xref: /linux/arch/arm64/kernel/kaslr.c (revision f6f0c4362f070cab4a0cec432e82428d702ce0a6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
4  */
5 
6 #include <linux/cache.h>
7 #include <linux/crc32.h>
8 #include <linux/init.h>
9 #include <linux/libfdt.h>
10 #include <linux/mm_types.h>
11 #include <linux/sched.h>
12 #include <linux/types.h>
13 #include <linux/pgtable.h>
14 #include <linux/random.h>
15 
16 #include <asm/cacheflush.h>
17 #include <asm/fixmap.h>
18 #include <asm/kernel-pgtable.h>
19 #include <asm/memory.h>
20 #include <asm/mmu.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 
24 enum kaslr_status {
25 	KASLR_ENABLED,
26 	KASLR_DISABLED_CMDLINE,
27 	KASLR_DISABLED_NO_SEED,
28 	KASLR_DISABLED_FDT_REMAP,
29 };
30 
31 static enum kaslr_status __initdata kaslr_status;
32 u64 __ro_after_init module_alloc_base;
33 u16 __initdata memstart_offset_seed;
34 
35 static __init u64 get_kaslr_seed(void *fdt)
36 {
37 	int node, len;
38 	fdt64_t *prop;
39 	u64 ret;
40 
41 	node = fdt_path_offset(fdt, "/chosen");
42 	if (node < 0)
43 		return 0;
44 
45 	prop = fdt_getprop_w(fdt, node, "kaslr-seed", &len);
46 	if (!prop || len != sizeof(u64))
47 		return 0;
48 
49 	ret = fdt64_to_cpu(*prop);
50 	*prop = 0;
51 	return ret;
52 }
53 
54 static __init bool cmdline_contains_nokaslr(const u8 *cmdline)
55 {
56 	const u8 *str;
57 
58 	str = strstr(cmdline, "nokaslr");
59 	return str == cmdline || (str > cmdline && *(str - 1) == ' ');
60 }
61 
62 static __init bool is_kaslr_disabled_cmdline(void *fdt)
63 {
64 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE)) {
65 		int node;
66 		const u8 *prop;
67 
68 		node = fdt_path_offset(fdt, "/chosen");
69 		if (node < 0)
70 			goto out;
71 
72 		prop = fdt_getprop(fdt, node, "bootargs", NULL);
73 		if (!prop)
74 			goto out;
75 
76 		if (cmdline_contains_nokaslr(prop))
77 			return true;
78 
79 		if (IS_ENABLED(CONFIG_CMDLINE_EXTEND))
80 			goto out;
81 
82 		return false;
83 	}
84 out:
85 	return cmdline_contains_nokaslr(CONFIG_CMDLINE);
86 }
87 
88 /*
89  * This routine will be executed with the kernel mapped at its default virtual
90  * address, and if it returns successfully, the kernel will be remapped, and
91  * start_kernel() will be executed from a randomized virtual offset. The
92  * relocation will result in all absolute references (e.g., static variables
93  * containing function pointers) to be reinitialized, and zero-initialized
94  * .bss variables will be reset to 0.
95  */
96 u64 __init kaslr_early_init(void)
97 {
98 	void *fdt;
99 	u64 seed, offset, mask, module_range;
100 	unsigned long raw;
101 
102 	/*
103 	 * Set a reasonable default for module_alloc_base in case
104 	 * we end up running with module randomization disabled.
105 	 */
106 	module_alloc_base = (u64)_etext - MODULES_VSIZE;
107 	__flush_dcache_area(&module_alloc_base, sizeof(module_alloc_base));
108 
109 	/*
110 	 * Try to map the FDT early. If this fails, we simply bail,
111 	 * and proceed with KASLR disabled. We will make another
112 	 * attempt at mapping the FDT in setup_machine()
113 	 */
114 	fdt = get_early_fdt_ptr();
115 	if (!fdt) {
116 		kaslr_status = KASLR_DISABLED_FDT_REMAP;
117 		return 0;
118 	}
119 
120 	/*
121 	 * Retrieve (and wipe) the seed from the FDT
122 	 */
123 	seed = get_kaslr_seed(fdt);
124 
125 	/*
126 	 * Check if 'nokaslr' appears on the command line, and
127 	 * return 0 if that is the case.
128 	 */
129 	if (is_kaslr_disabled_cmdline(fdt)) {
130 		kaslr_status = KASLR_DISABLED_CMDLINE;
131 		return 0;
132 	}
133 
134 	/*
135 	 * Mix in any entropy obtainable architecturally if enabled
136 	 * and supported.
137 	 */
138 
139 	if (arch_get_random_seed_long_early(&raw))
140 		seed ^= raw;
141 
142 	if (!seed) {
143 		kaslr_status = KASLR_DISABLED_NO_SEED;
144 		return 0;
145 	}
146 
147 	/*
148 	 * OK, so we are proceeding with KASLR enabled. Calculate a suitable
149 	 * kernel image offset from the seed. Let's place the kernel in the
150 	 * middle half of the VMALLOC area (VA_BITS_MIN - 2), and stay clear of
151 	 * the lower and upper quarters to avoid colliding with other
152 	 * allocations.
153 	 * Even if we could randomize at page granularity for 16k and 64k pages,
154 	 * let's always round to 2 MB so we don't interfere with the ability to
155 	 * map using contiguous PTEs
156 	 */
157 	mask = ((1UL << (VA_BITS_MIN - 2)) - 1) & ~(SZ_2M - 1);
158 	offset = BIT(VA_BITS_MIN - 3) + (seed & mask);
159 
160 	/* use the top 16 bits to randomize the linear region */
161 	memstart_offset_seed = seed >> 48;
162 
163 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
164 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
165 		/*
166 		 * KASAN does not expect the module region to intersect the
167 		 * vmalloc region, since shadow memory is allocated for each
168 		 * module at load time, whereas the vmalloc region is shadowed
169 		 * by KASAN zero pages. So keep modules out of the vmalloc
170 		 * region if KASAN is enabled, and put the kernel well within
171 		 * 4 GB of the module region.
172 		 */
173 		return offset % SZ_2G;
174 
175 	if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
176 		/*
177 		 * Randomize the module region over a 2 GB window covering the
178 		 * kernel. This reduces the risk of modules leaking information
179 		 * about the address of the kernel itself, but results in
180 		 * branches between modules and the core kernel that are
181 		 * resolved via PLTs. (Branches between modules will be
182 		 * resolved normally.)
183 		 */
184 		module_range = SZ_2G - (u64)(_end - _stext);
185 		module_alloc_base = max((u64)_end + offset - SZ_2G,
186 					(u64)MODULES_VADDR);
187 	} else {
188 		/*
189 		 * Randomize the module region by setting module_alloc_base to
190 		 * a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE,
191 		 * _stext) . This guarantees that the resulting region still
192 		 * covers [_stext, _etext], and that all relative branches can
193 		 * be resolved without veneers.
194 		 */
195 		module_range = MODULES_VSIZE - (u64)(_etext - _stext);
196 		module_alloc_base = (u64)_etext + offset - MODULES_VSIZE;
197 	}
198 
199 	/* use the lower 21 bits to randomize the base of the module region */
200 	module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21;
201 	module_alloc_base &= PAGE_MASK;
202 
203 	__flush_dcache_area(&module_alloc_base, sizeof(module_alloc_base));
204 	__flush_dcache_area(&memstart_offset_seed, sizeof(memstart_offset_seed));
205 
206 	return offset;
207 }
208 
209 static int __init kaslr_init(void)
210 {
211 	switch (kaslr_status) {
212 	case KASLR_ENABLED:
213 		pr_info("KASLR enabled\n");
214 		break;
215 	case KASLR_DISABLED_CMDLINE:
216 		pr_info("KASLR disabled on command line\n");
217 		break;
218 	case KASLR_DISABLED_NO_SEED:
219 		pr_warn("KASLR disabled due to lack of seed\n");
220 		break;
221 	case KASLR_DISABLED_FDT_REMAP:
222 		pr_warn("KASLR disabled due to FDT remapping failure\n");
223 		break;
224 	}
225 
226 	return 0;
227 }
228 core_initcall(kaslr_init)
229