1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AArch64 loadable module support. 4 * 5 * Copyright (C) 2012 ARM Limited 6 * 7 * Author: Will Deacon <will.deacon@arm.com> 8 */ 9 10 #include <linux/bitops.h> 11 #include <linux/elf.h> 12 #include <linux/gfp.h> 13 #include <linux/kasan.h> 14 #include <linux/kernel.h> 15 #include <linux/mm.h> 16 #include <linux/moduleloader.h> 17 #include <linux/vmalloc.h> 18 #include <asm/alternative.h> 19 #include <asm/insn.h> 20 #include <asm/sections.h> 21 22 void *module_alloc(unsigned long size) 23 { 24 gfp_t gfp_mask = GFP_KERNEL; 25 void *p; 26 27 /* Silence the initial allocation */ 28 if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS)) 29 gfp_mask |= __GFP_NOWARN; 30 31 p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base, 32 module_alloc_base + MODULES_VSIZE, 33 gfp_mask, PAGE_KERNEL_EXEC, 0, 34 NUMA_NO_NODE, __builtin_return_address(0)); 35 36 if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) && 37 !IS_ENABLED(CONFIG_KASAN)) 38 /* 39 * KASAN can only deal with module allocations being served 40 * from the reserved module region, since the remainder of 41 * the vmalloc region is already backed by zero shadow pages, 42 * and punching holes into it is non-trivial. Since the module 43 * region is not randomized when KASAN is enabled, it is even 44 * less likely that the module region gets exhausted, so we 45 * can simply omit this fallback in that case. 46 */ 47 p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base, 48 module_alloc_base + SZ_2G, GFP_KERNEL, 49 PAGE_KERNEL_EXEC, 0, NUMA_NO_NODE, 50 __builtin_return_address(0)); 51 52 if (p && (kasan_module_alloc(p, size) < 0)) { 53 vfree(p); 54 return NULL; 55 } 56 57 return p; 58 } 59 60 enum aarch64_reloc_op { 61 RELOC_OP_NONE, 62 RELOC_OP_ABS, 63 RELOC_OP_PREL, 64 RELOC_OP_PAGE, 65 }; 66 67 static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val) 68 { 69 switch (reloc_op) { 70 case RELOC_OP_ABS: 71 return val; 72 case RELOC_OP_PREL: 73 return val - (u64)place; 74 case RELOC_OP_PAGE: 75 return (val & ~0xfff) - ((u64)place & ~0xfff); 76 case RELOC_OP_NONE: 77 return 0; 78 } 79 80 pr_err("do_reloc: unknown relocation operation %d\n", reloc_op); 81 return 0; 82 } 83 84 static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len) 85 { 86 s64 sval = do_reloc(op, place, val); 87 88 /* 89 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place 90 * relative and absolute relocations as having a range of [-2^15, 2^16) 91 * or [-2^31, 2^32), respectively. However, in order to be able to 92 * detect overflows reliably, we have to choose whether we interpret 93 * such quantities as signed or as unsigned, and stick with it. 94 * The way we organize our address space requires a signed 95 * interpretation of 32-bit relative references, so let's use that 96 * for all R_AARCH64_PRELxx relocations. This means our upper 97 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX. 98 */ 99 100 switch (len) { 101 case 16: 102 *(s16 *)place = sval; 103 switch (op) { 104 case RELOC_OP_ABS: 105 if (sval < 0 || sval > U16_MAX) 106 return -ERANGE; 107 break; 108 case RELOC_OP_PREL: 109 if (sval < S16_MIN || sval > S16_MAX) 110 return -ERANGE; 111 break; 112 default: 113 pr_err("Invalid 16-bit data relocation (%d)\n", op); 114 return 0; 115 } 116 break; 117 case 32: 118 *(s32 *)place = sval; 119 switch (op) { 120 case RELOC_OP_ABS: 121 if (sval < 0 || sval > U32_MAX) 122 return -ERANGE; 123 break; 124 case RELOC_OP_PREL: 125 if (sval < S32_MIN || sval > S32_MAX) 126 return -ERANGE; 127 break; 128 default: 129 pr_err("Invalid 32-bit data relocation (%d)\n", op); 130 return 0; 131 } 132 break; 133 case 64: 134 *(s64 *)place = sval; 135 break; 136 default: 137 pr_err("Invalid length (%d) for data relocation\n", len); 138 return 0; 139 } 140 return 0; 141 } 142 143 enum aarch64_insn_movw_imm_type { 144 AARCH64_INSN_IMM_MOVNZ, 145 AARCH64_INSN_IMM_MOVKZ, 146 }; 147 148 static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val, 149 int lsb, enum aarch64_insn_movw_imm_type imm_type) 150 { 151 u64 imm; 152 s64 sval; 153 u32 insn = le32_to_cpu(*place); 154 155 sval = do_reloc(op, place, val); 156 imm = sval >> lsb; 157 158 if (imm_type == AARCH64_INSN_IMM_MOVNZ) { 159 /* 160 * For signed MOVW relocations, we have to manipulate the 161 * instruction encoding depending on whether or not the 162 * immediate is less than zero. 163 */ 164 insn &= ~(3 << 29); 165 if (sval >= 0) { 166 /* >=0: Set the instruction to MOVZ (opcode 10b). */ 167 insn |= 2 << 29; 168 } else { 169 /* 170 * <0: Set the instruction to MOVN (opcode 00b). 171 * Since we've masked the opcode already, we 172 * don't need to do anything other than 173 * inverting the new immediate field. 174 */ 175 imm = ~imm; 176 } 177 } 178 179 /* Update the instruction with the new encoding. */ 180 insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm); 181 *place = cpu_to_le32(insn); 182 183 if (imm > U16_MAX) 184 return -ERANGE; 185 186 return 0; 187 } 188 189 static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val, 190 int lsb, int len, enum aarch64_insn_imm_type imm_type) 191 { 192 u64 imm, imm_mask; 193 s64 sval; 194 u32 insn = le32_to_cpu(*place); 195 196 /* Calculate the relocation value. */ 197 sval = do_reloc(op, place, val); 198 sval >>= lsb; 199 200 /* Extract the value bits and shift them to bit 0. */ 201 imm_mask = (BIT(lsb + len) - 1) >> lsb; 202 imm = sval & imm_mask; 203 204 /* Update the instruction's immediate field. */ 205 insn = aarch64_insn_encode_immediate(imm_type, insn, imm); 206 *place = cpu_to_le32(insn); 207 208 /* 209 * Extract the upper value bits (including the sign bit) and 210 * shift them to bit 0. 211 */ 212 sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1); 213 214 /* 215 * Overflow has occurred if the upper bits are not all equal to 216 * the sign bit of the value. 217 */ 218 if ((u64)(sval + 1) >= 2) 219 return -ERANGE; 220 221 return 0; 222 } 223 224 static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs, 225 __le32 *place, u64 val) 226 { 227 u32 insn; 228 229 if (!is_forbidden_offset_for_adrp(place)) 230 return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21, 231 AARCH64_INSN_IMM_ADR); 232 233 /* patch ADRP to ADR if it is in range */ 234 if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21, 235 AARCH64_INSN_IMM_ADR)) { 236 insn = le32_to_cpu(*place); 237 insn &= ~BIT(31); 238 } else { 239 /* out of range for ADR -> emit a veneer */ 240 val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff); 241 if (!val) 242 return -ENOEXEC; 243 insn = aarch64_insn_gen_branch_imm((u64)place, val, 244 AARCH64_INSN_BRANCH_NOLINK); 245 } 246 247 *place = cpu_to_le32(insn); 248 return 0; 249 } 250 251 int apply_relocate_add(Elf64_Shdr *sechdrs, 252 const char *strtab, 253 unsigned int symindex, 254 unsigned int relsec, 255 struct module *me) 256 { 257 unsigned int i; 258 int ovf; 259 bool overflow_check; 260 Elf64_Sym *sym; 261 void *loc; 262 u64 val; 263 Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr; 264 265 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 266 /* loc corresponds to P in the AArch64 ELF document. */ 267 loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr 268 + rel[i].r_offset; 269 270 /* sym is the ELF symbol we're referring to. */ 271 sym = (Elf64_Sym *)sechdrs[symindex].sh_addr 272 + ELF64_R_SYM(rel[i].r_info); 273 274 /* val corresponds to (S + A) in the AArch64 ELF document. */ 275 val = sym->st_value + rel[i].r_addend; 276 277 /* Check for overflow by default. */ 278 overflow_check = true; 279 280 /* Perform the static relocation. */ 281 switch (ELF64_R_TYPE(rel[i].r_info)) { 282 /* Null relocations. */ 283 case R_ARM_NONE: 284 case R_AARCH64_NONE: 285 ovf = 0; 286 break; 287 288 /* Data relocations. */ 289 case R_AARCH64_ABS64: 290 overflow_check = false; 291 ovf = reloc_data(RELOC_OP_ABS, loc, val, 64); 292 break; 293 case R_AARCH64_ABS32: 294 ovf = reloc_data(RELOC_OP_ABS, loc, val, 32); 295 break; 296 case R_AARCH64_ABS16: 297 ovf = reloc_data(RELOC_OP_ABS, loc, val, 16); 298 break; 299 case R_AARCH64_PREL64: 300 overflow_check = false; 301 ovf = reloc_data(RELOC_OP_PREL, loc, val, 64); 302 break; 303 case R_AARCH64_PREL32: 304 ovf = reloc_data(RELOC_OP_PREL, loc, val, 32); 305 break; 306 case R_AARCH64_PREL16: 307 ovf = reloc_data(RELOC_OP_PREL, loc, val, 16); 308 break; 309 310 /* MOVW instruction relocations. */ 311 case R_AARCH64_MOVW_UABS_G0_NC: 312 overflow_check = false; 313 case R_AARCH64_MOVW_UABS_G0: 314 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0, 315 AARCH64_INSN_IMM_MOVKZ); 316 break; 317 case R_AARCH64_MOVW_UABS_G1_NC: 318 overflow_check = false; 319 case R_AARCH64_MOVW_UABS_G1: 320 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16, 321 AARCH64_INSN_IMM_MOVKZ); 322 break; 323 case R_AARCH64_MOVW_UABS_G2_NC: 324 overflow_check = false; 325 case R_AARCH64_MOVW_UABS_G2: 326 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32, 327 AARCH64_INSN_IMM_MOVKZ); 328 break; 329 case R_AARCH64_MOVW_UABS_G3: 330 /* We're using the top bits so we can't overflow. */ 331 overflow_check = false; 332 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48, 333 AARCH64_INSN_IMM_MOVKZ); 334 break; 335 case R_AARCH64_MOVW_SABS_G0: 336 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0, 337 AARCH64_INSN_IMM_MOVNZ); 338 break; 339 case R_AARCH64_MOVW_SABS_G1: 340 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16, 341 AARCH64_INSN_IMM_MOVNZ); 342 break; 343 case R_AARCH64_MOVW_SABS_G2: 344 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32, 345 AARCH64_INSN_IMM_MOVNZ); 346 break; 347 case R_AARCH64_MOVW_PREL_G0_NC: 348 overflow_check = false; 349 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0, 350 AARCH64_INSN_IMM_MOVKZ); 351 break; 352 case R_AARCH64_MOVW_PREL_G0: 353 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0, 354 AARCH64_INSN_IMM_MOVNZ); 355 break; 356 case R_AARCH64_MOVW_PREL_G1_NC: 357 overflow_check = false; 358 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16, 359 AARCH64_INSN_IMM_MOVKZ); 360 break; 361 case R_AARCH64_MOVW_PREL_G1: 362 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16, 363 AARCH64_INSN_IMM_MOVNZ); 364 break; 365 case R_AARCH64_MOVW_PREL_G2_NC: 366 overflow_check = false; 367 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32, 368 AARCH64_INSN_IMM_MOVKZ); 369 break; 370 case R_AARCH64_MOVW_PREL_G2: 371 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32, 372 AARCH64_INSN_IMM_MOVNZ); 373 break; 374 case R_AARCH64_MOVW_PREL_G3: 375 /* We're using the top bits so we can't overflow. */ 376 overflow_check = false; 377 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48, 378 AARCH64_INSN_IMM_MOVNZ); 379 break; 380 381 /* Immediate instruction relocations. */ 382 case R_AARCH64_LD_PREL_LO19: 383 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19, 384 AARCH64_INSN_IMM_19); 385 break; 386 case R_AARCH64_ADR_PREL_LO21: 387 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21, 388 AARCH64_INSN_IMM_ADR); 389 break; 390 case R_AARCH64_ADR_PREL_PG_HI21_NC: 391 overflow_check = false; 392 case R_AARCH64_ADR_PREL_PG_HI21: 393 ovf = reloc_insn_adrp(me, sechdrs, loc, val); 394 if (ovf && ovf != -ERANGE) 395 return ovf; 396 break; 397 case R_AARCH64_ADD_ABS_LO12_NC: 398 case R_AARCH64_LDST8_ABS_LO12_NC: 399 overflow_check = false; 400 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12, 401 AARCH64_INSN_IMM_12); 402 break; 403 case R_AARCH64_LDST16_ABS_LO12_NC: 404 overflow_check = false; 405 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11, 406 AARCH64_INSN_IMM_12); 407 break; 408 case R_AARCH64_LDST32_ABS_LO12_NC: 409 overflow_check = false; 410 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10, 411 AARCH64_INSN_IMM_12); 412 break; 413 case R_AARCH64_LDST64_ABS_LO12_NC: 414 overflow_check = false; 415 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9, 416 AARCH64_INSN_IMM_12); 417 break; 418 case R_AARCH64_LDST128_ABS_LO12_NC: 419 overflow_check = false; 420 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8, 421 AARCH64_INSN_IMM_12); 422 break; 423 case R_AARCH64_TSTBR14: 424 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14, 425 AARCH64_INSN_IMM_14); 426 break; 427 case R_AARCH64_CONDBR19: 428 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19, 429 AARCH64_INSN_IMM_19); 430 break; 431 case R_AARCH64_JUMP26: 432 case R_AARCH64_CALL26: 433 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26, 434 AARCH64_INSN_IMM_26); 435 436 if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) && 437 ovf == -ERANGE) { 438 val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym); 439 if (!val) 440 return -ENOEXEC; 441 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 442 26, AARCH64_INSN_IMM_26); 443 } 444 break; 445 446 default: 447 pr_err("module %s: unsupported RELA relocation: %llu\n", 448 me->name, ELF64_R_TYPE(rel[i].r_info)); 449 return -ENOEXEC; 450 } 451 452 if (overflow_check && ovf == -ERANGE) 453 goto overflow; 454 455 } 456 457 return 0; 458 459 overflow: 460 pr_err("module %s: overflow in relocation type %d val %Lx\n", 461 me->name, (int)ELF64_R_TYPE(rel[i].r_info), val); 462 return -ENOEXEC; 463 } 464 465 int module_finalize(const Elf_Ehdr *hdr, 466 const Elf_Shdr *sechdrs, 467 struct module *me) 468 { 469 const Elf_Shdr *s, *se; 470 const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; 471 472 for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) { 473 if (strcmp(".altinstructions", secstrs + s->sh_name) == 0) 474 apply_alternatives_module((void *)s->sh_addr, s->sh_size); 475 #ifdef CONFIG_ARM64_MODULE_PLTS 476 if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) && 477 !strcmp(".text.ftrace_trampoline", secstrs + s->sh_name)) 478 me->arch.ftrace_trampoline = (void *)s->sh_addr; 479 #endif 480 } 481 482 return 0; 483 } 484