1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kexec for arm64 4 * 5 * Copyright (C) Linaro. 6 * Copyright (C) Huawei Futurewei Technologies. 7 */ 8 9 #include <linux/interrupt.h> 10 #include <linux/irq.h> 11 #include <linux/kernel.h> 12 #include <linux/kexec.h> 13 #include <linux/page-flags.h> 14 #include <linux/reboot.h> 15 #include <linux/set_memory.h> 16 #include <linux/smp.h> 17 18 #include <asm/cacheflush.h> 19 #include <asm/cpu_ops.h> 20 #include <asm/daifflags.h> 21 #include <asm/memory.h> 22 #include <asm/mmu.h> 23 #include <asm/mmu_context.h> 24 #include <asm/page.h> 25 #include <asm/sections.h> 26 #include <asm/trans_pgd.h> 27 28 /** 29 * kexec_image_info - For debugging output. 30 */ 31 #define kexec_image_info(_i) _kexec_image_info(__func__, __LINE__, _i) 32 static void _kexec_image_info(const char *func, int line, 33 const struct kimage *kimage) 34 { 35 kexec_dprintk("%s:%d:\n", func, line); 36 kexec_dprintk(" kexec kimage info:\n"); 37 kexec_dprintk(" type: %d\n", kimage->type); 38 kexec_dprintk(" head: %lx\n", kimage->head); 39 kexec_dprintk(" kern_reloc: %pa\n", &kimage->arch.kern_reloc); 40 kexec_dprintk(" el2_vectors: %pa\n", &kimage->arch.el2_vectors); 41 } 42 43 void machine_kexec_cleanup(struct kimage *kimage) 44 { 45 /* Empty routine needed to avoid build errors. */ 46 } 47 48 /** 49 * machine_kexec_prepare - Prepare for a kexec reboot. 50 * 51 * Called from the core kexec code when a kernel image is loaded. 52 * Forbid loading a kexec kernel if we have no way of hotplugging cpus or cpus 53 * are stuck in the kernel. This avoids a panic once we hit machine_kexec(). 54 */ 55 int machine_kexec_prepare(struct kimage *kimage) 56 { 57 if (kimage->type != KEXEC_TYPE_CRASH && cpus_are_stuck_in_kernel()) { 58 pr_err("Can't kexec: CPUs are stuck in the kernel.\n"); 59 return -EBUSY; 60 } 61 62 return 0; 63 } 64 65 /** 66 * kexec_segment_flush - Helper to flush the kimage segments to PoC. 67 */ 68 static void kexec_segment_flush(const struct kimage *kimage) 69 { 70 unsigned long i; 71 72 pr_debug("%s:\n", __func__); 73 74 for (i = 0; i < kimage->nr_segments; i++) { 75 pr_debug(" segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n", 76 i, 77 kimage->segment[i].mem, 78 kimage->segment[i].mem + kimage->segment[i].memsz, 79 kimage->segment[i].memsz, 80 kimage->segment[i].memsz / PAGE_SIZE); 81 82 dcache_clean_inval_poc( 83 (unsigned long)phys_to_virt(kimage->segment[i].mem), 84 (unsigned long)phys_to_virt(kimage->segment[i].mem) + 85 kimage->segment[i].memsz); 86 } 87 } 88 89 /* Allocates pages for kexec page table */ 90 static void *kexec_page_alloc(void *arg) 91 { 92 struct kimage *kimage = arg; 93 struct page *page = kimage_alloc_control_pages(kimage, 0); 94 void *vaddr = NULL; 95 96 if (!page) 97 return NULL; 98 99 vaddr = page_address(page); 100 memset(vaddr, 0, PAGE_SIZE); 101 102 return vaddr; 103 } 104 105 int machine_kexec_post_load(struct kimage *kimage) 106 { 107 int rc; 108 pgd_t *trans_pgd; 109 void *reloc_code = page_to_virt(kimage->control_code_page); 110 long reloc_size; 111 struct trans_pgd_info info = { 112 .trans_alloc_page = kexec_page_alloc, 113 .trans_alloc_arg = kimage, 114 }; 115 116 /* If in place, relocation is not used, only flush next kernel */ 117 if (kimage->head & IND_DONE) { 118 kexec_segment_flush(kimage); 119 kexec_image_info(kimage); 120 return 0; 121 } 122 123 kimage->arch.el2_vectors = 0; 124 if (is_hyp_nvhe()) { 125 rc = trans_pgd_copy_el2_vectors(&info, 126 &kimage->arch.el2_vectors); 127 if (rc) 128 return rc; 129 } 130 131 /* Create a copy of the linear map */ 132 trans_pgd = kexec_page_alloc(kimage); 133 if (!trans_pgd) 134 return -ENOMEM; 135 rc = trans_pgd_create_copy(&info, &trans_pgd, PAGE_OFFSET, PAGE_END); 136 if (rc) 137 return rc; 138 kimage->arch.ttbr1 = __pa(trans_pgd); 139 kimage->arch.zero_page = __pa_symbol(empty_zero_page); 140 141 reloc_size = __relocate_new_kernel_end - __relocate_new_kernel_start; 142 memcpy(reloc_code, __relocate_new_kernel_start, reloc_size); 143 kimage->arch.kern_reloc = __pa(reloc_code); 144 rc = trans_pgd_idmap_page(&info, &kimage->arch.ttbr0, 145 &kimage->arch.t0sz, reloc_code); 146 if (rc) 147 return rc; 148 kimage->arch.phys_offset = virt_to_phys(kimage) - (long)kimage; 149 150 /* Flush the reloc_code in preparation for its execution. */ 151 dcache_clean_inval_poc((unsigned long)reloc_code, 152 (unsigned long)reloc_code + reloc_size); 153 icache_inval_pou((uintptr_t)reloc_code, 154 (uintptr_t)reloc_code + reloc_size); 155 kexec_image_info(kimage); 156 157 return 0; 158 } 159 160 /** 161 * machine_kexec - Do the kexec reboot. 162 * 163 * Called from the core kexec code for a sys_reboot with LINUX_REBOOT_CMD_KEXEC. 164 */ 165 void machine_kexec(struct kimage *kimage) 166 { 167 bool in_kexec_crash = (kimage == kexec_crash_image); 168 bool stuck_cpus = cpus_are_stuck_in_kernel(); 169 170 /* 171 * New cpus may have become stuck_in_kernel after we loaded the image. 172 */ 173 BUG_ON(!in_kexec_crash && (stuck_cpus || (num_online_cpus() > 1))); 174 WARN(in_kexec_crash && (stuck_cpus || smp_crash_stop_failed()), 175 "Some CPUs may be stale, kdump will be unreliable.\n"); 176 177 pr_info("Bye!\n"); 178 179 local_daif_mask(); 180 181 /* 182 * Both restart and kernel_reloc will shutdown the MMU, disable data 183 * caches. However, restart will start new kernel or purgatory directly, 184 * kernel_reloc contains the body of arm64_relocate_new_kernel 185 * In kexec case, kimage->start points to purgatory assuming that 186 * kernel entry and dtb address are embedded in purgatory by 187 * userspace (kexec-tools). 188 * In kexec_file case, the kernel starts directly without purgatory. 189 */ 190 if (kimage->head & IND_DONE) { 191 typeof(cpu_soft_restart) *restart; 192 193 cpu_install_idmap(); 194 restart = (void *)__pa_symbol(cpu_soft_restart); 195 restart(is_hyp_nvhe(), kimage->start, kimage->arch.dtb_mem, 196 0, 0); 197 } else { 198 void (*kernel_reloc)(struct kimage *kimage); 199 200 if (is_hyp_nvhe()) 201 __hyp_set_vectors(kimage->arch.el2_vectors); 202 cpu_install_ttbr0(kimage->arch.ttbr0, kimage->arch.t0sz); 203 kernel_reloc = (void *)kimage->arch.kern_reloc; 204 kernel_reloc(kimage); 205 } 206 207 BUG(); /* Should never get here. */ 208 } 209 210 static void machine_kexec_mask_interrupts(void) 211 { 212 unsigned int i; 213 struct irq_desc *desc; 214 215 for_each_irq_desc(i, desc) { 216 struct irq_chip *chip; 217 int ret; 218 219 chip = irq_desc_get_chip(desc); 220 if (!chip) 221 continue; 222 223 /* 224 * First try to remove the active state. If this 225 * fails, try to EOI the interrupt. 226 */ 227 ret = irq_set_irqchip_state(i, IRQCHIP_STATE_ACTIVE, false); 228 229 if (ret && irqd_irq_inprogress(&desc->irq_data) && 230 chip->irq_eoi) 231 chip->irq_eoi(&desc->irq_data); 232 233 if (chip->irq_mask) 234 chip->irq_mask(&desc->irq_data); 235 236 if (chip->irq_disable && !irqd_irq_disabled(&desc->irq_data)) 237 chip->irq_disable(&desc->irq_data); 238 } 239 } 240 241 /** 242 * machine_crash_shutdown - shutdown non-crashing cpus and save registers 243 */ 244 void machine_crash_shutdown(struct pt_regs *regs) 245 { 246 local_irq_disable(); 247 248 /* shutdown non-crashing cpus */ 249 crash_smp_send_stop(); 250 251 /* for crashing cpu */ 252 crash_save_cpu(regs, smp_processor_id()); 253 machine_kexec_mask_interrupts(); 254 255 pr_info("Starting crashdump kernel...\n"); 256 } 257 258 #if defined(CONFIG_CRASH_DUMP) && defined(CONFIG_HIBERNATION) 259 /* 260 * To preserve the crash dump kernel image, the relevant memory segments 261 * should be mapped again around the hibernation. 262 */ 263 void crash_prepare_suspend(void) 264 { 265 if (kexec_crash_image) 266 arch_kexec_unprotect_crashkres(); 267 } 268 269 void crash_post_resume(void) 270 { 271 if (kexec_crash_image) 272 arch_kexec_protect_crashkres(); 273 } 274 275 /* 276 * crash_is_nosave 277 * 278 * Return true only if a page is part of reserved memory for crash dump kernel, 279 * but does not hold any data of loaded kernel image. 280 * 281 * Note that all the pages in crash dump kernel memory have been initially 282 * marked as Reserved as memory was allocated via memblock_reserve(). 283 * 284 * In hibernation, the pages which are Reserved and yet "nosave" are excluded 285 * from the hibernation iamge. crash_is_nosave() does thich check for crash 286 * dump kernel and will reduce the total size of hibernation image. 287 */ 288 289 bool crash_is_nosave(unsigned long pfn) 290 { 291 int i; 292 phys_addr_t addr; 293 294 if (!crashk_res.end) 295 return false; 296 297 /* in reserved memory? */ 298 addr = __pfn_to_phys(pfn); 299 if ((addr < crashk_res.start) || (crashk_res.end < addr)) { 300 if (!crashk_low_res.end) 301 return false; 302 303 if ((addr < crashk_low_res.start) || (crashk_low_res.end < addr)) 304 return false; 305 } 306 307 if (!kexec_crash_image) 308 return true; 309 310 /* not part of loaded kernel image? */ 311 for (i = 0; i < kexec_crash_image->nr_segments; i++) 312 if (addr >= kexec_crash_image->segment[i].mem && 313 addr < (kexec_crash_image->segment[i].mem + 314 kexec_crash_image->segment[i].memsz)) 315 return false; 316 317 return true; 318 } 319 320 void crash_free_reserved_phys_range(unsigned long begin, unsigned long end) 321 { 322 unsigned long addr; 323 struct page *page; 324 325 for (addr = begin; addr < end; addr += PAGE_SIZE) { 326 page = phys_to_page(addr); 327 free_reserved_page(page); 328 } 329 } 330 #endif /* CONFIG_HIBERNATION */ 331