1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2020 ARM Ltd. 4 */ 5 6 #include <linux/bitops.h> 7 #include <linux/cpu.h> 8 #include <linux/kernel.h> 9 #include <linux/mm.h> 10 #include <linux/prctl.h> 11 #include <linux/sched.h> 12 #include <linux/sched/mm.h> 13 #include <linux/string.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 #include <linux/thread_info.h> 17 #include <linux/types.h> 18 #include <linux/uaccess.h> 19 #include <linux/uio.h> 20 21 #include <asm/barrier.h> 22 #include <asm/cpufeature.h> 23 #include <asm/mte.h> 24 #include <asm/ptrace.h> 25 #include <asm/sysreg.h> 26 27 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred); 28 29 #ifdef CONFIG_KASAN_HW_TAGS 30 /* 31 * The asynchronous and asymmetric MTE modes have the same behavior for 32 * store operations. This flag is set when either of these modes is enabled. 33 */ 34 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode); 35 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode); 36 #endif 37 38 static void mte_sync_page_tags(struct page *page, pte_t old_pte, 39 bool check_swap, bool pte_is_tagged) 40 { 41 if (check_swap && is_swap_pte(old_pte)) { 42 swp_entry_t entry = pte_to_swp_entry(old_pte); 43 44 if (!non_swap_entry(entry) && mte_restore_tags(entry, page)) 45 return; 46 } 47 48 if (!pte_is_tagged) 49 return; 50 51 /* 52 * Test PG_mte_tagged again in case it was racing with another 53 * set_pte_at(). 54 */ 55 if (!test_and_set_bit(PG_mte_tagged, &page->flags)) 56 mte_clear_page_tags(page_address(page)); 57 } 58 59 void mte_sync_tags(pte_t old_pte, pte_t pte) 60 { 61 struct page *page = pte_page(pte); 62 long i, nr_pages = compound_nr(page); 63 bool check_swap = nr_pages == 1; 64 bool pte_is_tagged = pte_tagged(pte); 65 66 /* Early out if there's nothing to do */ 67 if (!check_swap && !pte_is_tagged) 68 return; 69 70 /* if PG_mte_tagged is set, tags have already been initialised */ 71 for (i = 0; i < nr_pages; i++, page++) { 72 if (!test_bit(PG_mte_tagged, &page->flags)) 73 mte_sync_page_tags(page, old_pte, check_swap, 74 pte_is_tagged); 75 } 76 77 /* ensure the tags are visible before the PTE is set */ 78 smp_wmb(); 79 } 80 81 int memcmp_pages(struct page *page1, struct page *page2) 82 { 83 char *addr1, *addr2; 84 int ret; 85 86 addr1 = page_address(page1); 87 addr2 = page_address(page2); 88 ret = memcmp(addr1, addr2, PAGE_SIZE); 89 90 if (!system_supports_mte() || ret) 91 return ret; 92 93 /* 94 * If the page content is identical but at least one of the pages is 95 * tagged, return non-zero to avoid KSM merging. If only one of the 96 * pages is tagged, set_pte_at() may zero or change the tags of the 97 * other page via mte_sync_tags(). 98 */ 99 if (test_bit(PG_mte_tagged, &page1->flags) || 100 test_bit(PG_mte_tagged, &page2->flags)) 101 return addr1 != addr2; 102 103 return ret; 104 } 105 106 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf) 107 { 108 /* Enable MTE Sync Mode for EL1. */ 109 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK, 110 SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf)); 111 isb(); 112 113 pr_info_once("MTE: enabled in %s mode at EL1\n", mode); 114 } 115 116 #ifdef CONFIG_KASAN_HW_TAGS 117 void mte_enable_kernel_sync(void) 118 { 119 /* 120 * Make sure we enter this function when no PE has set 121 * async mode previously. 122 */ 123 WARN_ONCE(system_uses_mte_async_or_asymm_mode(), 124 "MTE async mode enabled system wide!"); 125 126 __mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC); 127 } 128 129 void mte_enable_kernel_async(void) 130 { 131 __mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC); 132 133 /* 134 * MTE async mode is set system wide by the first PE that 135 * executes this function. 136 * 137 * Note: If in future KASAN acquires a runtime switching 138 * mode in between sync and async, this strategy needs 139 * to be reviewed. 140 */ 141 if (!system_uses_mte_async_or_asymm_mode()) 142 static_branch_enable(&mte_async_or_asymm_mode); 143 } 144 145 void mte_enable_kernel_asymm(void) 146 { 147 if (cpus_have_cap(ARM64_MTE_ASYMM)) { 148 __mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM); 149 150 /* 151 * MTE asymm mode behaves as async mode for store 152 * operations. The mode is set system wide by the 153 * first PE that executes this function. 154 * 155 * Note: If in future KASAN acquires a runtime switching 156 * mode in between sync and async, this strategy needs 157 * to be reviewed. 158 */ 159 if (!system_uses_mte_async_or_asymm_mode()) 160 static_branch_enable(&mte_async_or_asymm_mode); 161 } else { 162 /* 163 * If the CPU does not support MTE asymmetric mode the 164 * kernel falls back on synchronous mode which is the 165 * default for kasan=on. 166 */ 167 mte_enable_kernel_sync(); 168 } 169 } 170 #endif 171 172 #ifdef CONFIG_KASAN_HW_TAGS 173 void mte_check_tfsr_el1(void) 174 { 175 u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1); 176 177 if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) { 178 /* 179 * Note: isb() is not required after this direct write 180 * because there is no indirect read subsequent to it 181 * (per ARM DDI 0487F.c table D13-1). 182 */ 183 write_sysreg_s(0, SYS_TFSR_EL1); 184 185 kasan_report_async(); 186 } 187 } 188 #endif 189 190 /* 191 * This is where we actually resolve the system and process MTE mode 192 * configuration into an actual value in SCTLR_EL1 that affects 193 * userspace. 194 */ 195 static void mte_update_sctlr_user(struct task_struct *task) 196 { 197 /* 198 * This must be called with preemption disabled and can only be called 199 * on the current or next task since the CPU must match where the thread 200 * is going to run. The caller is responsible for calling 201 * update_sctlr_el1() later in the same preemption disabled block. 202 */ 203 unsigned long sctlr = task->thread.sctlr_user; 204 unsigned long mte_ctrl = task->thread.mte_ctrl; 205 unsigned long pref, resolved_mte_tcf; 206 207 pref = __this_cpu_read(mte_tcf_preferred); 208 /* 209 * If there is no overlap between the system preferred and 210 * program requested values go with what was requested. 211 */ 212 resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl; 213 sctlr &= ~SCTLR_EL1_TCF0_MASK; 214 /* 215 * Pick an actual setting. The order in which we check for 216 * set bits and map into register values determines our 217 * default order. 218 */ 219 if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM) 220 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM); 221 else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC) 222 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC); 223 else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC) 224 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC); 225 task->thread.sctlr_user = sctlr; 226 } 227 228 static void mte_update_gcr_excl(struct task_struct *task) 229 { 230 /* 231 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by 232 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled. 233 */ 234 if (kasan_hw_tags_enabled()) 235 return; 236 237 write_sysreg_s( 238 ((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & 239 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND, 240 SYS_GCR_EL1); 241 } 242 243 #ifdef CONFIG_KASAN_HW_TAGS 244 /* Only called from assembly, silence sparse */ 245 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr, 246 __le32 *updptr, int nr_inst); 247 248 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr, 249 __le32 *updptr, int nr_inst) 250 { 251 BUG_ON(nr_inst != 1); /* Branch -> NOP */ 252 253 if (kasan_hw_tags_enabled()) 254 *updptr = cpu_to_le32(aarch64_insn_gen_nop()); 255 } 256 #endif 257 258 void mte_thread_init_user(void) 259 { 260 if (!system_supports_mte()) 261 return; 262 263 /* clear any pending asynchronous tag fault */ 264 dsb(ish); 265 write_sysreg_s(0, SYS_TFSRE0_EL1); 266 clear_thread_flag(TIF_MTE_ASYNC_FAULT); 267 /* disable tag checking and reset tag generation mask */ 268 set_mte_ctrl(current, 0); 269 } 270 271 void mte_thread_switch(struct task_struct *next) 272 { 273 if (!system_supports_mte()) 274 return; 275 276 mte_update_sctlr_user(next); 277 mte_update_gcr_excl(next); 278 279 /* TCO may not have been disabled on exception entry for the current task. */ 280 mte_disable_tco_entry(next); 281 282 /* 283 * Check if an async tag exception occurred at EL1. 284 * 285 * Note: On the context switch path we rely on the dsb() present 286 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1 287 * are synchronized before this point. 288 */ 289 isb(); 290 mte_check_tfsr_el1(); 291 } 292 293 void mte_cpu_setup(void) 294 { 295 u64 rgsr; 296 297 /* 298 * CnP must be enabled only after the MAIR_EL1 register has been set 299 * up. Inconsistent MAIR_EL1 between CPUs sharing the same TLB may 300 * lead to the wrong memory type being used for a brief window during 301 * CPU power-up. 302 * 303 * CnP is not a boot feature so MTE gets enabled before CnP, but let's 304 * make sure that is the case. 305 */ 306 BUG_ON(read_sysreg(ttbr0_el1) & TTBR_CNP_BIT); 307 BUG_ON(read_sysreg(ttbr1_el1) & TTBR_CNP_BIT); 308 309 /* Normal Tagged memory type at the corresponding MAIR index */ 310 sysreg_clear_set(mair_el1, 311 MAIR_ATTRIDX(MAIR_ATTR_MASK, MT_NORMAL_TAGGED), 312 MAIR_ATTRIDX(MAIR_ATTR_NORMAL_TAGGED, 313 MT_NORMAL_TAGGED)); 314 315 write_sysreg_s(KERNEL_GCR_EL1, SYS_GCR_EL1); 316 317 /* 318 * If GCR_EL1.RRND=1 is implemented the same way as RRND=0, then 319 * RGSR_EL1.SEED must be non-zero for IRG to produce 320 * pseudorandom numbers. As RGSR_EL1 is UNKNOWN out of reset, we 321 * must initialize it. 322 */ 323 rgsr = (read_sysreg(CNTVCT_EL0) & SYS_RGSR_EL1_SEED_MASK) << 324 SYS_RGSR_EL1_SEED_SHIFT; 325 if (rgsr == 0) 326 rgsr = 1 << SYS_RGSR_EL1_SEED_SHIFT; 327 write_sysreg_s(rgsr, SYS_RGSR_EL1); 328 329 /* clear any pending tag check faults in TFSR*_EL1 */ 330 write_sysreg_s(0, SYS_TFSR_EL1); 331 write_sysreg_s(0, SYS_TFSRE0_EL1); 332 333 local_flush_tlb_all(); 334 } 335 336 void mte_suspend_enter(void) 337 { 338 if (!system_supports_mte()) 339 return; 340 341 /* 342 * The barriers are required to guarantee that the indirect writes 343 * to TFSR_EL1 are synchronized before we report the state. 344 */ 345 dsb(nsh); 346 isb(); 347 348 /* Report SYS_TFSR_EL1 before suspend entry */ 349 mte_check_tfsr_el1(); 350 } 351 352 void mte_suspend_exit(void) 353 { 354 if (!system_supports_mte()) 355 return; 356 357 mte_cpu_setup(); 358 } 359 360 long set_mte_ctrl(struct task_struct *task, unsigned long arg) 361 { 362 u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) & 363 SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT; 364 365 if (!system_supports_mte()) 366 return 0; 367 368 if (arg & PR_MTE_TCF_ASYNC) 369 mte_ctrl |= MTE_CTRL_TCF_ASYNC; 370 if (arg & PR_MTE_TCF_SYNC) 371 mte_ctrl |= MTE_CTRL_TCF_SYNC; 372 373 /* 374 * If the system supports it and both sync and async modes are 375 * specified then implicitly enable asymmetric mode. 376 * Userspace could see a mix of both sync and async anyway due 377 * to differing or changing defaults on CPUs. 378 */ 379 if (cpus_have_cap(ARM64_MTE_ASYMM) && 380 (arg & PR_MTE_TCF_ASYNC) && 381 (arg & PR_MTE_TCF_SYNC)) 382 mte_ctrl |= MTE_CTRL_TCF_ASYMM; 383 384 task->thread.mte_ctrl = mte_ctrl; 385 if (task == current) { 386 preempt_disable(); 387 mte_update_sctlr_user(task); 388 mte_update_gcr_excl(task); 389 update_sctlr_el1(task->thread.sctlr_user); 390 preempt_enable(); 391 } 392 393 return 0; 394 } 395 396 long get_mte_ctrl(struct task_struct *task) 397 { 398 unsigned long ret; 399 u64 mte_ctrl = task->thread.mte_ctrl; 400 u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & 401 SYS_GCR_EL1_EXCL_MASK; 402 403 if (!system_supports_mte()) 404 return 0; 405 406 ret = incl << PR_MTE_TAG_SHIFT; 407 if (mte_ctrl & MTE_CTRL_TCF_ASYNC) 408 ret |= PR_MTE_TCF_ASYNC; 409 if (mte_ctrl & MTE_CTRL_TCF_SYNC) 410 ret |= PR_MTE_TCF_SYNC; 411 412 return ret; 413 } 414 415 /* 416 * Access MTE tags in another process' address space as given in mm. Update 417 * the number of tags copied. Return 0 if any tags copied, error otherwise. 418 * Inspired by __access_remote_vm(). 419 */ 420 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr, 421 struct iovec *kiov, unsigned int gup_flags) 422 { 423 struct vm_area_struct *vma; 424 void __user *buf = kiov->iov_base; 425 size_t len = kiov->iov_len; 426 int ret; 427 int write = gup_flags & FOLL_WRITE; 428 429 if (!access_ok(buf, len)) 430 return -EFAULT; 431 432 if (mmap_read_lock_killable(mm)) 433 return -EIO; 434 435 while (len) { 436 unsigned long tags, offset; 437 void *maddr; 438 struct page *page = NULL; 439 440 ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page, 441 &vma, NULL); 442 if (ret <= 0) 443 break; 444 445 /* 446 * Only copy tags if the page has been mapped as PROT_MTE 447 * (PG_mte_tagged set). Otherwise the tags are not valid and 448 * not accessible to user. Moreover, an mprotect(PROT_MTE) 449 * would cause the existing tags to be cleared if the page 450 * was never mapped with PROT_MTE. 451 */ 452 if (!(vma->vm_flags & VM_MTE)) { 453 ret = -EOPNOTSUPP; 454 put_page(page); 455 break; 456 } 457 WARN_ON_ONCE(!test_bit(PG_mte_tagged, &page->flags)); 458 459 /* limit access to the end of the page */ 460 offset = offset_in_page(addr); 461 tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE); 462 463 maddr = page_address(page); 464 if (write) { 465 tags = mte_copy_tags_from_user(maddr + offset, buf, tags); 466 set_page_dirty_lock(page); 467 } else { 468 tags = mte_copy_tags_to_user(buf, maddr + offset, tags); 469 } 470 put_page(page); 471 472 /* error accessing the tracer's buffer */ 473 if (!tags) 474 break; 475 476 len -= tags; 477 buf += tags; 478 addr += tags * MTE_GRANULE_SIZE; 479 } 480 mmap_read_unlock(mm); 481 482 /* return an error if no tags copied */ 483 kiov->iov_len = buf - kiov->iov_base; 484 if (!kiov->iov_len) { 485 /* check for error accessing the tracee's address space */ 486 if (ret <= 0) 487 return -EIO; 488 else 489 return -EFAULT; 490 } 491 492 return 0; 493 } 494 495 /* 496 * Copy MTE tags in another process' address space at 'addr' to/from tracer's 497 * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm(). 498 */ 499 static int access_remote_tags(struct task_struct *tsk, unsigned long addr, 500 struct iovec *kiov, unsigned int gup_flags) 501 { 502 struct mm_struct *mm; 503 int ret; 504 505 mm = get_task_mm(tsk); 506 if (!mm) 507 return -EPERM; 508 509 if (!tsk->ptrace || (current != tsk->parent) || 510 ((get_dumpable(mm) != SUID_DUMP_USER) && 511 !ptracer_capable(tsk, mm->user_ns))) { 512 mmput(mm); 513 return -EPERM; 514 } 515 516 ret = __access_remote_tags(mm, addr, kiov, gup_flags); 517 mmput(mm); 518 519 return ret; 520 } 521 522 int mte_ptrace_copy_tags(struct task_struct *child, long request, 523 unsigned long addr, unsigned long data) 524 { 525 int ret; 526 struct iovec kiov; 527 struct iovec __user *uiov = (void __user *)data; 528 unsigned int gup_flags = FOLL_FORCE; 529 530 if (!system_supports_mte()) 531 return -EIO; 532 533 if (get_user(kiov.iov_base, &uiov->iov_base) || 534 get_user(kiov.iov_len, &uiov->iov_len)) 535 return -EFAULT; 536 537 if (request == PTRACE_POKEMTETAGS) 538 gup_flags |= FOLL_WRITE; 539 540 /* align addr to the MTE tag granule */ 541 addr &= MTE_GRANULE_MASK; 542 543 ret = access_remote_tags(child, addr, &kiov, gup_flags); 544 if (!ret) 545 ret = put_user(kiov.iov_len, &uiov->iov_len); 546 547 return ret; 548 } 549 550 static ssize_t mte_tcf_preferred_show(struct device *dev, 551 struct device_attribute *attr, char *buf) 552 { 553 switch (per_cpu(mte_tcf_preferred, dev->id)) { 554 case MTE_CTRL_TCF_ASYNC: 555 return sysfs_emit(buf, "async\n"); 556 case MTE_CTRL_TCF_SYNC: 557 return sysfs_emit(buf, "sync\n"); 558 case MTE_CTRL_TCF_ASYMM: 559 return sysfs_emit(buf, "asymm\n"); 560 default: 561 return sysfs_emit(buf, "???\n"); 562 } 563 } 564 565 static ssize_t mte_tcf_preferred_store(struct device *dev, 566 struct device_attribute *attr, 567 const char *buf, size_t count) 568 { 569 u64 tcf; 570 571 if (sysfs_streq(buf, "async")) 572 tcf = MTE_CTRL_TCF_ASYNC; 573 else if (sysfs_streq(buf, "sync")) 574 tcf = MTE_CTRL_TCF_SYNC; 575 else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm")) 576 tcf = MTE_CTRL_TCF_ASYMM; 577 else 578 return -EINVAL; 579 580 device_lock(dev); 581 per_cpu(mte_tcf_preferred, dev->id) = tcf; 582 device_unlock(dev); 583 584 return count; 585 } 586 static DEVICE_ATTR_RW(mte_tcf_preferred); 587 588 static int register_mte_tcf_preferred_sysctl(void) 589 { 590 unsigned int cpu; 591 592 if (!system_supports_mte()) 593 return 0; 594 595 for_each_possible_cpu(cpu) { 596 per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC; 597 device_create_file(get_cpu_device(cpu), 598 &dev_attr_mte_tcf_preferred); 599 } 600 601 return 0; 602 } 603 subsys_initcall(register_mte_tcf_preferred_sysctl); 604 605 /* 606 * Return 0 on success, the number of bytes not probed otherwise. 607 */ 608 size_t mte_probe_user_range(const char __user *uaddr, size_t size) 609 { 610 const char __user *end = uaddr + size; 611 int err = 0; 612 char val; 613 614 __raw_get_user(val, uaddr, err); 615 if (err) 616 return size; 617 618 uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE); 619 while (uaddr < end) { 620 /* 621 * A read is sufficient for mte, the caller should have probed 622 * for the pte write permission if required. 623 */ 624 __raw_get_user(val, uaddr, err); 625 if (err) 626 return end - uaddr; 627 uaddr += MTE_GRANULE_SIZE; 628 } 629 (void)val; 630 631 return 0; 632 } 633