1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2020 ARM Ltd. 4 */ 5 6 #include <linux/bitops.h> 7 #include <linux/cpu.h> 8 #include <linux/kernel.h> 9 #include <linux/mm.h> 10 #include <linux/prctl.h> 11 #include <linux/sched.h> 12 #include <linux/sched/mm.h> 13 #include <linux/string.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 #include <linux/thread_info.h> 17 #include <linux/types.h> 18 #include <linux/uaccess.h> 19 #include <linux/uio.h> 20 21 #include <asm/barrier.h> 22 #include <asm/cpufeature.h> 23 #include <asm/mte.h> 24 #include <asm/ptrace.h> 25 #include <asm/sysreg.h> 26 27 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred); 28 29 #ifdef CONFIG_KASAN_HW_TAGS 30 /* 31 * The asynchronous and asymmetric MTE modes have the same behavior for 32 * store operations. This flag is set when either of these modes is enabled. 33 */ 34 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode); 35 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode); 36 #endif 37 38 void mte_sync_tags(pte_t pte, unsigned int nr_pages) 39 { 40 struct page *page = pte_page(pte); 41 struct folio *folio = page_folio(page); 42 unsigned long i; 43 44 if (folio_test_hugetlb(folio)) { 45 unsigned long nr = folio_nr_pages(folio); 46 47 /* Hugetlb MTE flags are set for head page only */ 48 if (folio_try_hugetlb_mte_tagging(folio)) { 49 for (i = 0; i < nr; i++, page++) 50 mte_clear_page_tags(page_address(page)); 51 folio_set_hugetlb_mte_tagged(folio); 52 } 53 54 /* ensure the tags are visible before the PTE is set */ 55 smp_wmb(); 56 57 return; 58 } 59 60 /* if PG_mte_tagged is set, tags have already been initialised */ 61 for (i = 0; i < nr_pages; i++, page++) { 62 if (try_page_mte_tagging(page)) { 63 mte_clear_page_tags(page_address(page)); 64 set_page_mte_tagged(page); 65 } 66 } 67 68 /* ensure the tags are visible before the PTE is set */ 69 smp_wmb(); 70 } 71 72 int memcmp_pages(struct page *page1, struct page *page2) 73 { 74 char *addr1, *addr2; 75 int ret; 76 77 addr1 = page_address(page1); 78 addr2 = page_address(page2); 79 ret = memcmp(addr1, addr2, PAGE_SIZE); 80 81 if (!system_supports_mte() || ret) 82 return ret; 83 84 /* 85 * If the page content is identical but at least one of the pages is 86 * tagged, return non-zero to avoid KSM merging. If only one of the 87 * pages is tagged, __set_ptes() may zero or change the tags of the 88 * other page via mte_sync_tags(). 89 */ 90 if (page_mte_tagged(page1) || page_mte_tagged(page2)) 91 return addr1 != addr2; 92 93 return ret; 94 } 95 96 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf) 97 { 98 /* Enable MTE Sync Mode for EL1. */ 99 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK, 100 SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf)); 101 isb(); 102 103 pr_info_once("MTE: enabled in %s mode at EL1\n", mode); 104 } 105 106 #ifdef CONFIG_KASAN_HW_TAGS 107 void mte_enable_kernel_sync(void) 108 { 109 /* 110 * Make sure we enter this function when no PE has set 111 * async mode previously. 112 */ 113 WARN_ONCE(system_uses_mte_async_or_asymm_mode(), 114 "MTE async mode enabled system wide!"); 115 116 __mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC); 117 } 118 119 void mte_enable_kernel_async(void) 120 { 121 __mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC); 122 123 /* 124 * MTE async mode is set system wide by the first PE that 125 * executes this function. 126 * 127 * Note: If in future KASAN acquires a runtime switching 128 * mode in between sync and async, this strategy needs 129 * to be reviewed. 130 */ 131 if (!system_uses_mte_async_or_asymm_mode()) 132 static_branch_enable(&mte_async_or_asymm_mode); 133 } 134 135 void mte_enable_kernel_asymm(void) 136 { 137 if (cpus_have_cap(ARM64_MTE_ASYMM)) { 138 __mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM); 139 140 /* 141 * MTE asymm mode behaves as async mode for store 142 * operations. The mode is set system wide by the 143 * first PE that executes this function. 144 * 145 * Note: If in future KASAN acquires a runtime switching 146 * mode in between sync and async, this strategy needs 147 * to be reviewed. 148 */ 149 if (!system_uses_mte_async_or_asymm_mode()) 150 static_branch_enable(&mte_async_or_asymm_mode); 151 } else { 152 /* 153 * If the CPU does not support MTE asymmetric mode the 154 * kernel falls back on synchronous mode which is the 155 * default for kasan=on. 156 */ 157 mte_enable_kernel_sync(); 158 } 159 } 160 #endif 161 162 #ifdef CONFIG_KASAN_HW_TAGS 163 void mte_check_tfsr_el1(void) 164 { 165 u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1); 166 167 if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) { 168 /* 169 * Note: isb() is not required after this direct write 170 * because there is no indirect read subsequent to it 171 * (per ARM DDI 0487F.c table D13-1). 172 */ 173 write_sysreg_s(0, SYS_TFSR_EL1); 174 175 kasan_report_async(); 176 } 177 } 178 #endif 179 180 /* 181 * This is where we actually resolve the system and process MTE mode 182 * configuration into an actual value in SCTLR_EL1 that affects 183 * userspace. 184 */ 185 static void mte_update_sctlr_user(struct task_struct *task) 186 { 187 /* 188 * This must be called with preemption disabled and can only be called 189 * on the current or next task since the CPU must match where the thread 190 * is going to run. The caller is responsible for calling 191 * update_sctlr_el1() later in the same preemption disabled block. 192 */ 193 unsigned long sctlr = task->thread.sctlr_user; 194 unsigned long mte_ctrl = task->thread.mte_ctrl; 195 unsigned long pref, resolved_mte_tcf; 196 197 pref = __this_cpu_read(mte_tcf_preferred); 198 /* 199 * If there is no overlap between the system preferred and 200 * program requested values go with what was requested. 201 */ 202 resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl; 203 sctlr &= ~SCTLR_EL1_TCF0_MASK; 204 /* 205 * Pick an actual setting. The order in which we check for 206 * set bits and map into register values determines our 207 * default order. 208 */ 209 if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM) 210 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM); 211 else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC) 212 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC); 213 else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC) 214 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC); 215 task->thread.sctlr_user = sctlr; 216 } 217 218 static void mte_update_gcr_excl(struct task_struct *task) 219 { 220 /* 221 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by 222 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled. 223 */ 224 if (kasan_hw_tags_enabled()) 225 return; 226 227 write_sysreg_s( 228 ((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & 229 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND, 230 SYS_GCR_EL1); 231 } 232 233 #ifdef CONFIG_KASAN_HW_TAGS 234 /* Only called from assembly, silence sparse */ 235 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr, 236 __le32 *updptr, int nr_inst); 237 238 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr, 239 __le32 *updptr, int nr_inst) 240 { 241 BUG_ON(nr_inst != 1); /* Branch -> NOP */ 242 243 if (kasan_hw_tags_enabled()) 244 *updptr = cpu_to_le32(aarch64_insn_gen_nop()); 245 } 246 #endif 247 248 void mte_thread_init_user(void) 249 { 250 if (!system_supports_mte()) 251 return; 252 253 /* clear any pending asynchronous tag fault */ 254 dsb(ish); 255 write_sysreg_s(0, SYS_TFSRE0_EL1); 256 clear_thread_flag(TIF_MTE_ASYNC_FAULT); 257 /* disable tag checking and reset tag generation mask */ 258 set_mte_ctrl(current, 0); 259 } 260 261 void mte_thread_switch(struct task_struct *next) 262 { 263 if (!system_supports_mte()) 264 return; 265 266 mte_update_sctlr_user(next); 267 mte_update_gcr_excl(next); 268 269 /* TCO may not have been disabled on exception entry for the current task. */ 270 mte_disable_tco_entry(next); 271 272 /* 273 * Check if an async tag exception occurred at EL1. 274 * 275 * Note: On the context switch path we rely on the dsb() present 276 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1 277 * are synchronized before this point. 278 */ 279 isb(); 280 mte_check_tfsr_el1(); 281 } 282 283 void mte_cpu_setup(void) 284 { 285 u64 rgsr; 286 287 /* 288 * CnP must be enabled only after the MAIR_EL1 register has been set 289 * up. Inconsistent MAIR_EL1 between CPUs sharing the same TLB may 290 * lead to the wrong memory type being used for a brief window during 291 * CPU power-up. 292 * 293 * CnP is not a boot feature so MTE gets enabled before CnP, but let's 294 * make sure that is the case. 295 */ 296 BUG_ON(read_sysreg(ttbr0_el1) & TTBR_CNP_BIT); 297 BUG_ON(read_sysreg(ttbr1_el1) & TTBR_CNP_BIT); 298 299 /* Normal Tagged memory type at the corresponding MAIR index */ 300 sysreg_clear_set(mair_el1, 301 MAIR_ATTRIDX(MAIR_ATTR_MASK, MT_NORMAL_TAGGED), 302 MAIR_ATTRIDX(MAIR_ATTR_NORMAL_TAGGED, 303 MT_NORMAL_TAGGED)); 304 305 write_sysreg_s(KERNEL_GCR_EL1, SYS_GCR_EL1); 306 307 /* 308 * If GCR_EL1.RRND=1 is implemented the same way as RRND=0, then 309 * RGSR_EL1.SEED must be non-zero for IRG to produce 310 * pseudorandom numbers. As RGSR_EL1 is UNKNOWN out of reset, we 311 * must initialize it. 312 */ 313 rgsr = (read_sysreg(CNTVCT_EL0) & SYS_RGSR_EL1_SEED_MASK) << 314 SYS_RGSR_EL1_SEED_SHIFT; 315 if (rgsr == 0) 316 rgsr = 1 << SYS_RGSR_EL1_SEED_SHIFT; 317 write_sysreg_s(rgsr, SYS_RGSR_EL1); 318 319 /* clear any pending tag check faults in TFSR*_EL1 */ 320 write_sysreg_s(0, SYS_TFSR_EL1); 321 write_sysreg_s(0, SYS_TFSRE0_EL1); 322 323 local_flush_tlb_all(); 324 } 325 326 void mte_suspend_enter(void) 327 { 328 if (!system_supports_mte()) 329 return; 330 331 /* 332 * The barriers are required to guarantee that the indirect writes 333 * to TFSR_EL1 are synchronized before we report the state. 334 */ 335 dsb(nsh); 336 isb(); 337 338 /* Report SYS_TFSR_EL1 before suspend entry */ 339 mte_check_tfsr_el1(); 340 } 341 342 void mte_suspend_exit(void) 343 { 344 if (!system_supports_mte()) 345 return; 346 347 mte_cpu_setup(); 348 } 349 350 long set_mte_ctrl(struct task_struct *task, unsigned long arg) 351 { 352 u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) & 353 SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT; 354 355 if (!system_supports_mte()) 356 return 0; 357 358 if (arg & PR_MTE_TCF_ASYNC) 359 mte_ctrl |= MTE_CTRL_TCF_ASYNC; 360 if (arg & PR_MTE_TCF_SYNC) 361 mte_ctrl |= MTE_CTRL_TCF_SYNC; 362 363 /* 364 * If the system supports it and both sync and async modes are 365 * specified then implicitly enable asymmetric mode. 366 * Userspace could see a mix of both sync and async anyway due 367 * to differing or changing defaults on CPUs. 368 */ 369 if (cpus_have_cap(ARM64_MTE_ASYMM) && 370 (arg & PR_MTE_TCF_ASYNC) && 371 (arg & PR_MTE_TCF_SYNC)) 372 mte_ctrl |= MTE_CTRL_TCF_ASYMM; 373 374 task->thread.mte_ctrl = mte_ctrl; 375 if (task == current) { 376 preempt_disable(); 377 mte_update_sctlr_user(task); 378 mte_update_gcr_excl(task); 379 update_sctlr_el1(task->thread.sctlr_user); 380 preempt_enable(); 381 } 382 383 return 0; 384 } 385 386 long get_mte_ctrl(struct task_struct *task) 387 { 388 unsigned long ret; 389 u64 mte_ctrl = task->thread.mte_ctrl; 390 u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & 391 SYS_GCR_EL1_EXCL_MASK; 392 393 if (!system_supports_mte()) 394 return 0; 395 396 ret = incl << PR_MTE_TAG_SHIFT; 397 if (mte_ctrl & MTE_CTRL_TCF_ASYNC) 398 ret |= PR_MTE_TCF_ASYNC; 399 if (mte_ctrl & MTE_CTRL_TCF_SYNC) 400 ret |= PR_MTE_TCF_SYNC; 401 402 return ret; 403 } 404 405 /* 406 * Access MTE tags in another process' address space as given in mm. Update 407 * the number of tags copied. Return 0 if any tags copied, error otherwise. 408 * Inspired by __access_remote_vm(). 409 */ 410 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr, 411 struct iovec *kiov, unsigned int gup_flags) 412 { 413 void __user *buf = kiov->iov_base; 414 size_t len = kiov->iov_len; 415 int err = 0; 416 int write = gup_flags & FOLL_WRITE; 417 418 if (!access_ok(buf, len)) 419 return -EFAULT; 420 421 if (mmap_read_lock_killable(mm)) 422 return -EIO; 423 424 while (len) { 425 struct vm_area_struct *vma; 426 unsigned long tags, offset; 427 void *maddr; 428 struct page *page = get_user_page_vma_remote(mm, addr, 429 gup_flags, &vma); 430 struct folio *folio; 431 432 if (IS_ERR(page)) { 433 err = PTR_ERR(page); 434 break; 435 } 436 437 /* 438 * Only copy tags if the page has been mapped as PROT_MTE 439 * (PG_mte_tagged set). Otherwise the tags are not valid and 440 * not accessible to user. Moreover, an mprotect(PROT_MTE) 441 * would cause the existing tags to be cleared if the page 442 * was never mapped with PROT_MTE. 443 */ 444 if (!(vma->vm_flags & VM_MTE)) { 445 err = -EOPNOTSUPP; 446 put_page(page); 447 break; 448 } 449 450 folio = page_folio(page); 451 if (folio_test_hugetlb(folio)) 452 WARN_ON_ONCE(!folio_test_hugetlb_mte_tagged(folio)); 453 else 454 WARN_ON_ONCE(!page_mte_tagged(page)); 455 456 /* limit access to the end of the page */ 457 offset = offset_in_page(addr); 458 tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE); 459 460 maddr = page_address(page); 461 if (write) { 462 tags = mte_copy_tags_from_user(maddr + offset, buf, tags); 463 set_page_dirty_lock(page); 464 } else { 465 tags = mte_copy_tags_to_user(buf, maddr + offset, tags); 466 } 467 put_page(page); 468 469 /* error accessing the tracer's buffer */ 470 if (!tags) 471 break; 472 473 len -= tags; 474 buf += tags; 475 addr += tags * MTE_GRANULE_SIZE; 476 } 477 mmap_read_unlock(mm); 478 479 /* return an error if no tags copied */ 480 kiov->iov_len = buf - kiov->iov_base; 481 if (!kiov->iov_len) { 482 /* check for error accessing the tracee's address space */ 483 if (err) 484 return -EIO; 485 else 486 return -EFAULT; 487 } 488 489 return 0; 490 } 491 492 /* 493 * Copy MTE tags in another process' address space at 'addr' to/from tracer's 494 * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm(). 495 */ 496 static int access_remote_tags(struct task_struct *tsk, unsigned long addr, 497 struct iovec *kiov, unsigned int gup_flags) 498 { 499 struct mm_struct *mm; 500 int ret; 501 502 mm = get_task_mm(tsk); 503 if (!mm) 504 return -EPERM; 505 506 if (!tsk->ptrace || (current != tsk->parent) || 507 ((get_dumpable(mm) != SUID_DUMP_USER) && 508 !ptracer_capable(tsk, mm->user_ns))) { 509 mmput(mm); 510 return -EPERM; 511 } 512 513 ret = __access_remote_tags(mm, addr, kiov, gup_flags); 514 mmput(mm); 515 516 return ret; 517 } 518 519 int mte_ptrace_copy_tags(struct task_struct *child, long request, 520 unsigned long addr, unsigned long data) 521 { 522 int ret; 523 struct iovec kiov; 524 struct iovec __user *uiov = (void __user *)data; 525 unsigned int gup_flags = FOLL_FORCE; 526 527 if (!system_supports_mte()) 528 return -EIO; 529 530 if (get_user(kiov.iov_base, &uiov->iov_base) || 531 get_user(kiov.iov_len, &uiov->iov_len)) 532 return -EFAULT; 533 534 if (request == PTRACE_POKEMTETAGS) 535 gup_flags |= FOLL_WRITE; 536 537 /* align addr to the MTE tag granule */ 538 addr &= MTE_GRANULE_MASK; 539 540 ret = access_remote_tags(child, addr, &kiov, gup_flags); 541 if (!ret) 542 ret = put_user(kiov.iov_len, &uiov->iov_len); 543 544 return ret; 545 } 546 547 static ssize_t mte_tcf_preferred_show(struct device *dev, 548 struct device_attribute *attr, char *buf) 549 { 550 switch (per_cpu(mte_tcf_preferred, dev->id)) { 551 case MTE_CTRL_TCF_ASYNC: 552 return sysfs_emit(buf, "async\n"); 553 case MTE_CTRL_TCF_SYNC: 554 return sysfs_emit(buf, "sync\n"); 555 case MTE_CTRL_TCF_ASYMM: 556 return sysfs_emit(buf, "asymm\n"); 557 default: 558 return sysfs_emit(buf, "???\n"); 559 } 560 } 561 562 static ssize_t mte_tcf_preferred_store(struct device *dev, 563 struct device_attribute *attr, 564 const char *buf, size_t count) 565 { 566 u64 tcf; 567 568 if (sysfs_streq(buf, "async")) 569 tcf = MTE_CTRL_TCF_ASYNC; 570 else if (sysfs_streq(buf, "sync")) 571 tcf = MTE_CTRL_TCF_SYNC; 572 else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm")) 573 tcf = MTE_CTRL_TCF_ASYMM; 574 else 575 return -EINVAL; 576 577 device_lock(dev); 578 per_cpu(mte_tcf_preferred, dev->id) = tcf; 579 device_unlock(dev); 580 581 return count; 582 } 583 static DEVICE_ATTR_RW(mte_tcf_preferred); 584 585 static int register_mte_tcf_preferred_sysctl(void) 586 { 587 unsigned int cpu; 588 589 if (!system_supports_mte()) 590 return 0; 591 592 for_each_possible_cpu(cpu) { 593 per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC; 594 device_create_file(get_cpu_device(cpu), 595 &dev_attr_mte_tcf_preferred); 596 } 597 598 return 0; 599 } 600 subsys_initcall(register_mte_tcf_preferred_sysctl); 601 602 /* 603 * Return 0 on success, the number of bytes not probed otherwise. 604 */ 605 size_t mte_probe_user_range(const char __user *uaddr, size_t size) 606 { 607 const char __user *end = uaddr + size; 608 char val; 609 610 __raw_get_user(val, uaddr, efault); 611 612 uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE); 613 while (uaddr < end) { 614 /* 615 * A read is sufficient for mte, the caller should have probed 616 * for the pte write permission if required. 617 */ 618 __raw_get_user(val, uaddr, efault); 619 uaddr += MTE_GRANULE_SIZE; 620 } 621 (void)val; 622 623 return 0; 624 625 efault: 626 return end - uaddr; 627 } 628