xref: /linux/arch/arm64/kernel/module.c (revision 31d166642c7c601c65eccf0ff2e0afe9a0538be2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AArch64 loadable module support.
4  *
5  * Copyright (C) 2012 ARM Limited
6  *
7  * Author: Will Deacon <will.deacon@arm.com>
8  */
9 
10 #include <linux/bitops.h>
11 #include <linux/elf.h>
12 #include <linux/gfp.h>
13 #include <linux/kasan.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/moduleloader.h>
17 #include <linux/vmalloc.h>
18 #include <asm/alternative.h>
19 #include <asm/insn.h>
20 #include <asm/sections.h>
21 
22 void *module_alloc(unsigned long size)
23 {
24 	gfp_t gfp_mask = GFP_KERNEL;
25 	void *p;
26 
27 	/* Silence the initial allocation */
28 	if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
29 		gfp_mask |= __GFP_NOWARN;
30 
31 	p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
32 				module_alloc_base + MODULES_VSIZE,
33 				gfp_mask, PAGE_KERNEL_EXEC, 0,
34 				NUMA_NO_NODE, __builtin_return_address(0));
35 
36 	if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
37 	    !IS_ENABLED(CONFIG_KASAN))
38 		/*
39 		 * KASAN can only deal with module allocations being served
40 		 * from the reserved module region, since the remainder of
41 		 * the vmalloc region is already backed by zero shadow pages,
42 		 * and punching holes into it is non-trivial. Since the module
43 		 * region is not randomized when KASAN is enabled, it is even
44 		 * less likely that the module region gets exhausted, so we
45 		 * can simply omit this fallback in that case.
46 		 */
47 		p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
48 				module_alloc_base + SZ_2G, GFP_KERNEL,
49 				PAGE_KERNEL_EXEC, 0, NUMA_NO_NODE,
50 				__builtin_return_address(0));
51 
52 	if (p && (kasan_module_alloc(p, size) < 0)) {
53 		vfree(p);
54 		return NULL;
55 	}
56 
57 	return p;
58 }
59 
60 enum aarch64_reloc_op {
61 	RELOC_OP_NONE,
62 	RELOC_OP_ABS,
63 	RELOC_OP_PREL,
64 	RELOC_OP_PAGE,
65 };
66 
67 static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
68 {
69 	switch (reloc_op) {
70 	case RELOC_OP_ABS:
71 		return val;
72 	case RELOC_OP_PREL:
73 		return val - (u64)place;
74 	case RELOC_OP_PAGE:
75 		return (val & ~0xfff) - ((u64)place & ~0xfff);
76 	case RELOC_OP_NONE:
77 		return 0;
78 	}
79 
80 	pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
81 	return 0;
82 }
83 
84 static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
85 {
86 	s64 sval = do_reloc(op, place, val);
87 
88 	/*
89 	 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
90 	 * relative and absolute relocations as having a range of [-2^15, 2^16)
91 	 * or [-2^31, 2^32), respectively. However, in order to be able to
92 	 * detect overflows reliably, we have to choose whether we interpret
93 	 * such quantities as signed or as unsigned, and stick with it.
94 	 * The way we organize our address space requires a signed
95 	 * interpretation of 32-bit relative references, so let's use that
96 	 * for all R_AARCH64_PRELxx relocations. This means our upper
97 	 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
98 	 */
99 
100 	switch (len) {
101 	case 16:
102 		*(s16 *)place = sval;
103 		switch (op) {
104 		case RELOC_OP_ABS:
105 			if (sval < 0 || sval > U16_MAX)
106 				return -ERANGE;
107 			break;
108 		case RELOC_OP_PREL:
109 			if (sval < S16_MIN || sval > S16_MAX)
110 				return -ERANGE;
111 			break;
112 		default:
113 			pr_err("Invalid 16-bit data relocation (%d)\n", op);
114 			return 0;
115 		}
116 		break;
117 	case 32:
118 		*(s32 *)place = sval;
119 		switch (op) {
120 		case RELOC_OP_ABS:
121 			if (sval < 0 || sval > U32_MAX)
122 				return -ERANGE;
123 			break;
124 		case RELOC_OP_PREL:
125 			if (sval < S32_MIN || sval > S32_MAX)
126 				return -ERANGE;
127 			break;
128 		default:
129 			pr_err("Invalid 32-bit data relocation (%d)\n", op);
130 			return 0;
131 		}
132 		break;
133 	case 64:
134 		*(s64 *)place = sval;
135 		break;
136 	default:
137 		pr_err("Invalid length (%d) for data relocation\n", len);
138 		return 0;
139 	}
140 	return 0;
141 }
142 
143 enum aarch64_insn_movw_imm_type {
144 	AARCH64_INSN_IMM_MOVNZ,
145 	AARCH64_INSN_IMM_MOVKZ,
146 };
147 
148 static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
149 			   int lsb, enum aarch64_insn_movw_imm_type imm_type)
150 {
151 	u64 imm;
152 	s64 sval;
153 	u32 insn = le32_to_cpu(*place);
154 
155 	sval = do_reloc(op, place, val);
156 	imm = sval >> lsb;
157 
158 	if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
159 		/*
160 		 * For signed MOVW relocations, we have to manipulate the
161 		 * instruction encoding depending on whether or not the
162 		 * immediate is less than zero.
163 		 */
164 		insn &= ~(3 << 29);
165 		if (sval >= 0) {
166 			/* >=0: Set the instruction to MOVZ (opcode 10b). */
167 			insn |= 2 << 29;
168 		} else {
169 			/*
170 			 * <0: Set the instruction to MOVN (opcode 00b).
171 			 *     Since we've masked the opcode already, we
172 			 *     don't need to do anything other than
173 			 *     inverting the new immediate field.
174 			 */
175 			imm = ~imm;
176 		}
177 	}
178 
179 	/* Update the instruction with the new encoding. */
180 	insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
181 	*place = cpu_to_le32(insn);
182 
183 	if (imm > U16_MAX)
184 		return -ERANGE;
185 
186 	return 0;
187 }
188 
189 static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
190 			  int lsb, int len, enum aarch64_insn_imm_type imm_type)
191 {
192 	u64 imm, imm_mask;
193 	s64 sval;
194 	u32 insn = le32_to_cpu(*place);
195 
196 	/* Calculate the relocation value. */
197 	sval = do_reloc(op, place, val);
198 	sval >>= lsb;
199 
200 	/* Extract the value bits and shift them to bit 0. */
201 	imm_mask = (BIT(lsb + len) - 1) >> lsb;
202 	imm = sval & imm_mask;
203 
204 	/* Update the instruction's immediate field. */
205 	insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
206 	*place = cpu_to_le32(insn);
207 
208 	/*
209 	 * Extract the upper value bits (including the sign bit) and
210 	 * shift them to bit 0.
211 	 */
212 	sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
213 
214 	/*
215 	 * Overflow has occurred if the upper bits are not all equal to
216 	 * the sign bit of the value.
217 	 */
218 	if ((u64)(sval + 1) >= 2)
219 		return -ERANGE;
220 
221 	return 0;
222 }
223 
224 static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
225 			   __le32 *place, u64 val)
226 {
227 	u32 insn;
228 
229 	if (!is_forbidden_offset_for_adrp(place))
230 		return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
231 				      AARCH64_INSN_IMM_ADR);
232 
233 	/* patch ADRP to ADR if it is in range */
234 	if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
235 			    AARCH64_INSN_IMM_ADR)) {
236 		insn = le32_to_cpu(*place);
237 		insn &= ~BIT(31);
238 	} else {
239 		/* out of range for ADR -> emit a veneer */
240 		val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
241 		if (!val)
242 			return -ENOEXEC;
243 		insn = aarch64_insn_gen_branch_imm((u64)place, val,
244 						   AARCH64_INSN_BRANCH_NOLINK);
245 	}
246 
247 	*place = cpu_to_le32(insn);
248 	return 0;
249 }
250 
251 int apply_relocate_add(Elf64_Shdr *sechdrs,
252 		       const char *strtab,
253 		       unsigned int symindex,
254 		       unsigned int relsec,
255 		       struct module *me)
256 {
257 	unsigned int i;
258 	int ovf;
259 	bool overflow_check;
260 	Elf64_Sym *sym;
261 	void *loc;
262 	u64 val;
263 	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
264 
265 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
266 		/* loc corresponds to P in the AArch64 ELF document. */
267 		loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
268 			+ rel[i].r_offset;
269 
270 		/* sym is the ELF symbol we're referring to. */
271 		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
272 			+ ELF64_R_SYM(rel[i].r_info);
273 
274 		/* val corresponds to (S + A) in the AArch64 ELF document. */
275 		val = sym->st_value + rel[i].r_addend;
276 
277 		/* Check for overflow by default. */
278 		overflow_check = true;
279 
280 		/* Perform the static relocation. */
281 		switch (ELF64_R_TYPE(rel[i].r_info)) {
282 		/* Null relocations. */
283 		case R_ARM_NONE:
284 		case R_AARCH64_NONE:
285 			ovf = 0;
286 			break;
287 
288 		/* Data relocations. */
289 		case R_AARCH64_ABS64:
290 			overflow_check = false;
291 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
292 			break;
293 		case R_AARCH64_ABS32:
294 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
295 			break;
296 		case R_AARCH64_ABS16:
297 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
298 			break;
299 		case R_AARCH64_PREL64:
300 			overflow_check = false;
301 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
302 			break;
303 		case R_AARCH64_PREL32:
304 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
305 			break;
306 		case R_AARCH64_PREL16:
307 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
308 			break;
309 
310 		/* MOVW instruction relocations. */
311 		case R_AARCH64_MOVW_UABS_G0_NC:
312 			overflow_check = false;
313 		case R_AARCH64_MOVW_UABS_G0:
314 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
315 					      AARCH64_INSN_IMM_MOVKZ);
316 			break;
317 		case R_AARCH64_MOVW_UABS_G1_NC:
318 			overflow_check = false;
319 		case R_AARCH64_MOVW_UABS_G1:
320 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
321 					      AARCH64_INSN_IMM_MOVKZ);
322 			break;
323 		case R_AARCH64_MOVW_UABS_G2_NC:
324 			overflow_check = false;
325 		case R_AARCH64_MOVW_UABS_G2:
326 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
327 					      AARCH64_INSN_IMM_MOVKZ);
328 			break;
329 		case R_AARCH64_MOVW_UABS_G3:
330 			/* We're using the top bits so we can't overflow. */
331 			overflow_check = false;
332 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
333 					      AARCH64_INSN_IMM_MOVKZ);
334 			break;
335 		case R_AARCH64_MOVW_SABS_G0:
336 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
337 					      AARCH64_INSN_IMM_MOVNZ);
338 			break;
339 		case R_AARCH64_MOVW_SABS_G1:
340 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
341 					      AARCH64_INSN_IMM_MOVNZ);
342 			break;
343 		case R_AARCH64_MOVW_SABS_G2:
344 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
345 					      AARCH64_INSN_IMM_MOVNZ);
346 			break;
347 		case R_AARCH64_MOVW_PREL_G0_NC:
348 			overflow_check = false;
349 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
350 					      AARCH64_INSN_IMM_MOVKZ);
351 			break;
352 		case R_AARCH64_MOVW_PREL_G0:
353 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
354 					      AARCH64_INSN_IMM_MOVNZ);
355 			break;
356 		case R_AARCH64_MOVW_PREL_G1_NC:
357 			overflow_check = false;
358 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
359 					      AARCH64_INSN_IMM_MOVKZ);
360 			break;
361 		case R_AARCH64_MOVW_PREL_G1:
362 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
363 					      AARCH64_INSN_IMM_MOVNZ);
364 			break;
365 		case R_AARCH64_MOVW_PREL_G2_NC:
366 			overflow_check = false;
367 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
368 					      AARCH64_INSN_IMM_MOVKZ);
369 			break;
370 		case R_AARCH64_MOVW_PREL_G2:
371 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
372 					      AARCH64_INSN_IMM_MOVNZ);
373 			break;
374 		case R_AARCH64_MOVW_PREL_G3:
375 			/* We're using the top bits so we can't overflow. */
376 			overflow_check = false;
377 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
378 					      AARCH64_INSN_IMM_MOVNZ);
379 			break;
380 
381 		/* Immediate instruction relocations. */
382 		case R_AARCH64_LD_PREL_LO19:
383 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
384 					     AARCH64_INSN_IMM_19);
385 			break;
386 		case R_AARCH64_ADR_PREL_LO21:
387 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
388 					     AARCH64_INSN_IMM_ADR);
389 			break;
390 		case R_AARCH64_ADR_PREL_PG_HI21_NC:
391 			overflow_check = false;
392 		case R_AARCH64_ADR_PREL_PG_HI21:
393 			ovf = reloc_insn_adrp(me, sechdrs, loc, val);
394 			if (ovf && ovf != -ERANGE)
395 				return ovf;
396 			break;
397 		case R_AARCH64_ADD_ABS_LO12_NC:
398 		case R_AARCH64_LDST8_ABS_LO12_NC:
399 			overflow_check = false;
400 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
401 					     AARCH64_INSN_IMM_12);
402 			break;
403 		case R_AARCH64_LDST16_ABS_LO12_NC:
404 			overflow_check = false;
405 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
406 					     AARCH64_INSN_IMM_12);
407 			break;
408 		case R_AARCH64_LDST32_ABS_LO12_NC:
409 			overflow_check = false;
410 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
411 					     AARCH64_INSN_IMM_12);
412 			break;
413 		case R_AARCH64_LDST64_ABS_LO12_NC:
414 			overflow_check = false;
415 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
416 					     AARCH64_INSN_IMM_12);
417 			break;
418 		case R_AARCH64_LDST128_ABS_LO12_NC:
419 			overflow_check = false;
420 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
421 					     AARCH64_INSN_IMM_12);
422 			break;
423 		case R_AARCH64_TSTBR14:
424 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
425 					     AARCH64_INSN_IMM_14);
426 			break;
427 		case R_AARCH64_CONDBR19:
428 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
429 					     AARCH64_INSN_IMM_19);
430 			break;
431 		case R_AARCH64_JUMP26:
432 		case R_AARCH64_CALL26:
433 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
434 					     AARCH64_INSN_IMM_26);
435 
436 			if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
437 			    ovf == -ERANGE) {
438 				val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
439 				if (!val)
440 					return -ENOEXEC;
441 				ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
442 						     26, AARCH64_INSN_IMM_26);
443 			}
444 			break;
445 
446 		default:
447 			pr_err("module %s: unsupported RELA relocation: %llu\n",
448 			       me->name, ELF64_R_TYPE(rel[i].r_info));
449 			return -ENOEXEC;
450 		}
451 
452 		if (overflow_check && ovf == -ERANGE)
453 			goto overflow;
454 
455 	}
456 
457 	return 0;
458 
459 overflow:
460 	pr_err("module %s: overflow in relocation type %d val %Lx\n",
461 	       me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
462 	return -ENOEXEC;
463 }
464 
465 int module_finalize(const Elf_Ehdr *hdr,
466 		    const Elf_Shdr *sechdrs,
467 		    struct module *me)
468 {
469 	const Elf_Shdr *s, *se;
470 	const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
471 
472 	for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) {
473 		if (strcmp(".altinstructions", secstrs + s->sh_name) == 0)
474 			apply_alternatives_module((void *)s->sh_addr, s->sh_size);
475 #ifdef CONFIG_ARM64_MODULE_PLTS
476 		if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) &&
477 		    !strcmp(".text.ftrace_trampoline", secstrs + s->sh_name))
478 			me->arch.ftrace_trampoline = (void *)s->sh_addr;
479 #endif
480 	}
481 
482 	return 0;
483 }
484