssize_t mte_tcf_preferred_show(struct device *dev, 557 struct device_attribute *attr, char *buf) 558 { 559 switch (per_cpu(mte_tcf_preferred, dev->id)) { 560 case MTE_CTRL_TCF_ASYNC: 561 return sysfs_emit(buf, "async\n"); 562 case MTE_CTRL_TCF_SYNC: 563 return sysfs_emit(buf, "sync\n"); 564 case MTE_CTRL_TCF_ASYMM: 565 return sysfs_emit(buf, "asymm\n"); 566 default: 567 return sysfs_emit(buf, "???\n"); 568 } 569 } 570 571 static ssize_t mte_tcf_preferred_store(struct device *dev, 572 struct device_attribute *attr, 573 const char *buf, size_t count) 574 { 575 u64 tcf; 576 577 if (sysfs_streq(buf, "async")) 578 tcf = MTE_CTRL_TCF_ASYNC; 579 else if (sysfs_streq(buf, "sync")) 580 tcf = MTE_CTRL_TCF_SYNC; 581 else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm")) 582 tcf = MTE_CTRL_TCF_ASYMM; 583 else 584 return -EINVAL; 585 586 device_lock(dev); 587 per_cpu(mte_tcf_preferred, dev->id) = tcf; 588 device_unlock(dev); 589 590 return count; 591 } 592 static DEVICE_ATTR_RW(mte_tcf_preferred); 593 594 static int register_mte_tcf_preferred_sysctl(void) 595 { 596 unsigned int cpu; 597 598 if (!system_supports_mte()) 599 return 0; 600 601 for_each_possible_cpu(cpu) { 602 per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC; 603 device_create_file(get_cpu_device(cpu), 604 &dev_attr_mte_tcf_preferred); 605 } 606 607 return 0; 608 } 609 subsys_initcall(register_mte_tcf_preferred_sysctl); 610 611 /* 612 * Return 0 on success, the number of bytes not probed otherwise. 613 */ 614 size_t mte_probe_user_range(const char __user *uaddr, size_t size) 615 { 616 const char __user *end = uaddr + size; 617 char val; 618 619 __raw_get_user(val, uaddr, efault); 620 621 uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE); 622 while (uaddr < end) { 623 /* 624 * A read is sufficient for mte, the caller should have probed 625 * for the pte write permission if required. 626 */ 627 __raw_get_user(val, uaddr, efault); 628 uaddr += MTE_GRANULE_SIZE; 629 } 630 (void)val; 631 632 return 0; 633 634 efault: 635 return end - uaddr; 636 } 637