1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AArch64 loadable module support. 4 * 5 * Copyright (C) 2012 ARM Limited 6 * 7 * Author: Will Deacon <will.deacon@arm.com> 8 */ 9 10 #include <linux/bitops.h> 11 #include <linux/elf.h> 12 #include <linux/ftrace.h> 13 #include <linux/gfp.h> 14 #include <linux/kasan.h> 15 #include <linux/kernel.h> 16 #include <linux/mm.h> 17 #include <linux/moduleloader.h> 18 #include <linux/vmalloc.h> 19 #include <asm/alternative.h> 20 #include <asm/insn.h> 21 #include <asm/sections.h> 22 23 void *module_alloc(unsigned long size) 24 { 25 u64 module_alloc_end = module_alloc_base + MODULES_VSIZE; 26 gfp_t gfp_mask = GFP_KERNEL; 27 void *p; 28 29 /* Silence the initial allocation */ 30 if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS)) 31 gfp_mask |= __GFP_NOWARN; 32 33 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 34 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 35 /* don't exceed the static module region - see below */ 36 module_alloc_end = MODULES_END; 37 38 p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base, 39 module_alloc_end, gfp_mask, PAGE_KERNEL, 0, 40 NUMA_NO_NODE, __builtin_return_address(0)); 41 42 if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) && 43 (IS_ENABLED(CONFIG_KASAN_VMALLOC) || 44 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 45 !IS_ENABLED(CONFIG_KASAN_SW_TAGS)))) 46 /* 47 * KASAN without KASAN_VMALLOC can only deal with module 48 * allocations being served from the reserved module region, 49 * since the remainder of the vmalloc region is already 50 * backed by zero shadow pages, and punching holes into it 51 * is non-trivial. Since the module region is not randomized 52 * when KASAN is enabled without KASAN_VMALLOC, it is even 53 * less likely that the module region gets exhausted, so we 54 * can simply omit this fallback in that case. 55 */ 56 p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base, 57 module_alloc_base + SZ_2G, GFP_KERNEL, 58 PAGE_KERNEL, 0, NUMA_NO_NODE, 59 __builtin_return_address(0)); 60 61 if (p && (kasan_module_alloc(p, size) < 0)) { 62 vfree(p); 63 return NULL; 64 } 65 66 return p; 67 } 68 69 enum aarch64_reloc_op { 70 RELOC_OP_NONE, 71 RELOC_OP_ABS, 72 RELOC_OP_PREL, 73 RELOC_OP_PAGE, 74 }; 75 76 static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val) 77 { 78 switch (reloc_op) { 79 case RELOC_OP_ABS: 80 return val; 81 case RELOC_OP_PREL: 82 return val - (u64)place; 83 case RELOC_OP_PAGE: 84 return (val & ~0xfff) - ((u64)place & ~0xfff); 85 case RELOC_OP_NONE: 86 return 0; 87 } 88 89 pr_err("do_reloc: unknown relocation operation %d\n", reloc_op); 90 return 0; 91 } 92 93 static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len) 94 { 95 s64 sval = do_reloc(op, place, val); 96 97 /* 98 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place 99 * relative and absolute relocations as having a range of [-2^15, 2^16) 100 * or [-2^31, 2^32), respectively. However, in order to be able to 101 * detect overflows reliably, we have to choose whether we interpret 102 * such quantities as signed or as unsigned, and stick with it. 103 * The way we organize our address space requires a signed 104 * interpretation of 32-bit relative references, so let's use that 105 * for all R_AARCH64_PRELxx relocations. This means our upper 106 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX. 107 */ 108 109 switch (len) { 110 case 16: 111 *(s16 *)place = sval; 112 switch (op) { 113 case RELOC_OP_ABS: 114 if (sval < 0 || sval > U16_MAX) 115 return -ERANGE; 116 break; 117 case RELOC_OP_PREL: 118 if (sval < S16_MIN || sval > S16_MAX) 119 return -ERANGE; 120 break; 121 default: 122 pr_err("Invalid 16-bit data relocation (%d)\n", op); 123 return 0; 124 } 125 break; 126 case 32: 127 *(s32 *)place = sval; 128 switch (op) { 129 case RELOC_OP_ABS: 130 if (sval < 0 || sval > U32_MAX) 131 return -ERANGE; 132 break; 133 case RELOC_OP_PREL: 134 if (sval < S32_MIN || sval > S32_MAX) 135 return -ERANGE; 136 break; 137 default: 138 pr_err("Invalid 32-bit data relocation (%d)\n", op); 139 return 0; 140 } 141 break; 142 case 64: 143 *(s64 *)place = sval; 144 break; 145 default: 146 pr_err("Invalid length (%d) for data relocation\n", len); 147 return 0; 148 } 149 return 0; 150 } 151 152 enum aarch64_insn_movw_imm_type { 153 AARCH64_INSN_IMM_MOVNZ, 154 AARCH64_INSN_IMM_MOVKZ, 155 }; 156 157 static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val, 158 int lsb, enum aarch64_insn_movw_imm_type imm_type) 159 { 160 u64 imm; 161 s64 sval; 162 u32 insn = le32_to_cpu(*place); 163 164 sval = do_reloc(op, place, val); 165 imm = sval >> lsb; 166 167 if (imm_type == AARCH64_INSN_IMM_MOVNZ) { 168 /* 169 * For signed MOVW relocations, we have to manipulate the 170 * instruction encoding depending on whether or not the 171 * immediate is less than zero. 172 */ 173 insn &= ~(3 << 29); 174 if (sval >= 0) { 175 /* >=0: Set the instruction to MOVZ (opcode 10b). */ 176 insn |= 2 << 29; 177 } else { 178 /* 179 * <0: Set the instruction to MOVN (opcode 00b). 180 * Since we've masked the opcode already, we 181 * don't need to do anything other than 182 * inverting the new immediate field. 183 */ 184 imm = ~imm; 185 } 186 } 187 188 /* Update the instruction with the new encoding. */ 189 insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm); 190 *place = cpu_to_le32(insn); 191 192 if (imm > U16_MAX) 193 return -ERANGE; 194 195 return 0; 196 } 197 198 static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val, 199 int lsb, int len, enum aarch64_insn_imm_type imm_type) 200 { 201 u64 imm, imm_mask; 202 s64 sval; 203 u32 insn = le32_to_cpu(*place); 204 205 /* Calculate the relocation value. */ 206 sval = do_reloc(op, place, val); 207 sval >>= lsb; 208 209 /* Extract the value bits and shift them to bit 0. */ 210 imm_mask = (BIT(lsb + len) - 1) >> lsb; 211 imm = sval & imm_mask; 212 213 /* Update the instruction's immediate field. */ 214 insn = aarch64_insn_encode_immediate(imm_type, insn, imm); 215 *place = cpu_to_le32(insn); 216 217 /* 218 * Extract the upper value bits (including the sign bit) and 219 * shift them to bit 0. 220 */ 221 sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1); 222 223 /* 224 * Overflow has occurred if the upper bits are not all equal to 225 * the sign bit of the value. 226 */ 227 if ((u64)(sval + 1) >= 2) 228 return -ERANGE; 229 230 return 0; 231 } 232 233 static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs, 234 __le32 *place, u64 val) 235 { 236 u32 insn; 237 238 if (!is_forbidden_offset_for_adrp(place)) 239 return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21, 240 AARCH64_INSN_IMM_ADR); 241 242 /* patch ADRP to ADR if it is in range */ 243 if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21, 244 AARCH64_INSN_IMM_ADR)) { 245 insn = le32_to_cpu(*place); 246 insn &= ~BIT(31); 247 } else { 248 /* out of range for ADR -> emit a veneer */ 249 val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff); 250 if (!val) 251 return -ENOEXEC; 252 insn = aarch64_insn_gen_branch_imm((u64)place, val, 253 AARCH64_INSN_BRANCH_NOLINK); 254 } 255 256 *place = cpu_to_le32(insn); 257 return 0; 258 } 259 260 int apply_relocate_add(Elf64_Shdr *sechdrs, 261 const char *strtab, 262 unsigned int symindex, 263 unsigned int relsec, 264 struct module *me) 265 { 266 unsigned int i; 267 int ovf; 268 bool overflow_check; 269 Elf64_Sym *sym; 270 void *loc; 271 u64 val; 272 Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr; 273 274 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 275 /* loc corresponds to P in the AArch64 ELF document. */ 276 loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr 277 + rel[i].r_offset; 278 279 /* sym is the ELF symbol we're referring to. */ 280 sym = (Elf64_Sym *)sechdrs[symindex].sh_addr 281 + ELF64_R_SYM(rel[i].r_info); 282 283 /* val corresponds to (S + A) in the AArch64 ELF document. */ 284 val = sym->st_value + rel[i].r_addend; 285 286 /* Check for overflow by default. */ 287 overflow_check = true; 288 289 /* Perform the static relocation. */ 290 switch (ELF64_R_TYPE(rel[i].r_info)) { 291 /* Null relocations. */ 292 case R_ARM_NONE: 293 case R_AARCH64_NONE: 294 ovf = 0; 295 break; 296 297 /* Data relocations. */ 298 case R_AARCH64_ABS64: 299 overflow_check = false; 300 ovf = reloc_data(RELOC_OP_ABS, loc, val, 64); 301 break; 302 case R_AARCH64_ABS32: 303 ovf = reloc_data(RELOC_OP_ABS, loc, val, 32); 304 break; 305 case R_AARCH64_ABS16: 306 ovf = reloc_data(RELOC_OP_ABS, loc, val, 16); 307 break; 308 case R_AARCH64_PREL64: 309 overflow_check = false; 310 ovf = reloc_data(RELOC_OP_PREL, loc, val, 64); 311 break; 312 case R_AARCH64_PREL32: 313 ovf = reloc_data(RELOC_OP_PREL, loc, val, 32); 314 break; 315 case R_AARCH64_PREL16: 316 ovf = reloc_data(RELOC_OP_PREL, loc, val, 16); 317 break; 318 319 /* MOVW instruction relocations. */ 320 case R_AARCH64_MOVW_UABS_G0_NC: 321 overflow_check = false; 322 fallthrough; 323 case R_AARCH64_MOVW_UABS_G0: 324 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0, 325 AARCH64_INSN_IMM_MOVKZ); 326 break; 327 case R_AARCH64_MOVW_UABS_G1_NC: 328 overflow_check = false; 329 fallthrough; 330 case R_AARCH64_MOVW_UABS_G1: 331 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16, 332 AARCH64_INSN_IMM_MOVKZ); 333 break; 334 case R_AARCH64_MOVW_UABS_G2_NC: 335 overflow_check = false; 336 fallthrough; 337 case R_AARCH64_MOVW_UABS_G2: 338 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32, 339 AARCH64_INSN_IMM_MOVKZ); 340 break; 341 case R_AARCH64_MOVW_UABS_G3: 342 /* We're using the top bits so we can't overflow. */ 343 overflow_check = false; 344 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48, 345 AARCH64_INSN_IMM_MOVKZ); 346 break; 347 case R_AARCH64_MOVW_SABS_G0: 348 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0, 349 AARCH64_INSN_IMM_MOVNZ); 350 break; 351 case R_AARCH64_MOVW_SABS_G1: 352 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16, 353 AARCH64_INSN_IMM_MOVNZ); 354 break; 355 case R_AARCH64_MOVW_SABS_G2: 356 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32, 357 AARCH64_INSN_IMM_MOVNZ); 358 break; 359 case R_AARCH64_MOVW_PREL_G0_NC: 360 overflow_check = false; 361 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0, 362 AARCH64_INSN_IMM_MOVKZ); 363 break; 364 case R_AARCH64_MOVW_PREL_G0: 365 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0, 366 AARCH64_INSN_IMM_MOVNZ); 367 break; 368 case R_AARCH64_MOVW_PREL_G1_NC: 369 overflow_check = false; 370 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16, 371 AARCH64_INSN_IMM_MOVKZ); 372 break; 373 case R_AARCH64_MOVW_PREL_G1: 374 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16, 375 AARCH64_INSN_IMM_MOVNZ); 376 break; 377 case R_AARCH64_MOVW_PREL_G2_NC: 378 overflow_check = false; 379 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32, 380 AARCH64_INSN_IMM_MOVKZ); 381 break; 382 case R_AARCH64_MOVW_PREL_G2: 383 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32, 384 AARCH64_INSN_IMM_MOVNZ); 385 break; 386 case R_AARCH64_MOVW_PREL_G3: 387 /* We're using the top bits so we can't overflow. */ 388 overflow_check = false; 389 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48, 390 AARCH64_INSN_IMM_MOVNZ); 391 break; 392 393 /* Immediate instruction relocations. */ 394 case R_AARCH64_LD_PREL_LO19: 395 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19, 396 AARCH64_INSN_IMM_19); 397 break; 398 case R_AARCH64_ADR_PREL_LO21: 399 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21, 400 AARCH64_INSN_IMM_ADR); 401 break; 402 case R_AARCH64_ADR_PREL_PG_HI21_NC: 403 overflow_check = false; 404 fallthrough; 405 case R_AARCH64_ADR_PREL_PG_HI21: 406 ovf = reloc_insn_adrp(me, sechdrs, loc, val); 407 if (ovf && ovf != -ERANGE) 408 return ovf; 409 break; 410 case R_AARCH64_ADD_ABS_LO12_NC: 411 case R_AARCH64_LDST8_ABS_LO12_NC: 412 overflow_check = false; 413 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12, 414 AARCH64_INSN_IMM_12); 415 break; 416 case R_AARCH64_LDST16_ABS_LO12_NC: 417 overflow_check = false; 418 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11, 419 AARCH64_INSN_IMM_12); 420 break; 421 case R_AARCH64_LDST32_ABS_LO12_NC: 422 overflow_check = false; 423 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10, 424 AARCH64_INSN_IMM_12); 425 break; 426 case R_AARCH64_LDST64_ABS_LO12_NC: 427 overflow_check = false; 428 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9, 429 AARCH64_INSN_IMM_12); 430 break; 431 case R_AARCH64_LDST128_ABS_LO12_NC: 432 overflow_check = false; 433 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8, 434 AARCH64_INSN_IMM_12); 435 break; 436 case R_AARCH64_TSTBR14: 437 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14, 438 AARCH64_INSN_IMM_14); 439 break; 440 case R_AARCH64_CONDBR19: 441 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19, 442 AARCH64_INSN_IMM_19); 443 break; 444 case R_AARCH64_JUMP26: 445 case R_AARCH64_CALL26: 446 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26, 447 AARCH64_INSN_IMM_26); 448 449 if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) && 450 ovf == -ERANGE) { 451 val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym); 452 if (!val) 453 return -ENOEXEC; 454 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 455 26, AARCH64_INSN_IMM_26); 456 } 457 break; 458 459 default: 460 pr_err("module %s: unsupported RELA relocation: %llu\n", 461 me->name, ELF64_R_TYPE(rel[i].r_info)); 462 return -ENOEXEC; 463 } 464 465 if (overflow_check && ovf == -ERANGE) 466 goto overflow; 467 468 } 469 470 return 0; 471 472 overflow: 473 pr_err("module %s: overflow in relocation type %d val %Lx\n", 474 me->name, (int)ELF64_R_TYPE(rel[i].r_info), val); 475 return -ENOEXEC; 476 } 477 478 static const Elf_Shdr *find_section(const Elf_Ehdr *hdr, 479 const Elf_Shdr *sechdrs, 480 const char *name) 481 { 482 const Elf_Shdr *s, *se; 483 const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; 484 485 for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) { 486 if (strcmp(name, secstrs + s->sh_name) == 0) 487 return s; 488 } 489 490 return NULL; 491 } 492 493 static inline void __init_plt(struct plt_entry *plt, unsigned long addr) 494 { 495 *plt = get_plt_entry(addr, plt); 496 } 497 498 static int module_init_ftrace_plt(const Elf_Ehdr *hdr, 499 const Elf_Shdr *sechdrs, 500 struct module *mod) 501 { 502 #if defined(CONFIG_ARM64_MODULE_PLTS) && defined(CONFIG_DYNAMIC_FTRACE) 503 const Elf_Shdr *s; 504 struct plt_entry *plts; 505 506 s = find_section(hdr, sechdrs, ".text.ftrace_trampoline"); 507 if (!s) 508 return -ENOEXEC; 509 510 plts = (void *)s->sh_addr; 511 512 __init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR); 513 514 if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_REGS)) 515 __init_plt(&plts[FTRACE_REGS_PLT_IDX], FTRACE_REGS_ADDR); 516 517 mod->arch.ftrace_trampolines = plts; 518 #endif 519 return 0; 520 } 521 522 int module_finalize(const Elf_Ehdr *hdr, 523 const Elf_Shdr *sechdrs, 524 struct module *me) 525 { 526 const Elf_Shdr *s; 527 s = find_section(hdr, sechdrs, ".altinstructions"); 528 if (s) 529 apply_alternatives_module((void *)s->sh_addr, s->sh_size); 530 531 return module_init_ftrace_plt(hdr, sechdrs, me); 532 } 533