xref: /linux/arch/arm64/kernel/kaslr.c (revision 0d3b051adbb72ed81956447d0d1e54d5943ee6f5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
4  */
5 
6 #include <linux/cache.h>
7 #include <linux/crc32.h>
8 #include <linux/init.h>
9 #include <linux/libfdt.h>
10 #include <linux/mm_types.h>
11 #include <linux/sched.h>
12 #include <linux/types.h>
13 #include <linux/pgtable.h>
14 #include <linux/random.h>
15 
16 #include <asm/cacheflush.h>
17 #include <asm/fixmap.h>
18 #include <asm/kernel-pgtable.h>
19 #include <asm/memory.h>
20 #include <asm/mmu.h>
21 #include <asm/sections.h>
22 
23 enum kaslr_status {
24 	KASLR_ENABLED,
25 	KASLR_DISABLED_CMDLINE,
26 	KASLR_DISABLED_NO_SEED,
27 	KASLR_DISABLED_FDT_REMAP,
28 };
29 
30 static enum kaslr_status __initdata kaslr_status;
31 u64 __ro_after_init module_alloc_base;
32 u16 __initdata memstart_offset_seed;
33 
34 static __init u64 get_kaslr_seed(void *fdt)
35 {
36 	int node, len;
37 	fdt64_t *prop;
38 	u64 ret;
39 
40 	node = fdt_path_offset(fdt, "/chosen");
41 	if (node < 0)
42 		return 0;
43 
44 	prop = fdt_getprop_w(fdt, node, "kaslr-seed", &len);
45 	if (!prop || len != sizeof(u64))
46 		return 0;
47 
48 	ret = fdt64_to_cpu(*prop);
49 	*prop = 0;
50 	return ret;
51 }
52 
53 static __init bool cmdline_contains_nokaslr(const u8 *cmdline)
54 {
55 	const u8 *str;
56 
57 	str = strstr(cmdline, "nokaslr");
58 	return str == cmdline || (str > cmdline && *(str - 1) == ' ');
59 }
60 
61 static __init bool is_kaslr_disabled_cmdline(void *fdt)
62 {
63 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE)) {
64 		int node;
65 		const u8 *prop;
66 
67 		node = fdt_path_offset(fdt, "/chosen");
68 		if (node < 0)
69 			goto out;
70 
71 		prop = fdt_getprop(fdt, node, "bootargs", NULL);
72 		if (!prop)
73 			goto out;
74 
75 		if (cmdline_contains_nokaslr(prop))
76 			return true;
77 
78 		if (IS_ENABLED(CONFIG_CMDLINE_EXTEND))
79 			goto out;
80 
81 		return false;
82 	}
83 out:
84 	return cmdline_contains_nokaslr(CONFIG_CMDLINE);
85 }
86 
87 /*
88  * This routine will be executed with the kernel mapped at its default virtual
89  * address, and if it returns successfully, the kernel will be remapped, and
90  * start_kernel() will be executed from a randomized virtual offset. The
91  * relocation will result in all absolute references (e.g., static variables
92  * containing function pointers) to be reinitialized, and zero-initialized
93  * .bss variables will be reset to 0.
94  */
95 u64 __init kaslr_early_init(u64 dt_phys)
96 {
97 	void *fdt;
98 	u64 seed, offset, mask, module_range;
99 	unsigned long raw;
100 	int size;
101 
102 	/*
103 	 * Set a reasonable default for module_alloc_base in case
104 	 * we end up running with module randomization disabled.
105 	 */
106 	module_alloc_base = (u64)_etext - MODULES_VSIZE;
107 	__flush_dcache_area(&module_alloc_base, sizeof(module_alloc_base));
108 
109 	/*
110 	 * Try to map the FDT early. If this fails, we simply bail,
111 	 * and proceed with KASLR disabled. We will make another
112 	 * attempt at mapping the FDT in setup_machine()
113 	 */
114 	early_fixmap_init();
115 	fdt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
116 	if (!fdt) {
117 		kaslr_status = KASLR_DISABLED_FDT_REMAP;
118 		return 0;
119 	}
120 
121 	/*
122 	 * Retrieve (and wipe) the seed from the FDT
123 	 */
124 	seed = get_kaslr_seed(fdt);
125 
126 	/*
127 	 * Check if 'nokaslr' appears on the command line, and
128 	 * return 0 if that is the case.
129 	 */
130 	if (is_kaslr_disabled_cmdline(fdt)) {
131 		kaslr_status = KASLR_DISABLED_CMDLINE;
132 		return 0;
133 	}
134 
135 	/*
136 	 * Mix in any entropy obtainable architecturally if enabled
137 	 * and supported.
138 	 */
139 
140 	if (arch_get_random_seed_long_early(&raw))
141 		seed ^= raw;
142 
143 	if (!seed) {
144 		kaslr_status = KASLR_DISABLED_NO_SEED;
145 		return 0;
146 	}
147 
148 	/*
149 	 * OK, so we are proceeding with KASLR enabled. Calculate a suitable
150 	 * kernel image offset from the seed. Let's place the kernel in the
151 	 * middle half of the VMALLOC area (VA_BITS_MIN - 2), and stay clear of
152 	 * the lower and upper quarters to avoid colliding with other
153 	 * allocations.
154 	 * Even if we could randomize at page granularity for 16k and 64k pages,
155 	 * let's always round to 2 MB so we don't interfere with the ability to
156 	 * map using contiguous PTEs
157 	 */
158 	mask = ((1UL << (VA_BITS_MIN - 2)) - 1) & ~(SZ_2M - 1);
159 	offset = BIT(VA_BITS_MIN - 3) + (seed & mask);
160 
161 	/* use the top 16 bits to randomize the linear region */
162 	memstart_offset_seed = seed >> 48;
163 
164 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
165 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
166 		/*
167 		 * KASAN does not expect the module region to intersect the
168 		 * vmalloc region, since shadow memory is allocated for each
169 		 * module at load time, whereas the vmalloc region is shadowed
170 		 * by KASAN zero pages. So keep modules out of the vmalloc
171 		 * region if KASAN is enabled, and put the kernel well within
172 		 * 4 GB of the module region.
173 		 */
174 		return offset % SZ_2G;
175 
176 	if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
177 		/*
178 		 * Randomize the module region over a 2 GB window covering the
179 		 * kernel. This reduces the risk of modules leaking information
180 		 * about the address of the kernel itself, but results in
181 		 * branches between modules and the core kernel that are
182 		 * resolved via PLTs. (Branches between modules will be
183 		 * resolved normally.)
184 		 */
185 		module_range = SZ_2G - (u64)(_end - _stext);
186 		module_alloc_base = max((u64)_end + offset - SZ_2G,
187 					(u64)MODULES_VADDR);
188 	} else {
189 		/*
190 		 * Randomize the module region by setting module_alloc_base to
191 		 * a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE,
192 		 * _stext) . This guarantees that the resulting region still
193 		 * covers [_stext, _etext], and that all relative branches can
194 		 * be resolved without veneers.
195 		 */
196 		module_range = MODULES_VSIZE - (u64)(_etext - _stext);
197 		module_alloc_base = (u64)_etext + offset - MODULES_VSIZE;
198 	}
199 
200 	/* use the lower 21 bits to randomize the base of the module region */
201 	module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21;
202 	module_alloc_base &= PAGE_MASK;
203 
204 	__flush_dcache_area(&module_alloc_base, sizeof(module_alloc_base));
205 	__flush_dcache_area(&memstart_offset_seed, sizeof(memstart_offset_seed));
206 
207 	return offset;
208 }
209 
210 static int __init kaslr_init(void)
211 {
212 	switch (kaslr_status) {
213 	case KASLR_ENABLED:
214 		pr_info("KASLR enabled\n");
215 		break;
216 	case KASLR_DISABLED_CMDLINE:
217 		pr_info("KASLR disabled on command line\n");
218 		break;
219 	case KASLR_DISABLED_NO_SEED:
220 		pr_warn("KASLR disabled due to lack of seed\n");
221 		break;
222 	case KASLR_DISABLED_FDT_REMAP:
223 		pr_warn("KASLR disabled due to FDT remapping failure\n");
224 		break;
225 	}
226 
227 	return 0;
228 }
229 core_initcall(kaslr_init)
230