1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2020 ARM Ltd. 4 */ 5 6 #include <linux/bitops.h> 7 #include <linux/cpu.h> 8 #include <linux/kernel.h> 9 #include <linux/mm.h> 10 #include <linux/prctl.h> 11 #include <linux/sched.h> 12 #include <linux/sched/mm.h> 13 #include <linux/string.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 #include <linux/thread_info.h> 17 #include <linux/types.h> 18 #include <linux/uaccess.h> 19 #include <linux/uio.h> 20 21 #include <asm/barrier.h> 22 #include <asm/cpufeature.h> 23 #include <asm/mte.h> 24 #include <asm/ptrace.h> 25 #include <asm/sysreg.h> 26 27 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred); 28 29 #ifdef CONFIG_KASAN_HW_TAGS 30 /* 31 * The asynchronous and asymmetric MTE modes have the same behavior for 32 * store operations. This flag is set when either of these modes is enabled. 33 */ 34 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode); 35 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode); 36 #endif 37 38 void mte_sync_tags(pte_t pte, unsigned int nr_pages) 39 { 40 struct page *page = pte_page(pte); 41 struct folio *folio = page_folio(page); 42 unsigned long i; 43 44 if (folio_test_hugetlb(folio)) { 45 unsigned long nr = folio_nr_pages(folio); 46 47 /* Hugetlb MTE flags are set for head page only */ 48 if (folio_try_hugetlb_mte_tagging(folio)) { 49 for (i = 0; i < nr; i++, page++) 50 mte_clear_page_tags(page_address(page)); 51 folio_set_hugetlb_mte_tagged(folio); 52 } 53 54 /* ensure the tags are visible before the PTE is set */ 55 smp_wmb(); 56 57 return; 58 } 59 60 /* if PG_mte_tagged is set, tags have already been initialised */ 61 for (i = 0; i < nr_pages; i++, page++) { 62 if (try_page_mte_tagging(page)) { 63 mte_clear_page_tags(page_address(page)); 64 set_page_mte_tagged(page); 65 } 66 } 67 68 /* ensure the tags are visible before the PTE is set */ 69 smp_wmb(); 70 } 71 72 int memcmp_pages(struct page *page1, struct page *page2) 73 { 74 char *addr1, *addr2; 75 int ret; 76 77 addr1 = page_address(page1); 78 addr2 = page_address(page2); 79 ret = memcmp(addr1, addr2, PAGE_SIZE); 80 81 if (!system_supports_mte() || ret) 82 return ret; 83 84 /* 85 * If the page content is identical but at least one of the pages is 86 * tagged, return non-zero to avoid KSM merging. If only one of the 87 * pages is tagged, __set_ptes() may zero or change the tags of the 88 * other page via mte_sync_tags(). 89 */ 90 if (page_mte_tagged(page1) || page_mte_tagged(page2)) 91 return addr1 != addr2; 92 93 return ret; 94 } 95 96 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf) 97 { 98 /* Enable MTE Sync Mode for EL1. */ 99 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK, 100 SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf)); 101 isb(); 102 103 pr_info_once("MTE: enabled in %s mode at EL1\n", mode); 104 } 105 106 #ifdef CONFIG_KASAN_HW_TAGS 107 void mte_enable_kernel_sync(void) 108 { 109 /* 110 * Make sure we enter this function when no PE has set 111 * async mode previously. 112 */ 113 WARN_ONCE(system_uses_mte_async_or_asymm_mode(), 114 "MTE async mode enabled system wide!"); 115 116 __mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC); 117 } 118 119 void mte_enable_kernel_async(void) 120 { 121 __mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC); 122 123 /* 124 * MTE async mode is set system wide by the first PE that 125 * executes this function. 126 * 127 * Note: If in future KASAN acquires a runtime switching 128 * mode in between sync and async, this strategy needs 129 * to be reviewed. 130 */ 131 if (!system_uses_mte_async_or_asymm_mode()) 132 static_branch_enable(&mte_async_or_asymm_mode); 133 } 134 135 void mte_enable_kernel_asymm(void) 136 { 137 if (cpus_have_cap(ARM64_MTE_ASYMM)) { 138 __mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM); 139 140 /* 141 * MTE asymm mode behaves as async mode for store 142 * operations. The mode is set system wide by the 143 * first PE that executes this function. 144 * 145 * Note: If in future KASAN acquires a runtime switching 146 * mode in between sync and async, this strategy needs 147 * to be reviewed. 148 */ 149 if (!system_uses_mte_async_or_asymm_mode()) 150 static_branch_enable(&mte_async_or_asymm_mode); 151 } else { 152 /* 153 * If the CPU does not support MTE asymmetric mode the 154 * kernel falls back on synchronous mode which is the 155 * default for kasan=on. 156 */ 157 mte_enable_kernel_sync(); 158 } 159 } 160 161 int mte_enable_kernel_store_only(void) 162 { 163 /* 164 * If the CPU does not support MTE store only, 165 * the kernel checks all operations. 166 */ 167 if (!cpus_have_cap(ARM64_MTE_STORE_ONLY)) 168 return -EINVAL; 169 170 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCSO_MASK, 171 SYS_FIELD_PREP(SCTLR_EL1, TCSO, 1)); 172 isb(); 173 174 pr_info_once("MTE: enabled store only mode at EL1\n"); 175 176 return 0; 177 } 178 #endif 179 180 #ifdef CONFIG_KASAN_HW_TAGS 181 void mte_check_tfsr_el1(void) 182 { 183 u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1); 184 185 if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) { 186 /* 187 * Note: isb() is not required after this direct write 188 * because there is no indirect read subsequent to it 189 * (per ARM DDI 0487F.c table D13-1). 190 */ 191 write_sysreg_s(0, SYS_TFSR_EL1); 192 193 kasan_report_async(); 194 } 195 } 196 #endif 197 198 /* 199 * This is where we actually resolve the system and process MTE mode 200 * configuration into an actual value in SCTLR_EL1 that affects 201 * userspace. 202 */ 203 static void mte_update_sctlr_user(struct task_struct *task) 204 { 205 /* 206 * This must be called with preemption disabled and can only be called 207 * on the current or next task since the CPU must match where the thread 208 * is going to run. The caller is responsible for calling 209 * update_sctlr_el1() later in the same preemption disabled block. 210 */ 211 unsigned long sctlr = task->thread.sctlr_user; 212 unsigned long mte_ctrl = task->thread.mte_ctrl; 213 unsigned long pref, resolved_mte_tcf; 214 215 pref = __this_cpu_read(mte_tcf_preferred); 216 /* 217 * If there is no overlap between the system preferred and 218 * program requested values go with what was requested. 219 */ 220 resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl; 221 sctlr &= ~(SCTLR_EL1_TCF0_MASK | SCTLR_EL1_TCSO0_MASK); 222 /* 223 * Pick an actual setting. The order in which we check for 224 * set bits and map into register values determines our 225 * default order. 226 */ 227 if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM) 228 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM); 229 else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC) 230 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC); 231 else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC) 232 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC); 233 234 if (mte_ctrl & MTE_CTRL_STORE_ONLY) 235 sctlr |= SYS_FIELD_PREP(SCTLR_EL1, TCSO0, 1); 236 237 task->thread.sctlr_user = sctlr; 238 } 239 240 static void mte_update_gcr_excl(struct task_struct *task) 241 { 242 /* 243 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by 244 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled. 245 */ 246 if (kasan_hw_tags_enabled()) 247 return; 248 249 write_sysreg_s( 250 ((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & 251 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND, 252 SYS_GCR_EL1); 253 } 254 255 #ifdef CONFIG_KASAN_HW_TAGS 256 /* Only called from assembly, silence sparse */ 257 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr, 258 __le32 *updptr, int nr_inst); 259 260 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr, 261 __le32 *updptr, int nr_inst) 262 { 263 BUG_ON(nr_inst != 1); /* Branch -> NOP */ 264 265 if (kasan_hw_tags_enabled()) 266 *updptr = cpu_to_le32(aarch64_insn_gen_nop()); 267 } 268 #endif 269 270 void mte_thread_init_user(void) 271 { 272 if (!system_supports_mte()) 273 return; 274 275 /* clear any pending asynchronous tag fault */ 276 dsb(ish); 277 write_sysreg_s(0, SYS_TFSRE0_EL1); 278 clear_thread_flag(TIF_MTE_ASYNC_FAULT); 279 /* disable tag checking and reset tag generation mask */ 280 set_mte_ctrl(current, 0); 281 } 282 283 void mte_thread_switch(struct task_struct *next) 284 { 285 if (!system_supports_mte()) 286 return; 287 288 mte_update_sctlr_user(next); 289 mte_update_gcr_excl(next); 290 291 /* TCO may not have been disabled on exception entry for the current task. */ 292 mte_disable_tco_entry(next); 293 294 /* 295 * Check if an async tag exception occurred at EL1. 296 * 297 * Note: On the context switch path we rely on the dsb() present 298 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1 299 * are synchronized before this point. 300 */ 301 isb(); 302 mte_check_tfsr_el1(); 303 } 304 305 void mte_cpu_setup(void) 306 { 307 u64 rgsr; 308 309 /* 310 * CnP must be enabled only after the MAIR_EL1 register has been set 311 * up. Inconsistent MAIR_EL1 between CPUs sharing the same TLB may 312 * lead to the wrong memory type being used for a brief window during 313 * CPU power-up. 314 * 315 * CnP is not a boot feature so MTE gets enabled before CnP, but let's 316 * make sure that is the case. 317 */ 318 BUG_ON(read_sysreg(ttbr0_el1) & TTBR_CNP_BIT); 319 BUG_ON(read_sysreg(ttbr1_el1) & TTBR_CNP_BIT); 320 321 /* Normal Tagged memory type at the corresponding MAIR index */ 322 sysreg_clear_set(mair_el1, 323 MAIR_ATTRIDX(MAIR_ATTR_MASK, MT_NORMAL_TAGGED), 324 MAIR_ATTRIDX(MAIR_ATTR_NORMAL_TAGGED, 325 MT_NORMAL_TAGGED)); 326 327 write_sysreg_s(KERNEL_GCR_EL1, SYS_GCR_EL1); 328 329 /* 330 * If GCR_EL1.RRND=1 is implemented the same way as RRND=0, then 331 * RGSR_EL1.SEED must be non-zero for IRG to produce 332 * pseudorandom numbers. As RGSR_EL1 is UNKNOWN out of reset, we 333 * must initialize it. 334 */ 335 rgsr = (read_sysreg(CNTVCT_EL0) & SYS_RGSR_EL1_SEED_MASK) << 336 SYS_RGSR_EL1_SEED_SHIFT; 337 if (rgsr == 0) 338 rgsr = 1 << SYS_RGSR_EL1_SEED_SHIFT; 339 write_sysreg_s(rgsr, SYS_RGSR_EL1); 340 341 /* clear any pending tag check faults in TFSR*_EL1 */ 342 write_sysreg_s(0, SYS_TFSR_EL1); 343 write_sysreg_s(0, SYS_TFSRE0_EL1); 344 345 local_flush_tlb_all(); 346 } 347 348 void mte_suspend_enter(void) 349 { 350 if (!system_supports_mte()) 351 return; 352 353 /* 354 * The barriers are required to guarantee that the indirect writes 355 * to TFSR_EL1 are synchronized before we report the state. 356 */ 357 dsb(nsh); 358 isb(); 359 360 /* Report SYS_TFSR_EL1 before suspend entry */ 361 mte_check_tfsr_el1(); 362 } 363 364 void mte_suspend_exit(void) 365 { 366 if (!system_supports_mte()) 367 return; 368 369 mte_cpu_setup(); 370 } 371 372 long set_mte_ctrl(struct task_struct *task, unsigned long arg) 373 { 374 u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) & 375 SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT; 376 377 if (!system_supports_mte()) 378 return 0; 379 380 if (arg & PR_MTE_TCF_ASYNC) 381 mte_ctrl |= MTE_CTRL_TCF_ASYNC; 382 if (arg & PR_MTE_TCF_SYNC) 383 mte_ctrl |= MTE_CTRL_TCF_SYNC; 384 385 /* 386 * If the system supports it and both sync and async modes are 387 * specified then implicitly enable asymmetric mode. 388 * Userspace could see a mix of both sync and async anyway due 389 * to differing or changing defaults on CPUs. 390 */ 391 if (cpus_have_cap(ARM64_MTE_ASYMM) && 392 (arg & PR_MTE_TCF_ASYNC) && 393 (arg & PR_MTE_TCF_SYNC)) 394 mte_ctrl |= MTE_CTRL_TCF_ASYMM; 395 396 if (arg & PR_MTE_STORE_ONLY) 397 mte_ctrl |= MTE_CTRL_STORE_ONLY; 398 399 task->thread.mte_ctrl = mte_ctrl; 400 if (task == current) { 401 preempt_disable(); 402 mte_update_sctlr_user(task); 403 mte_update_gcr_excl(task); 404 update_sctlr_el1(task->thread.sctlr_user); 405 preempt_enable(); 406 } 407 408 return 0; 409 } 410 411 long get_mte_ctrl(struct task_struct *task) 412 { 413 unsigned long ret; 414 u64 mte_ctrl = task->thread.mte_ctrl; 415 u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) & 416 SYS_GCR_EL1_EXCL_MASK; 417 418 if (!system_supports_mte()) 419 return 0; 420 421 ret = incl << PR_MTE_TAG_SHIFT; 422 if (mte_ctrl & MTE_CTRL_TCF_ASYNC) 423 ret |= PR_MTE_TCF_ASYNC; 424 if (mte_ctrl & MTE_CTRL_TCF_SYNC) 425 ret |= PR_MTE_TCF_SYNC; 426 if (mte_ctrl & MTE_CTRL_STORE_ONLY) 427 ret |= PR_MTE_STORE_ONLY; 428 429 return ret; 430 } 431 432 /* 433 * Access MTE tags in another process' address space as given in mm. Update 434 * the number of tags copied. Return 0 if any tags copied, error otherwise. 435 * Inspired by __access_remote_vm(). 436 */ 437 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr, 438 struct iovec *kiov, unsigned int gup_flags) 439 { 440 void __user *buf = kiov->iov_base; 441 size_t len = kiov->iov_len; 442 int err = 0; 443 int write = gup_flags & FOLL_WRITE; 444 445 if (!access_ok(buf, len)) 446 return -EFAULT; 447 448 if (mmap_read_lock_killable(mm)) 449 return -EIO; 450 451 while (len) { 452 struct vm_area_struct *vma; 453 unsigned long tags, offset; 454 void *maddr; 455 struct page *page = get_user_page_vma_remote(mm, addr, 456 gup_flags, &vma); 457 struct folio *folio; 458 459 if (IS_ERR(page)) { 460 err = PTR_ERR(page); 461 break; 462 } 463 464 /* 465 * Only copy tags if the page has been mapped as PROT_MTE 466 * (PG_mte_tagged set). Otherwise the tags are not valid and 467 * not accessible to user. Moreover, an mprotect(PROT_MTE) 468 * would cause the existing tags to be cleared if the page 469 * was never mapped with PROT_MTE. 470 */ 471 if (!(vma->vm_flags & VM_MTE)) { 472 err = -EOPNOTSUPP; 473 put_page(page); 474 break; 475 } 476 477 folio = page_folio(page); 478 if (folio_test_hugetlb(folio)) 479 WARN_ON_ONCE(!folio_test_hugetlb_mte_tagged(folio)); 480 else 481 WARN_ON_ONCE(!page_mte_tagged(page)); 482 483 /* limit access to the end of the page */ 484 offset = offset_in_page(addr); 485 tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE); 486 487 maddr = page_address(page); 488 if (write) { 489 tags = mte_copy_tags_from_user(maddr + offset, buf, tags); 490 set_page_dirty_lock(page); 491 } else { 492 tags = mte_copy_tags_to_user(buf, maddr + offset, tags); 493 } 494 put_page(page); 495 496 /* error accessing the tracer's buffer */ 497 if (!tags) 498 break; 499 500 len -= tags; 501 buf += tags; 502 addr += tags * MTE_GRANULE_SIZE; 503 } 504 mmap_read_unlock(mm); 505 506 /* return an error if no tags copied */ 507 kiov->iov_len = buf - kiov->iov_base; 508 if (!kiov->iov_len) { 509 /* check for error accessing the tracee's address space */ 510 if (err) 511 return -EIO; 512 else 513 return -EFAULT; 514 } 515 516 return 0; 517 } 518 519 /* 520 * Copy MTE tags in another process' address space at 'addr' to/from tracer's 521 * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm(). 522 */ 523 static int access_remote_tags(struct task_struct *tsk, unsigned long addr, 524 struct iovec *kiov, unsigned int gup_flags) 525 { 526 struct mm_struct *mm; 527 int ret; 528 529 mm = get_task_mm(tsk); 530 if (!mm) 531 return -EPERM; 532 533 if (!tsk->ptrace || (current != tsk->parent) || 534 ((get_dumpable(mm) != SUID_DUMP_USER) && 535 !ptracer_capable(tsk, mm->user_ns))) { 536 mmput(mm); 537 return -EPERM; 538 } 539 540 ret = __access_remote_tags(mm, addr, kiov, gup_flags); 541 mmput(mm); 542 543 return ret; 544 } 545 546 int mte_ptrace_copy_tags(struct task_struct *child, long request, 547 unsigned long addr, unsigned long data) 548 { 549 int ret; 550 struct iovec kiov; 551 struct iovec __user *uiov = (void __user *)data; 552 unsigned int gup_flags = FOLL_FORCE; 553 554 if (!system_supports_mte()) 555 return -EIO; 556 557 if (get_user(kiov.iov_base, &uiov->iov_base) || 558 get_user(kiov.iov_len, &uiov->iov_len)) 559 return -EFAULT; 560 561 if (request == PTRACE_POKEMTETAGS) 562 gup_flags |= FOLL_WRITE; 563 564 /* align addr to the MTE tag granule */ 565 addr &= MTE_GRANULE_MASK; 566 567 ret = access_remote_tags(child, addr, &kiov, gup_flags); 568 if (!ret) 569 ret = put_user(kiov.iov_len, &uiov->iov_len); 570 571 return ret; 572 } 573 574 static ssize_t mte_tcf_preferred_show(struct device *dev, 575 struct device_attribute *attr, char *buf) 576 { 577 switch (per_cpu(mte_tcf_preferred, dev->id)) { 578 case MTE_CTRL_TCF_ASYNC: 579 return sysfs_emit(buf, "async\n"); 580 case MTE_CTRL_TCF_SYNC: 581 return sysfs_emit(buf, "sync\n"); 582 case MTE_CTRL_TCF_ASYMM: 583 return sysfs_emit(buf, "asymm\n"); 584 default: 585 return sysfs_emit(buf, "???\n"); 586 } 587 } 588 589 static ssize_t mte_tcf_preferred_store(struct device *dev, 590 struct device_attribute *attr, 591 const char *buf, size_t count) 592 { 593 u64 tcf; 594 595 if (sysfs_streq(buf, "async")) 596 tcf = MTE_CTRL_TCF_ASYNC; 597 else if (sysfs_streq(buf, "sync")) 598 tcf = MTE_CTRL_TCF_SYNC; 599 else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm")) 600 tcf = MTE_CTRL_TCF_ASYMM; 601 else 602 return -EINVAL; 603 604 device_lock(dev); 605 per_cpu(mte_tcf_preferred, dev->id) = tcf; 606 device_unlock(dev); 607 608 return count; 609 } 610 static DEVICE_ATTR_RW(mte_tcf_preferred); 611 612 static int register_mte_tcf_preferred_sysctl(void) 613 { 614 unsigned int cpu; 615 616 if (!system_supports_mte()) 617 return 0; 618 619 for_each_possible_cpu(cpu) { 620 per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC; 621 device_create_file(get_cpu_device(cpu), 622 &dev_attr_mte_tcf_preferred); 623 } 624 625 return 0; 626 } 627 subsys_initcall(register_mte_tcf_preferred_sysctl); 628 629 /* 630 * Return 0 on success, the number of bytes not probed otherwise. 631 */ 632 size_t mte_probe_user_range(const char __user *uaddr, size_t size) 633 { 634 const char __user *end = uaddr + size; 635 char val; 636 637 __raw_get_user(val, uaddr, efault); 638 639 uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE); 640 while (uaddr < end) { 641 /* 642 * A read is sufficient for mte, the caller should have probed 643 * for the pte write permission if required. 644 */ 645 __raw_get_user(val, uaddr, efault); 646 uaddr += MTE_GRANULE_SIZE; 647 } 648 (void)val; 649 650 return 0; 651 652 efault: 653 return end - uaddr; 654 } 655