xref: /linux/arch/arm64/kernel/hw_breakpoint.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
3  * using the CPU's debug registers.
4  *
5  * Copyright (C) 2012 ARM Limited
6  * Author: Will Deacon <will.deacon@arm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #define pr_fmt(fmt) "hw-breakpoint: " fmt
22 
23 #include <linux/compat.h>
24 #include <linux/cpu_pm.h>
25 #include <linux/errno.h>
26 #include <linux/hw_breakpoint.h>
27 #include <linux/kprobes.h>
28 #include <linux/perf_event.h>
29 #include <linux/ptrace.h>
30 #include <linux/smp.h>
31 
32 #include <asm/compat.h>
33 #include <asm/current.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/hw_breakpoint.h>
36 #include <asm/traps.h>
37 #include <asm/cputype.h>
38 #include <asm/system_misc.h>
39 
40 /* Breakpoint currently in use for each BRP. */
41 static DEFINE_PER_CPU(struct perf_event *, bp_on_reg[ARM_MAX_BRP]);
42 
43 /* Watchpoint currently in use for each WRP. */
44 static DEFINE_PER_CPU(struct perf_event *, wp_on_reg[ARM_MAX_WRP]);
45 
46 /* Currently stepping a per-CPU kernel breakpoint. */
47 static DEFINE_PER_CPU(int, stepping_kernel_bp);
48 
49 /* Number of BRP/WRP registers on this CPU. */
50 static int core_num_brps;
51 static int core_num_wrps;
52 
53 int hw_breakpoint_slots(int type)
54 {
55 	/*
56 	 * We can be called early, so don't rely on
57 	 * our static variables being initialised.
58 	 */
59 	switch (type) {
60 	case TYPE_INST:
61 		return get_num_brps();
62 	case TYPE_DATA:
63 		return get_num_wrps();
64 	default:
65 		pr_warning("unknown slot type: %d\n", type);
66 		return 0;
67 	}
68 }
69 
70 #define READ_WB_REG_CASE(OFF, N, REG, VAL)	\
71 	case (OFF + N):				\
72 		AARCH64_DBG_READ(N, REG, VAL);	\
73 		break
74 
75 #define WRITE_WB_REG_CASE(OFF, N, REG, VAL)	\
76 	case (OFF + N):				\
77 		AARCH64_DBG_WRITE(N, REG, VAL);	\
78 		break
79 
80 #define GEN_READ_WB_REG_CASES(OFF, REG, VAL)	\
81 	READ_WB_REG_CASE(OFF,  0, REG, VAL);	\
82 	READ_WB_REG_CASE(OFF,  1, REG, VAL);	\
83 	READ_WB_REG_CASE(OFF,  2, REG, VAL);	\
84 	READ_WB_REG_CASE(OFF,  3, REG, VAL);	\
85 	READ_WB_REG_CASE(OFF,  4, REG, VAL);	\
86 	READ_WB_REG_CASE(OFF,  5, REG, VAL);	\
87 	READ_WB_REG_CASE(OFF,  6, REG, VAL);	\
88 	READ_WB_REG_CASE(OFF,  7, REG, VAL);	\
89 	READ_WB_REG_CASE(OFF,  8, REG, VAL);	\
90 	READ_WB_REG_CASE(OFF,  9, REG, VAL);	\
91 	READ_WB_REG_CASE(OFF, 10, REG, VAL);	\
92 	READ_WB_REG_CASE(OFF, 11, REG, VAL);	\
93 	READ_WB_REG_CASE(OFF, 12, REG, VAL);	\
94 	READ_WB_REG_CASE(OFF, 13, REG, VAL);	\
95 	READ_WB_REG_CASE(OFF, 14, REG, VAL);	\
96 	READ_WB_REG_CASE(OFF, 15, REG, VAL)
97 
98 #define GEN_WRITE_WB_REG_CASES(OFF, REG, VAL)	\
99 	WRITE_WB_REG_CASE(OFF,  0, REG, VAL);	\
100 	WRITE_WB_REG_CASE(OFF,  1, REG, VAL);	\
101 	WRITE_WB_REG_CASE(OFF,  2, REG, VAL);	\
102 	WRITE_WB_REG_CASE(OFF,  3, REG, VAL);	\
103 	WRITE_WB_REG_CASE(OFF,  4, REG, VAL);	\
104 	WRITE_WB_REG_CASE(OFF,  5, REG, VAL);	\
105 	WRITE_WB_REG_CASE(OFF,  6, REG, VAL);	\
106 	WRITE_WB_REG_CASE(OFF,  7, REG, VAL);	\
107 	WRITE_WB_REG_CASE(OFF,  8, REG, VAL);	\
108 	WRITE_WB_REG_CASE(OFF,  9, REG, VAL);	\
109 	WRITE_WB_REG_CASE(OFF, 10, REG, VAL);	\
110 	WRITE_WB_REG_CASE(OFF, 11, REG, VAL);	\
111 	WRITE_WB_REG_CASE(OFF, 12, REG, VAL);	\
112 	WRITE_WB_REG_CASE(OFF, 13, REG, VAL);	\
113 	WRITE_WB_REG_CASE(OFF, 14, REG, VAL);	\
114 	WRITE_WB_REG_CASE(OFF, 15, REG, VAL)
115 
116 static u64 read_wb_reg(int reg, int n)
117 {
118 	u64 val = 0;
119 
120 	switch (reg + n) {
121 	GEN_READ_WB_REG_CASES(AARCH64_DBG_REG_BVR, AARCH64_DBG_REG_NAME_BVR, val);
122 	GEN_READ_WB_REG_CASES(AARCH64_DBG_REG_BCR, AARCH64_DBG_REG_NAME_BCR, val);
123 	GEN_READ_WB_REG_CASES(AARCH64_DBG_REG_WVR, AARCH64_DBG_REG_NAME_WVR, val);
124 	GEN_READ_WB_REG_CASES(AARCH64_DBG_REG_WCR, AARCH64_DBG_REG_NAME_WCR, val);
125 	default:
126 		pr_warning("attempt to read from unknown breakpoint register %d\n", n);
127 	}
128 
129 	return val;
130 }
131 NOKPROBE_SYMBOL(read_wb_reg);
132 
133 static void write_wb_reg(int reg, int n, u64 val)
134 {
135 	switch (reg + n) {
136 	GEN_WRITE_WB_REG_CASES(AARCH64_DBG_REG_BVR, AARCH64_DBG_REG_NAME_BVR, val);
137 	GEN_WRITE_WB_REG_CASES(AARCH64_DBG_REG_BCR, AARCH64_DBG_REG_NAME_BCR, val);
138 	GEN_WRITE_WB_REG_CASES(AARCH64_DBG_REG_WVR, AARCH64_DBG_REG_NAME_WVR, val);
139 	GEN_WRITE_WB_REG_CASES(AARCH64_DBG_REG_WCR, AARCH64_DBG_REG_NAME_WCR, val);
140 	default:
141 		pr_warning("attempt to write to unknown breakpoint register %d\n", n);
142 	}
143 	isb();
144 }
145 NOKPROBE_SYMBOL(write_wb_reg);
146 
147 /*
148  * Convert a breakpoint privilege level to the corresponding exception
149  * level.
150  */
151 static enum dbg_active_el debug_exception_level(int privilege)
152 {
153 	switch (privilege) {
154 	case AARCH64_BREAKPOINT_EL0:
155 		return DBG_ACTIVE_EL0;
156 	case AARCH64_BREAKPOINT_EL1:
157 		return DBG_ACTIVE_EL1;
158 	default:
159 		pr_warning("invalid breakpoint privilege level %d\n", privilege);
160 		return -EINVAL;
161 	}
162 }
163 NOKPROBE_SYMBOL(debug_exception_level);
164 
165 enum hw_breakpoint_ops {
166 	HW_BREAKPOINT_INSTALL,
167 	HW_BREAKPOINT_UNINSTALL,
168 	HW_BREAKPOINT_RESTORE
169 };
170 
171 static int is_compat_bp(struct perf_event *bp)
172 {
173 	struct task_struct *tsk = bp->hw.target;
174 
175 	/*
176 	 * tsk can be NULL for per-cpu (non-ptrace) breakpoints.
177 	 * In this case, use the native interface, since we don't have
178 	 * the notion of a "compat CPU" and could end up relying on
179 	 * deprecated behaviour if we use unaligned watchpoints in
180 	 * AArch64 state.
181 	 */
182 	return tsk && is_compat_thread(task_thread_info(tsk));
183 }
184 
185 /**
186  * hw_breakpoint_slot_setup - Find and setup a perf slot according to
187  *			      operations
188  *
189  * @slots: pointer to array of slots
190  * @max_slots: max number of slots
191  * @bp: perf_event to setup
192  * @ops: operation to be carried out on the slot
193  *
194  * Return:
195  *	slot index on success
196  *	-ENOSPC if no slot is available/matches
197  *	-EINVAL on wrong operations parameter
198  */
199 static int hw_breakpoint_slot_setup(struct perf_event **slots, int max_slots,
200 				    struct perf_event *bp,
201 				    enum hw_breakpoint_ops ops)
202 {
203 	int i;
204 	struct perf_event **slot;
205 
206 	for (i = 0; i < max_slots; ++i) {
207 		slot = &slots[i];
208 		switch (ops) {
209 		case HW_BREAKPOINT_INSTALL:
210 			if (!*slot) {
211 				*slot = bp;
212 				return i;
213 			}
214 			break;
215 		case HW_BREAKPOINT_UNINSTALL:
216 			if (*slot == bp) {
217 				*slot = NULL;
218 				return i;
219 			}
220 			break;
221 		case HW_BREAKPOINT_RESTORE:
222 			if (*slot == bp)
223 				return i;
224 			break;
225 		default:
226 			pr_warn_once("Unhandled hw breakpoint ops %d\n", ops);
227 			return -EINVAL;
228 		}
229 	}
230 	return -ENOSPC;
231 }
232 
233 static int hw_breakpoint_control(struct perf_event *bp,
234 				 enum hw_breakpoint_ops ops)
235 {
236 	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
237 	struct perf_event **slots;
238 	struct debug_info *debug_info = &current->thread.debug;
239 	int i, max_slots, ctrl_reg, val_reg, reg_enable;
240 	enum dbg_active_el dbg_el = debug_exception_level(info->ctrl.privilege);
241 	u32 ctrl;
242 
243 	if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
244 		/* Breakpoint */
245 		ctrl_reg = AARCH64_DBG_REG_BCR;
246 		val_reg = AARCH64_DBG_REG_BVR;
247 		slots = this_cpu_ptr(bp_on_reg);
248 		max_slots = core_num_brps;
249 		reg_enable = !debug_info->bps_disabled;
250 	} else {
251 		/* Watchpoint */
252 		ctrl_reg = AARCH64_DBG_REG_WCR;
253 		val_reg = AARCH64_DBG_REG_WVR;
254 		slots = this_cpu_ptr(wp_on_reg);
255 		max_slots = core_num_wrps;
256 		reg_enable = !debug_info->wps_disabled;
257 	}
258 
259 	i = hw_breakpoint_slot_setup(slots, max_slots, bp, ops);
260 
261 	if (WARN_ONCE(i < 0, "Can't find any breakpoint slot"))
262 		return i;
263 
264 	switch (ops) {
265 	case HW_BREAKPOINT_INSTALL:
266 		/*
267 		 * Ensure debug monitors are enabled at the correct exception
268 		 * level.
269 		 */
270 		enable_debug_monitors(dbg_el);
271 		/* Fall through */
272 	case HW_BREAKPOINT_RESTORE:
273 		/* Setup the address register. */
274 		write_wb_reg(val_reg, i, info->address);
275 
276 		/* Setup the control register. */
277 		ctrl = encode_ctrl_reg(info->ctrl);
278 		write_wb_reg(ctrl_reg, i,
279 			     reg_enable ? ctrl | 0x1 : ctrl & ~0x1);
280 		break;
281 	case HW_BREAKPOINT_UNINSTALL:
282 		/* Reset the control register. */
283 		write_wb_reg(ctrl_reg, i, 0);
284 
285 		/*
286 		 * Release the debug monitors for the correct exception
287 		 * level.
288 		 */
289 		disable_debug_monitors(dbg_el);
290 		break;
291 	}
292 
293 	return 0;
294 }
295 
296 /*
297  * Install a perf counter breakpoint.
298  */
299 int arch_install_hw_breakpoint(struct perf_event *bp)
300 {
301 	return hw_breakpoint_control(bp, HW_BREAKPOINT_INSTALL);
302 }
303 
304 void arch_uninstall_hw_breakpoint(struct perf_event *bp)
305 {
306 	hw_breakpoint_control(bp, HW_BREAKPOINT_UNINSTALL);
307 }
308 
309 static int get_hbp_len(u8 hbp_len)
310 {
311 	unsigned int len_in_bytes = 0;
312 
313 	switch (hbp_len) {
314 	case ARM_BREAKPOINT_LEN_1:
315 		len_in_bytes = 1;
316 		break;
317 	case ARM_BREAKPOINT_LEN_2:
318 		len_in_bytes = 2;
319 		break;
320 	case ARM_BREAKPOINT_LEN_3:
321 		len_in_bytes = 3;
322 		break;
323 	case ARM_BREAKPOINT_LEN_4:
324 		len_in_bytes = 4;
325 		break;
326 	case ARM_BREAKPOINT_LEN_5:
327 		len_in_bytes = 5;
328 		break;
329 	case ARM_BREAKPOINT_LEN_6:
330 		len_in_bytes = 6;
331 		break;
332 	case ARM_BREAKPOINT_LEN_7:
333 		len_in_bytes = 7;
334 		break;
335 	case ARM_BREAKPOINT_LEN_8:
336 		len_in_bytes = 8;
337 		break;
338 	}
339 
340 	return len_in_bytes;
341 }
342 
343 /*
344  * Check whether bp virtual address is in kernel space.
345  */
346 int arch_check_bp_in_kernelspace(struct perf_event *bp)
347 {
348 	unsigned int len;
349 	unsigned long va;
350 	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
351 
352 	va = info->address;
353 	len = get_hbp_len(info->ctrl.len);
354 
355 	return (va >= TASK_SIZE) && ((va + len - 1) >= TASK_SIZE);
356 }
357 
358 /*
359  * Extract generic type and length encodings from an arch_hw_breakpoint_ctrl.
360  * Hopefully this will disappear when ptrace can bypass the conversion
361  * to generic breakpoint descriptions.
362  */
363 int arch_bp_generic_fields(struct arch_hw_breakpoint_ctrl ctrl,
364 			   int *gen_len, int *gen_type, int *offset)
365 {
366 	/* Type */
367 	switch (ctrl.type) {
368 	case ARM_BREAKPOINT_EXECUTE:
369 		*gen_type = HW_BREAKPOINT_X;
370 		break;
371 	case ARM_BREAKPOINT_LOAD:
372 		*gen_type = HW_BREAKPOINT_R;
373 		break;
374 	case ARM_BREAKPOINT_STORE:
375 		*gen_type = HW_BREAKPOINT_W;
376 		break;
377 	case ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE:
378 		*gen_type = HW_BREAKPOINT_RW;
379 		break;
380 	default:
381 		return -EINVAL;
382 	}
383 
384 	if (!ctrl.len)
385 		return -EINVAL;
386 	*offset = __ffs(ctrl.len);
387 
388 	/* Len */
389 	switch (ctrl.len >> *offset) {
390 	case ARM_BREAKPOINT_LEN_1:
391 		*gen_len = HW_BREAKPOINT_LEN_1;
392 		break;
393 	case ARM_BREAKPOINT_LEN_2:
394 		*gen_len = HW_BREAKPOINT_LEN_2;
395 		break;
396 	case ARM_BREAKPOINT_LEN_3:
397 		*gen_len = HW_BREAKPOINT_LEN_3;
398 		break;
399 	case ARM_BREAKPOINT_LEN_4:
400 		*gen_len = HW_BREAKPOINT_LEN_4;
401 		break;
402 	case ARM_BREAKPOINT_LEN_5:
403 		*gen_len = HW_BREAKPOINT_LEN_5;
404 		break;
405 	case ARM_BREAKPOINT_LEN_6:
406 		*gen_len = HW_BREAKPOINT_LEN_6;
407 		break;
408 	case ARM_BREAKPOINT_LEN_7:
409 		*gen_len = HW_BREAKPOINT_LEN_7;
410 		break;
411 	case ARM_BREAKPOINT_LEN_8:
412 		*gen_len = HW_BREAKPOINT_LEN_8;
413 		break;
414 	default:
415 		return -EINVAL;
416 	}
417 
418 	return 0;
419 }
420 
421 /*
422  * Construct an arch_hw_breakpoint from a perf_event.
423  */
424 static int arch_build_bp_info(struct perf_event *bp)
425 {
426 	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
427 
428 	/* Type */
429 	switch (bp->attr.bp_type) {
430 	case HW_BREAKPOINT_X:
431 		info->ctrl.type = ARM_BREAKPOINT_EXECUTE;
432 		break;
433 	case HW_BREAKPOINT_R:
434 		info->ctrl.type = ARM_BREAKPOINT_LOAD;
435 		break;
436 	case HW_BREAKPOINT_W:
437 		info->ctrl.type = ARM_BREAKPOINT_STORE;
438 		break;
439 	case HW_BREAKPOINT_RW:
440 		info->ctrl.type = ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE;
441 		break;
442 	default:
443 		return -EINVAL;
444 	}
445 
446 	/* Len */
447 	switch (bp->attr.bp_len) {
448 	case HW_BREAKPOINT_LEN_1:
449 		info->ctrl.len = ARM_BREAKPOINT_LEN_1;
450 		break;
451 	case HW_BREAKPOINT_LEN_2:
452 		info->ctrl.len = ARM_BREAKPOINT_LEN_2;
453 		break;
454 	case HW_BREAKPOINT_LEN_3:
455 		info->ctrl.len = ARM_BREAKPOINT_LEN_3;
456 		break;
457 	case HW_BREAKPOINT_LEN_4:
458 		info->ctrl.len = ARM_BREAKPOINT_LEN_4;
459 		break;
460 	case HW_BREAKPOINT_LEN_5:
461 		info->ctrl.len = ARM_BREAKPOINT_LEN_5;
462 		break;
463 	case HW_BREAKPOINT_LEN_6:
464 		info->ctrl.len = ARM_BREAKPOINT_LEN_6;
465 		break;
466 	case HW_BREAKPOINT_LEN_7:
467 		info->ctrl.len = ARM_BREAKPOINT_LEN_7;
468 		break;
469 	case HW_BREAKPOINT_LEN_8:
470 		info->ctrl.len = ARM_BREAKPOINT_LEN_8;
471 		break;
472 	default:
473 		return -EINVAL;
474 	}
475 
476 	/*
477 	 * On AArch64, we only permit breakpoints of length 4, whereas
478 	 * AArch32 also requires breakpoints of length 2 for Thumb.
479 	 * Watchpoints can be of length 1, 2, 4 or 8 bytes.
480 	 */
481 	if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
482 		if (is_compat_bp(bp)) {
483 			if (info->ctrl.len != ARM_BREAKPOINT_LEN_2 &&
484 			    info->ctrl.len != ARM_BREAKPOINT_LEN_4)
485 				return -EINVAL;
486 		} else if (info->ctrl.len != ARM_BREAKPOINT_LEN_4) {
487 			/*
488 			 * FIXME: Some tools (I'm looking at you perf) assume
489 			 *	  that breakpoints should be sizeof(long). This
490 			 *	  is nonsense. For now, we fix up the parameter
491 			 *	  but we should probably return -EINVAL instead.
492 			 */
493 			info->ctrl.len = ARM_BREAKPOINT_LEN_4;
494 		}
495 	}
496 
497 	/* Address */
498 	info->address = bp->attr.bp_addr;
499 
500 	/*
501 	 * Privilege
502 	 * Note that we disallow combined EL0/EL1 breakpoints because
503 	 * that would complicate the stepping code.
504 	 */
505 	if (arch_check_bp_in_kernelspace(bp))
506 		info->ctrl.privilege = AARCH64_BREAKPOINT_EL1;
507 	else
508 		info->ctrl.privilege = AARCH64_BREAKPOINT_EL0;
509 
510 	/* Enabled? */
511 	info->ctrl.enabled = !bp->attr.disabled;
512 
513 	return 0;
514 }
515 
516 /*
517  * Validate the arch-specific HW Breakpoint register settings.
518  */
519 int arch_validate_hwbkpt_settings(struct perf_event *bp)
520 {
521 	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
522 	int ret;
523 	u64 alignment_mask, offset;
524 
525 	/* Build the arch_hw_breakpoint. */
526 	ret = arch_build_bp_info(bp);
527 	if (ret)
528 		return ret;
529 
530 	/*
531 	 * Check address alignment.
532 	 * We don't do any clever alignment correction for watchpoints
533 	 * because using 64-bit unaligned addresses is deprecated for
534 	 * AArch64.
535 	 *
536 	 * AArch32 tasks expect some simple alignment fixups, so emulate
537 	 * that here.
538 	 */
539 	if (is_compat_bp(bp)) {
540 		if (info->ctrl.len == ARM_BREAKPOINT_LEN_8)
541 			alignment_mask = 0x7;
542 		else
543 			alignment_mask = 0x3;
544 		offset = info->address & alignment_mask;
545 		switch (offset) {
546 		case 0:
547 			/* Aligned */
548 			break;
549 		case 1:
550 			/* Allow single byte watchpoint. */
551 			if (info->ctrl.len == ARM_BREAKPOINT_LEN_1)
552 				break;
553 		case 2:
554 			/* Allow halfword watchpoints and breakpoints. */
555 			if (info->ctrl.len == ARM_BREAKPOINT_LEN_2)
556 				break;
557 		default:
558 			return -EINVAL;
559 		}
560 	} else {
561 		if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE)
562 			alignment_mask = 0x3;
563 		else
564 			alignment_mask = 0x7;
565 		offset = info->address & alignment_mask;
566 	}
567 
568 	info->address &= ~alignment_mask;
569 	info->ctrl.len <<= offset;
570 
571 	/*
572 	 * Disallow per-task kernel breakpoints since these would
573 	 * complicate the stepping code.
574 	 */
575 	if (info->ctrl.privilege == AARCH64_BREAKPOINT_EL1 && bp->hw.target)
576 		return -EINVAL;
577 
578 	return 0;
579 }
580 
581 /*
582  * Enable/disable all of the breakpoints active at the specified
583  * exception level at the register level.
584  * This is used when single-stepping after a breakpoint exception.
585  */
586 static void toggle_bp_registers(int reg, enum dbg_active_el el, int enable)
587 {
588 	int i, max_slots, privilege;
589 	u32 ctrl;
590 	struct perf_event **slots;
591 
592 	switch (reg) {
593 	case AARCH64_DBG_REG_BCR:
594 		slots = this_cpu_ptr(bp_on_reg);
595 		max_slots = core_num_brps;
596 		break;
597 	case AARCH64_DBG_REG_WCR:
598 		slots = this_cpu_ptr(wp_on_reg);
599 		max_slots = core_num_wrps;
600 		break;
601 	default:
602 		return;
603 	}
604 
605 	for (i = 0; i < max_slots; ++i) {
606 		if (!slots[i])
607 			continue;
608 
609 		privilege = counter_arch_bp(slots[i])->ctrl.privilege;
610 		if (debug_exception_level(privilege) != el)
611 			continue;
612 
613 		ctrl = read_wb_reg(reg, i);
614 		if (enable)
615 			ctrl |= 0x1;
616 		else
617 			ctrl &= ~0x1;
618 		write_wb_reg(reg, i, ctrl);
619 	}
620 }
621 NOKPROBE_SYMBOL(toggle_bp_registers);
622 
623 /*
624  * Debug exception handlers.
625  */
626 static int breakpoint_handler(unsigned long unused, unsigned int esr,
627 			      struct pt_regs *regs)
628 {
629 	int i, step = 0, *kernel_step;
630 	u32 ctrl_reg;
631 	u64 addr, val;
632 	struct perf_event *bp, **slots;
633 	struct debug_info *debug_info;
634 	struct arch_hw_breakpoint_ctrl ctrl;
635 
636 	slots = this_cpu_ptr(bp_on_reg);
637 	addr = instruction_pointer(regs);
638 	debug_info = &current->thread.debug;
639 
640 	for (i = 0; i < core_num_brps; ++i) {
641 		rcu_read_lock();
642 
643 		bp = slots[i];
644 
645 		if (bp == NULL)
646 			goto unlock;
647 
648 		/* Check if the breakpoint value matches. */
649 		val = read_wb_reg(AARCH64_DBG_REG_BVR, i);
650 		if (val != (addr & ~0x3))
651 			goto unlock;
652 
653 		/* Possible match, check the byte address select to confirm. */
654 		ctrl_reg = read_wb_reg(AARCH64_DBG_REG_BCR, i);
655 		decode_ctrl_reg(ctrl_reg, &ctrl);
656 		if (!((1 << (addr & 0x3)) & ctrl.len))
657 			goto unlock;
658 
659 		counter_arch_bp(bp)->trigger = addr;
660 		perf_bp_event(bp, regs);
661 
662 		/* Do we need to handle the stepping? */
663 		if (is_default_overflow_handler(bp))
664 			step = 1;
665 unlock:
666 		rcu_read_unlock();
667 	}
668 
669 	if (!step)
670 		return 0;
671 
672 	if (user_mode(regs)) {
673 		debug_info->bps_disabled = 1;
674 		toggle_bp_registers(AARCH64_DBG_REG_BCR, DBG_ACTIVE_EL0, 0);
675 
676 		/* If we're already stepping a watchpoint, just return. */
677 		if (debug_info->wps_disabled)
678 			return 0;
679 
680 		if (test_thread_flag(TIF_SINGLESTEP))
681 			debug_info->suspended_step = 1;
682 		else
683 			user_enable_single_step(current);
684 	} else {
685 		toggle_bp_registers(AARCH64_DBG_REG_BCR, DBG_ACTIVE_EL1, 0);
686 		kernel_step = this_cpu_ptr(&stepping_kernel_bp);
687 
688 		if (*kernel_step != ARM_KERNEL_STEP_NONE)
689 			return 0;
690 
691 		if (kernel_active_single_step()) {
692 			*kernel_step = ARM_KERNEL_STEP_SUSPEND;
693 		} else {
694 			*kernel_step = ARM_KERNEL_STEP_ACTIVE;
695 			kernel_enable_single_step(regs);
696 		}
697 	}
698 
699 	return 0;
700 }
701 NOKPROBE_SYMBOL(breakpoint_handler);
702 
703 /*
704  * Arm64 hardware does not always report a watchpoint hit address that matches
705  * one of the watchpoints set. It can also report an address "near" the
706  * watchpoint if a single instruction access both watched and unwatched
707  * addresses. There is no straight-forward way, short of disassembling the
708  * offending instruction, to map that address back to the watchpoint. This
709  * function computes the distance of the memory access from the watchpoint as a
710  * heuristic for the likelyhood that a given access triggered the watchpoint.
711  *
712  * See Section D2.10.5 "Determining the memory location that caused a Watchpoint
713  * exception" of ARMv8 Architecture Reference Manual for details.
714  *
715  * The function returns the distance of the address from the bytes watched by
716  * the watchpoint. In case of an exact match, it returns 0.
717  */
718 static u64 get_distance_from_watchpoint(unsigned long addr, u64 val,
719 					struct arch_hw_breakpoint_ctrl *ctrl)
720 {
721 	u64 wp_low, wp_high;
722 	u32 lens, lene;
723 
724 	lens = __ffs(ctrl->len);
725 	lene = __fls(ctrl->len);
726 
727 	wp_low = val + lens;
728 	wp_high = val + lene;
729 	if (addr < wp_low)
730 		return wp_low - addr;
731 	else if (addr > wp_high)
732 		return addr - wp_high;
733 	else
734 		return 0;
735 }
736 
737 static int watchpoint_handler(unsigned long addr, unsigned int esr,
738 			      struct pt_regs *regs)
739 {
740 	int i, step = 0, *kernel_step, access, closest_match = 0;
741 	u64 min_dist = -1, dist;
742 	u32 ctrl_reg;
743 	u64 val;
744 	struct perf_event *wp, **slots;
745 	struct debug_info *debug_info;
746 	struct arch_hw_breakpoint *info;
747 	struct arch_hw_breakpoint_ctrl ctrl;
748 
749 	slots = this_cpu_ptr(wp_on_reg);
750 	debug_info = &current->thread.debug;
751 
752 	/*
753 	 * Find all watchpoints that match the reported address. If no exact
754 	 * match is found. Attribute the hit to the closest watchpoint.
755 	 */
756 	rcu_read_lock();
757 	for (i = 0; i < core_num_wrps; ++i) {
758 		wp = slots[i];
759 		if (wp == NULL)
760 			continue;
761 
762 		/*
763 		 * Check that the access type matches.
764 		 * 0 => load, otherwise => store
765 		 */
766 		access = (esr & AARCH64_ESR_ACCESS_MASK) ? HW_BREAKPOINT_W :
767 			 HW_BREAKPOINT_R;
768 		if (!(access & hw_breakpoint_type(wp)))
769 			continue;
770 
771 		/* Check if the watchpoint value and byte select match. */
772 		val = read_wb_reg(AARCH64_DBG_REG_WVR, i);
773 		ctrl_reg = read_wb_reg(AARCH64_DBG_REG_WCR, i);
774 		decode_ctrl_reg(ctrl_reg, &ctrl);
775 		dist = get_distance_from_watchpoint(addr, val, &ctrl);
776 		if (dist < min_dist) {
777 			min_dist = dist;
778 			closest_match = i;
779 		}
780 		/* Is this an exact match? */
781 		if (dist != 0)
782 			continue;
783 
784 		info = counter_arch_bp(wp);
785 		info->trigger = addr;
786 		perf_bp_event(wp, regs);
787 
788 		/* Do we need to handle the stepping? */
789 		if (is_default_overflow_handler(wp))
790 			step = 1;
791 	}
792 	if (min_dist > 0 && min_dist != -1) {
793 		/* No exact match found. */
794 		wp = slots[closest_match];
795 		info = counter_arch_bp(wp);
796 		info->trigger = addr;
797 		perf_bp_event(wp, regs);
798 
799 		/* Do we need to handle the stepping? */
800 		if (is_default_overflow_handler(wp))
801 			step = 1;
802 	}
803 	rcu_read_unlock();
804 
805 	if (!step)
806 		return 0;
807 
808 	/*
809 	 * We always disable EL0 watchpoints because the kernel can
810 	 * cause these to fire via an unprivileged access.
811 	 */
812 	toggle_bp_registers(AARCH64_DBG_REG_WCR, DBG_ACTIVE_EL0, 0);
813 
814 	if (user_mode(regs)) {
815 		debug_info->wps_disabled = 1;
816 
817 		/* If we're already stepping a breakpoint, just return. */
818 		if (debug_info->bps_disabled)
819 			return 0;
820 
821 		if (test_thread_flag(TIF_SINGLESTEP))
822 			debug_info->suspended_step = 1;
823 		else
824 			user_enable_single_step(current);
825 	} else {
826 		toggle_bp_registers(AARCH64_DBG_REG_WCR, DBG_ACTIVE_EL1, 0);
827 		kernel_step = this_cpu_ptr(&stepping_kernel_bp);
828 
829 		if (*kernel_step != ARM_KERNEL_STEP_NONE)
830 			return 0;
831 
832 		if (kernel_active_single_step()) {
833 			*kernel_step = ARM_KERNEL_STEP_SUSPEND;
834 		} else {
835 			*kernel_step = ARM_KERNEL_STEP_ACTIVE;
836 			kernel_enable_single_step(regs);
837 		}
838 	}
839 
840 	return 0;
841 }
842 NOKPROBE_SYMBOL(watchpoint_handler);
843 
844 /*
845  * Handle single-step exception.
846  */
847 int reinstall_suspended_bps(struct pt_regs *regs)
848 {
849 	struct debug_info *debug_info = &current->thread.debug;
850 	int handled_exception = 0, *kernel_step;
851 
852 	kernel_step = this_cpu_ptr(&stepping_kernel_bp);
853 
854 	/*
855 	 * Called from single-step exception handler.
856 	 * Return 0 if execution can resume, 1 if a SIGTRAP should be
857 	 * reported.
858 	 */
859 	if (user_mode(regs)) {
860 		if (debug_info->bps_disabled) {
861 			debug_info->bps_disabled = 0;
862 			toggle_bp_registers(AARCH64_DBG_REG_BCR, DBG_ACTIVE_EL0, 1);
863 			handled_exception = 1;
864 		}
865 
866 		if (debug_info->wps_disabled) {
867 			debug_info->wps_disabled = 0;
868 			toggle_bp_registers(AARCH64_DBG_REG_WCR, DBG_ACTIVE_EL0, 1);
869 			handled_exception = 1;
870 		}
871 
872 		if (handled_exception) {
873 			if (debug_info->suspended_step) {
874 				debug_info->suspended_step = 0;
875 				/* Allow exception handling to fall-through. */
876 				handled_exception = 0;
877 			} else {
878 				user_disable_single_step(current);
879 			}
880 		}
881 	} else if (*kernel_step != ARM_KERNEL_STEP_NONE) {
882 		toggle_bp_registers(AARCH64_DBG_REG_BCR, DBG_ACTIVE_EL1, 1);
883 		toggle_bp_registers(AARCH64_DBG_REG_WCR, DBG_ACTIVE_EL1, 1);
884 
885 		if (!debug_info->wps_disabled)
886 			toggle_bp_registers(AARCH64_DBG_REG_WCR, DBG_ACTIVE_EL0, 1);
887 
888 		if (*kernel_step != ARM_KERNEL_STEP_SUSPEND) {
889 			kernel_disable_single_step();
890 			handled_exception = 1;
891 		} else {
892 			handled_exception = 0;
893 		}
894 
895 		*kernel_step = ARM_KERNEL_STEP_NONE;
896 	}
897 
898 	return !handled_exception;
899 }
900 NOKPROBE_SYMBOL(reinstall_suspended_bps);
901 
902 /*
903  * Context-switcher for restoring suspended breakpoints.
904  */
905 void hw_breakpoint_thread_switch(struct task_struct *next)
906 {
907 	/*
908 	 *           current        next
909 	 * disabled: 0              0     => The usual case, NOTIFY_DONE
910 	 *           0              1     => Disable the registers
911 	 *           1              0     => Enable the registers
912 	 *           1              1     => NOTIFY_DONE. per-task bps will
913 	 *                                   get taken care of by perf.
914 	 */
915 
916 	struct debug_info *current_debug_info, *next_debug_info;
917 
918 	current_debug_info = &current->thread.debug;
919 	next_debug_info = &next->thread.debug;
920 
921 	/* Update breakpoints. */
922 	if (current_debug_info->bps_disabled != next_debug_info->bps_disabled)
923 		toggle_bp_registers(AARCH64_DBG_REG_BCR,
924 				    DBG_ACTIVE_EL0,
925 				    !next_debug_info->bps_disabled);
926 
927 	/* Update watchpoints. */
928 	if (current_debug_info->wps_disabled != next_debug_info->wps_disabled)
929 		toggle_bp_registers(AARCH64_DBG_REG_WCR,
930 				    DBG_ACTIVE_EL0,
931 				    !next_debug_info->wps_disabled);
932 }
933 
934 /*
935  * CPU initialisation.
936  */
937 static int hw_breakpoint_reset(unsigned int cpu)
938 {
939 	int i;
940 	struct perf_event **slots;
941 	/*
942 	 * When a CPU goes through cold-boot, it does not have any installed
943 	 * slot, so it is safe to share the same function for restoring and
944 	 * resetting breakpoints; when a CPU is hotplugged in, it goes
945 	 * through the slots, which are all empty, hence it just resets control
946 	 * and value for debug registers.
947 	 * When this function is triggered on warm-boot through a CPU PM
948 	 * notifier some slots might be initialized; if so they are
949 	 * reprogrammed according to the debug slots content.
950 	 */
951 	for (slots = this_cpu_ptr(bp_on_reg), i = 0; i < core_num_brps; ++i) {
952 		if (slots[i]) {
953 			hw_breakpoint_control(slots[i], HW_BREAKPOINT_RESTORE);
954 		} else {
955 			write_wb_reg(AARCH64_DBG_REG_BCR, i, 0UL);
956 			write_wb_reg(AARCH64_DBG_REG_BVR, i, 0UL);
957 		}
958 	}
959 
960 	for (slots = this_cpu_ptr(wp_on_reg), i = 0; i < core_num_wrps; ++i) {
961 		if (slots[i]) {
962 			hw_breakpoint_control(slots[i], HW_BREAKPOINT_RESTORE);
963 		} else {
964 			write_wb_reg(AARCH64_DBG_REG_WCR, i, 0UL);
965 			write_wb_reg(AARCH64_DBG_REG_WVR, i, 0UL);
966 		}
967 	}
968 
969 	return 0;
970 }
971 
972 #ifdef CONFIG_CPU_PM
973 extern void cpu_suspend_set_dbg_restorer(int (*hw_bp_restore)(unsigned int));
974 #else
975 static inline void cpu_suspend_set_dbg_restorer(int (*hw_bp_restore)(unsigned int))
976 {
977 }
978 #endif
979 
980 /*
981  * One-time initialisation.
982  */
983 static int __init arch_hw_breakpoint_init(void)
984 {
985 	int ret;
986 
987 	core_num_brps = get_num_brps();
988 	core_num_wrps = get_num_wrps();
989 
990 	pr_info("found %d breakpoint and %d watchpoint registers.\n",
991 		core_num_brps, core_num_wrps);
992 
993 	/* Register debug fault handlers. */
994 	hook_debug_fault_code(DBG_ESR_EVT_HWBP, breakpoint_handler, SIGTRAP,
995 			      TRAP_HWBKPT, "hw-breakpoint handler");
996 	hook_debug_fault_code(DBG_ESR_EVT_HWWP, watchpoint_handler, SIGTRAP,
997 			      TRAP_HWBKPT, "hw-watchpoint handler");
998 
999 	/*
1000 	 * Reset the breakpoint resources. We assume that a halting
1001 	 * debugger will leave the world in a nice state for us.
1002 	 */
1003 	ret = cpuhp_setup_state(CPUHP_AP_PERF_ARM_HW_BREAKPOINT_STARTING,
1004 			  "perf/arm64/hw_breakpoint:starting",
1005 			  hw_breakpoint_reset, NULL);
1006 	if (ret)
1007 		pr_err("failed to register CPU hotplug notifier: %d\n", ret);
1008 
1009 	/* Register cpu_suspend hw breakpoint restore hook */
1010 	cpu_suspend_set_dbg_restorer(hw_breakpoint_reset);
1011 
1012 	return ret;
1013 }
1014 arch_initcall(arch_hw_breakpoint_init);
1015 
1016 void hw_breakpoint_pmu_read(struct perf_event *bp)
1017 {
1018 }
1019 
1020 /*
1021  * Dummy function to register with die_notifier.
1022  */
1023 int hw_breakpoint_exceptions_notify(struct notifier_block *unused,
1024 				    unsigned long val, void *data)
1025 {
1026 	return NOTIFY_DONE;
1027 }
1028