xref: /linux/arch/arm64/kernel/mte.c (revision 576d7fed09c7edbae7600f29a8a3ed6c1ead904f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 ARM Ltd.
4  */
5 
6 #include <linux/bitops.h>
7 #include <linux/cpu.h>
8 #include <linux/kernel.h>
9 #include <linux/mm.h>
10 #include <linux/prctl.h>
11 #include <linux/sched.h>
12 #include <linux/sched/mm.h>
13 #include <linux/string.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/thread_info.h>
17 #include <linux/types.h>
18 #include <linux/uaccess.h>
19 #include <linux/uio.h>
20 
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/mte.h>
24 #include <asm/ptrace.h>
25 #include <asm/sysreg.h>
26 
27 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred);
28 
29 #ifdef CONFIG_KASAN_HW_TAGS
30 /*
31  * The asynchronous and asymmetric MTE modes have the same behavior for
32  * store operations. This flag is set when either of these modes is enabled.
33  */
34 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode);
35 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode);
36 #endif
37 
38 void mte_sync_tags(pte_t pte, unsigned int nr_pages)
39 {
40 	struct page *page = pte_page(pte);
41 	unsigned int i;
42 
43 	/* if PG_mte_tagged is set, tags have already been initialised */
44 	for (i = 0; i < nr_pages; i++, page++) {
45 		if (try_page_mte_tagging(page)) {
46 			mte_clear_page_tags(page_address(page));
47 			set_page_mte_tagged(page);
48 		}
49 	}
50 
51 	/* ensure the tags are visible before the PTE is set */
52 	smp_wmb();
53 }
54 
55 int memcmp_pages(struct page *page1, struct page *page2)
56 {
57 	char *addr1, *addr2;
58 	int ret;
59 
60 	addr1 = page_address(page1);
61 	addr2 = page_address(page2);
62 	ret = memcmp(addr1, addr2, PAGE_SIZE);
63 
64 	if (!system_supports_mte() || ret)
65 		return ret;
66 
67 	/*
68 	 * If the page content is identical but at least one of the pages is
69 	 * tagged, return non-zero to avoid KSM merging. If only one of the
70 	 * pages is tagged, set_pte_at() may zero or change the tags of the
71 	 * other page via mte_sync_tags().
72 	 */
73 	if (page_mte_tagged(page1) || page_mte_tagged(page2))
74 		return addr1 != addr2;
75 
76 	return ret;
77 }
78 
79 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
80 {
81 	/* Enable MTE Sync Mode for EL1. */
82 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
83 			 SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf));
84 	isb();
85 
86 	pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
87 }
88 
89 #ifdef CONFIG_KASAN_HW_TAGS
90 void mte_enable_kernel_sync(void)
91 {
92 	/*
93 	 * Make sure we enter this function when no PE has set
94 	 * async mode previously.
95 	 */
96 	WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
97 			"MTE async mode enabled system wide!");
98 
99 	__mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC);
100 }
101 
102 void mte_enable_kernel_async(void)
103 {
104 	__mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC);
105 
106 	/*
107 	 * MTE async mode is set system wide by the first PE that
108 	 * executes this function.
109 	 *
110 	 * Note: If in future KASAN acquires a runtime switching
111 	 * mode in between sync and async, this strategy needs
112 	 * to be reviewed.
113 	 */
114 	if (!system_uses_mte_async_or_asymm_mode())
115 		static_branch_enable(&mte_async_or_asymm_mode);
116 }
117 
118 void mte_enable_kernel_asymm(void)
119 {
120 	if (cpus_have_cap(ARM64_MTE_ASYMM)) {
121 		__mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM);
122 
123 		/*
124 		 * MTE asymm mode behaves as async mode for store
125 		 * operations. The mode is set system wide by the
126 		 * first PE that executes this function.
127 		 *
128 		 * Note: If in future KASAN acquires a runtime switching
129 		 * mode in between sync and async, this strategy needs
130 		 * to be reviewed.
131 		 */
132 		if (!system_uses_mte_async_or_asymm_mode())
133 			static_branch_enable(&mte_async_or_asymm_mode);
134 	} else {
135 		/*
136 		 * If the CPU does not support MTE asymmetric mode the
137 		 * kernel falls back on synchronous mode which is the
138 		 * default for kasan=on.
139 		 */
140 		mte_enable_kernel_sync();
141 	}
142 }
143 #endif
144 
145 #ifdef CONFIG_KASAN_HW_TAGS
146 void mte_check_tfsr_el1(void)
147 {
148 	u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
149 
150 	if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
151 		/*
152 		 * Note: isb() is not required after this direct write
153 		 * because there is no indirect read subsequent to it
154 		 * (per ARM DDI 0487F.c table D13-1).
155 		 */
156 		write_sysreg_s(0, SYS_TFSR_EL1);
157 
158 		kasan_report_async();
159 	}
160 }
161 #endif
162 
163 /*
164  * This is where we actually resolve the system and process MTE mode
165  * configuration into an actual value in SCTLR_EL1 that affects
166  * userspace.
167  */
168 static void mte_update_sctlr_user(struct task_struct *task)
169 {
170 	/*
171 	 * This must be called with preemption disabled and can only be called
172 	 * on the current or next task since the CPU must match where the thread
173 	 * is going to run. The caller is responsible for calling
174 	 * update_sctlr_el1() later in the same preemption disabled block.
175 	 */
176 	unsigned long sctlr = task->thread.sctlr_user;
177 	unsigned long mte_ctrl = task->thread.mte_ctrl;
178 	unsigned long pref, resolved_mte_tcf;
179 
180 	pref = __this_cpu_read(mte_tcf_preferred);
181 	/*
182 	 * If there is no overlap between the system preferred and
183 	 * program requested values go with what was requested.
184 	 */
185 	resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl;
186 	sctlr &= ~SCTLR_EL1_TCF0_MASK;
187 	/*
188 	 * Pick an actual setting. The order in which we check for
189 	 * set bits and map into register values determines our
190 	 * default order.
191 	 */
192 	if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM)
193 		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM);
194 	else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
195 		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC);
196 	else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
197 		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC);
198 	task->thread.sctlr_user = sctlr;
199 }
200 
201 static void mte_update_gcr_excl(struct task_struct *task)
202 {
203 	/*
204 	 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by
205 	 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled.
206 	 */
207 	if (kasan_hw_tags_enabled())
208 		return;
209 
210 	write_sysreg_s(
211 		((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
212 		 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND,
213 		SYS_GCR_EL1);
214 }
215 
216 #ifdef CONFIG_KASAN_HW_TAGS
217 /* Only called from assembly, silence sparse */
218 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
219 				 __le32 *updptr, int nr_inst);
220 
221 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
222 				 __le32 *updptr, int nr_inst)
223 {
224 	BUG_ON(nr_inst != 1); /* Branch -> NOP */
225 
226 	if (kasan_hw_tags_enabled())
227 		*updptr = cpu_to_le32(aarch64_insn_gen_nop());
228 }
229 #endif
230 
231 void mte_thread_init_user(void)
232 {
233 	if (!system_supports_mte())
234 		return;
235 
236 	/* clear any pending asynchronous tag fault */
237 	dsb(ish);
238 	write_sysreg_s(0, SYS_TFSRE0_EL1);
239 	clear_thread_flag(TIF_MTE_ASYNC_FAULT);
240 	/* disable tag checking and reset tag generation mask */
241 	set_mte_ctrl(current, 0);
242 }
243 
244 void mte_thread_switch(struct task_struct *next)
245 {
246 	if (!system_supports_mte())
247 		return;
248 
249 	mte_update_sctlr_user(next);
250 	mte_update_gcr_excl(next);
251 
252 	/* TCO may not have been disabled on exception entry for the current task. */
253 	mte_disable_tco_entry(next);
254 
255 	/*
256 	 * Check if an async tag exception occurred at EL1.
257 	 *
258 	 * Note: On the context switch path we rely on the dsb() present
259 	 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1
260 	 * are synchronized before this point.
261 	 */
262 	isb();
263 	mte_check_tfsr_el1();
264 }
265 
266 void mte_cpu_setup(void)
267 {
268 	u64 rgsr;
269 
270 	/*
271 	 * CnP must be enabled only after the MAIR_EL1 register has been set
272 	 * up. Inconsistent MAIR_EL1 between CPUs sharing the same TLB may
273 	 * lead to the wrong memory type being used for a brief window during
274 	 * CPU power-up.
275 	 *
276 	 * CnP is not a boot feature so MTE gets enabled before CnP, but let's
277 	 * make sure that is the case.
278 	 */
279 	BUG_ON(read_sysreg(ttbr0_el1) & TTBR_CNP_BIT);
280 	BUG_ON(read_sysreg(ttbr1_el1) & TTBR_CNP_BIT);
281 
282 	/* Normal Tagged memory type at the corresponding MAIR index */
283 	sysreg_clear_set(mair_el1,
284 			 MAIR_ATTRIDX(MAIR_ATTR_MASK, MT_NORMAL_TAGGED),
285 			 MAIR_ATTRIDX(MAIR_ATTR_NORMAL_TAGGED,
286 				      MT_NORMAL_TAGGED));
287 
288 	write_sysreg_s(KERNEL_GCR_EL1, SYS_GCR_EL1);
289 
290 	/*
291 	 * If GCR_EL1.RRND=1 is implemented the same way as RRND=0, then
292 	 * RGSR_EL1.SEED must be non-zero for IRG to produce
293 	 * pseudorandom numbers. As RGSR_EL1 is UNKNOWN out of reset, we
294 	 * must initialize it.
295 	 */
296 	rgsr = (read_sysreg(CNTVCT_EL0) & SYS_RGSR_EL1_SEED_MASK) <<
297 	       SYS_RGSR_EL1_SEED_SHIFT;
298 	if (rgsr == 0)
299 		rgsr = 1 << SYS_RGSR_EL1_SEED_SHIFT;
300 	write_sysreg_s(rgsr, SYS_RGSR_EL1);
301 
302 	/* clear any pending tag check faults in TFSR*_EL1 */
303 	write_sysreg_s(0, SYS_TFSR_EL1);
304 	write_sysreg_s(0, SYS_TFSRE0_EL1);
305 
306 	local_flush_tlb_all();
307 }
308 
309 void mte_suspend_enter(void)
310 {
311 	if (!system_supports_mte())
312 		return;
313 
314 	/*
315 	 * The barriers are required to guarantee that the indirect writes
316 	 * to TFSR_EL1 are synchronized before we report the state.
317 	 */
318 	dsb(nsh);
319 	isb();
320 
321 	/* Report SYS_TFSR_EL1 before suspend entry */
322 	mte_check_tfsr_el1();
323 }
324 
325 void mte_suspend_exit(void)
326 {
327 	if (!system_supports_mte())
328 		return;
329 
330 	mte_cpu_setup();
331 }
332 
333 long set_mte_ctrl(struct task_struct *task, unsigned long arg)
334 {
335 	u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
336 			SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT;
337 
338 	if (!system_supports_mte())
339 		return 0;
340 
341 	if (arg & PR_MTE_TCF_ASYNC)
342 		mte_ctrl |= MTE_CTRL_TCF_ASYNC;
343 	if (arg & PR_MTE_TCF_SYNC)
344 		mte_ctrl |= MTE_CTRL_TCF_SYNC;
345 
346 	/*
347 	 * If the system supports it and both sync and async modes are
348 	 * specified then implicitly enable asymmetric mode.
349 	 * Userspace could see a mix of both sync and async anyway due
350 	 * to differing or changing defaults on CPUs.
351 	 */
352 	if (cpus_have_cap(ARM64_MTE_ASYMM) &&
353 	    (arg & PR_MTE_TCF_ASYNC) &&
354 	    (arg & PR_MTE_TCF_SYNC))
355 		mte_ctrl |= MTE_CTRL_TCF_ASYMM;
356 
357 	task->thread.mte_ctrl = mte_ctrl;
358 	if (task == current) {
359 		preempt_disable();
360 		mte_update_sctlr_user(task);
361 		mte_update_gcr_excl(task);
362 		update_sctlr_el1(task->thread.sctlr_user);
363 		preempt_enable();
364 	}
365 
366 	return 0;
367 }
368 
369 long get_mte_ctrl(struct task_struct *task)
370 {
371 	unsigned long ret;
372 	u64 mte_ctrl = task->thread.mte_ctrl;
373 	u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
374 		   SYS_GCR_EL1_EXCL_MASK;
375 
376 	if (!system_supports_mte())
377 		return 0;
378 
379 	ret = incl << PR_MTE_TAG_SHIFT;
380 	if (mte_ctrl & MTE_CTRL_TCF_ASYNC)
381 		ret |= PR_MTE_TCF_ASYNC;
382 	if (mte_ctrl & MTE_CTRL_TCF_SYNC)
383 		ret |= PR_MTE_TCF_SYNC;
384 
385 	return ret;
386 }
387 
388 /*
389  * Access MTE tags in another process' address space as given in mm. Update
390  * the number of tags copied. Return 0 if any tags copied, error otherwise.
391  * Inspired by __access_remote_vm().
392  */
393 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
394 				struct iovec *kiov, unsigned int gup_flags)
395 {
396 	void __user *buf = kiov->iov_base;
397 	size_t len = kiov->iov_len;
398 	int err = 0;
399 	int write = gup_flags & FOLL_WRITE;
400 
401 	if (!access_ok(buf, len))
402 		return -EFAULT;
403 
404 	if (mmap_read_lock_killable(mm))
405 		return -EIO;
406 
407 	while (len) {
408 		struct vm_area_struct *vma;
409 		unsigned long tags, offset;
410 		void *maddr;
411 		struct page *page = get_user_page_vma_remote(mm, addr,
412 							     gup_flags, &vma);
413 
414 		if (IS_ERR(page)) {
415 			err = PTR_ERR(page);
416 			break;
417 		}
418 
419 		/*
420 		 * Only copy tags if the page has been mapped as PROT_MTE
421 		 * (PG_mte_tagged set). Otherwise the tags are not valid and
422 		 * not accessible to user. Moreover, an mprotect(PROT_MTE)
423 		 * would cause the existing tags to be cleared if the page
424 		 * was never mapped with PROT_MTE.
425 		 */
426 		if (!(vma->vm_flags & VM_MTE)) {
427 			err = -EOPNOTSUPP;
428 			put_page(page);
429 			break;
430 		}
431 		WARN_ON_ONCE(!page_mte_tagged(page));
432 
433 		/* limit access to the end of the page */
434 		offset = offset_in_page(addr);
435 		tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
436 
437 		maddr = page_address(page);
438 		if (write) {
439 			tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
440 			set_page_dirty_lock(page);
441 		} else {
442 			tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
443 		}
444 		put_page(page);
445 
446 		/* error accessing the tracer's buffer */
447 		if (!tags)
448 			break;
449 
450 		len -= tags;
451 		buf += tags;
452 		addr += tags * MTE_GRANULE_SIZE;
453 	}
454 	mmap_read_unlock(mm);
455 
456 	/* return an error if no tags copied */
457 	kiov->iov_len = buf - kiov->iov_base;
458 	if (!kiov->iov_len) {
459 		/* check for error accessing the tracee's address space */
460 		if (err)
461 			return -EIO;
462 		else
463 			return -EFAULT;
464 	}
465 
466 	return 0;
467 }
468 
469 /*
470  * Copy MTE tags in another process' address space at 'addr' to/from tracer's
471  * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
472  */
473 static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
474 			      struct iovec *kiov, unsigned int gup_flags)
475 {
476 	struct mm_struct *mm;
477 	int ret;
478 
479 	mm = get_task_mm(tsk);
480 	if (!mm)
481 		return -EPERM;
482 
483 	if (!tsk->ptrace || (current != tsk->parent) ||
484 	    ((get_dumpable(mm) != SUID_DUMP_USER) &&
485 	     !ptracer_capable(tsk, mm->user_ns))) {
486 		mmput(mm);
487 		return -EPERM;
488 	}
489 
490 	ret = __access_remote_tags(mm, addr, kiov, gup_flags);
491 	mmput(mm);
492 
493 	return ret;
494 }
495 
496 int mte_ptrace_copy_tags(struct task_struct *child, long request,
497 			 unsigned long addr, unsigned long data)
498 {
499 	int ret;
500 	struct iovec kiov;
501 	struct iovec __user *uiov = (void __user *)data;
502 	unsigned int gup_flags = FOLL_FORCE;
503 
504 	if (!system_supports_mte())
505 		return -EIO;
506 
507 	if (get_user(kiov.iov_base, &uiov->iov_base) ||
508 	    get_user(kiov.iov_len, &uiov->iov_len))
509 		return -EFAULT;
510 
511 	if (request == PTRACE_POKEMTETAGS)
512 		gup_flags |= FOLL_WRITE;
513 
514 	/* align addr to the MTE tag granule */
515 	addr &= MTE_GRANULE_MASK;
516 
517 	ret = access_remote_tags(child, addr, &kiov, gup_flags);
518 	if (!ret)
519 		ret = put_user(kiov.iov_len, &uiov->iov_len);
520 
521 	return ret;
522 }
523 
524 static ssize_t mte_tcf_preferred_show(struct device *dev,
525 				      struct device_attribute *attr, char *buf)
526 {
527 	switch (per_cpu(mte_tcf_preferred, dev->id)) {
528 	case MTE_CTRL_TCF_ASYNC:
529 		return sysfs_emit(buf, "async\n");
530 	case MTE_CTRL_TCF_SYNC:
531 		return sysfs_emit(buf, "sync\n");
532 	case MTE_CTRL_TCF_ASYMM:
533 		return sysfs_emit(buf, "asymm\n");
534 	default:
535 		return sysfs_emit(buf, "???\n");
536 	}
537 }
538 
539 static ssize_t mte_tcf_preferred_store(struct device *dev,
540 				       struct device_attribute *attr,
541 				       const char *buf, size_t count)
542 {
543 	u64 tcf;
544 
545 	if (sysfs_streq(buf, "async"))
546 		tcf = MTE_CTRL_TCF_ASYNC;
547 	else if (sysfs_streq(buf, "sync"))
548 		tcf = MTE_CTRL_TCF_SYNC;
549 	else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm"))
550 		tcf = MTE_CTRL_TCF_ASYMM;
551 	else
552 		return -EINVAL;
553 
554 	device_lock(dev);
555 	per_cpu(mte_tcf_preferred, dev->id) = tcf;
556 	device_unlock(dev);
557 
558 	return count;
559 }
560 static DEVICE_ATTR_RW(mte_tcf_preferred);
561 
562 static int register_mte_tcf_preferred_sysctl(void)
563 {
564 	unsigned int cpu;
565 
566 	if (!system_supports_mte())
567 		return 0;
568 
569 	for_each_possible_cpu(cpu) {
570 		per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC;
571 		device_create_file(get_cpu_device(cpu),
572 				   &dev_attr_mte_tcf_preferred);
573 	}
574 
575 	return 0;
576 }
577 subsys_initcall(register_mte_tcf_preferred_sysctl);
578 
579 /*
580  * Return 0 on success, the number of bytes not probed otherwise.
581  */
582 size_t mte_probe_user_range(const char __user *uaddr, size_t size)
583 {
584 	const char __user *end = uaddr + size;
585 	int err = 0;
586 	char val;
587 
588 	__raw_get_user(val, uaddr, err);
589 	if (err)
590 		return size;
591 
592 	uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE);
593 	while (uaddr < end) {
594 		/*
595 		 * A read is sufficient for mte, the caller should have probed
596 		 * for the pte write permission if required.
597 		 */
598 		__raw_get_user(val, uaddr, err);
599 		if (err)
600 			return end - uaddr;
601 		uaddr += MTE_GRANULE_SIZE;
602 	}
603 	(void)val;
604 
605 	return 0;
606 }
607