1 // SPDX-License-Identifier: GPL-2.0-only 2 /*: 3 * Hibernate support specific for ARM64 4 * 5 * Derived from work on ARM hibernation support by: 6 * 7 * Ubuntu project, hibernation support for mach-dove 8 * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu) 9 * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.) 10 * https://lkml.org/lkml/2010/6/18/4 11 * https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html 12 * https://patchwork.kernel.org/patch/96442/ 13 * 14 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 15 */ 16 #define pr_fmt(x) "hibernate: " x 17 #include <linux/cpu.h> 18 #include <linux/kvm_host.h> 19 #include <linux/pm.h> 20 #include <linux/sched.h> 21 #include <linux/suspend.h> 22 #include <linux/utsname.h> 23 24 #include <asm/barrier.h> 25 #include <asm/cacheflush.h> 26 #include <asm/cputype.h> 27 #include <asm/daifflags.h> 28 #include <asm/irqflags.h> 29 #include <asm/kexec.h> 30 #include <asm/memory.h> 31 #include <asm/mmu_context.h> 32 #include <asm/mte.h> 33 #include <asm/sections.h> 34 #include <asm/smp.h> 35 #include <asm/smp_plat.h> 36 #include <asm/suspend.h> 37 #include <asm/sysreg.h> 38 #include <asm/trans_pgd.h> 39 #include <asm/virt.h> 40 41 /* 42 * Hibernate core relies on this value being 0 on resume, and marks it 43 * __nosavedata assuming it will keep the resume kernel's '0' value. This 44 * doesn't happen with either KASLR. 45 * 46 * defined as "__visible int in_suspend __nosavedata" in 47 * kernel/power/hibernate.c 48 */ 49 extern int in_suspend; 50 51 /* Do we need to reset el2? */ 52 #define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode()) 53 54 /* temporary el2 vectors in the __hibernate_exit_text section. */ 55 extern char hibernate_el2_vectors[]; 56 57 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */ 58 extern char __hyp_stub_vectors[]; 59 60 /* 61 * The logical cpu number we should resume on, initialised to a non-cpu 62 * number. 63 */ 64 static int sleep_cpu = -EINVAL; 65 66 /* 67 * Values that may not change over hibernate/resume. We put the build number 68 * and date in here so that we guarantee not to resume with a different 69 * kernel. 70 */ 71 struct arch_hibernate_hdr_invariants { 72 char uts_version[__NEW_UTS_LEN + 1]; 73 }; 74 75 /* These values need to be know across a hibernate/restore. */ 76 static struct arch_hibernate_hdr { 77 struct arch_hibernate_hdr_invariants invariants; 78 79 /* These are needed to find the relocated kernel if built with kaslr */ 80 phys_addr_t ttbr1_el1; 81 void (*reenter_kernel)(void); 82 83 /* 84 * We need to know where the __hyp_stub_vectors are after restore to 85 * re-configure el2. 86 */ 87 phys_addr_t __hyp_stub_vectors; 88 89 u64 sleep_cpu_mpidr; 90 } resume_hdr; 91 92 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i) 93 { 94 memset(i, 0, sizeof(*i)); 95 memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version)); 96 } 97 98 int pfn_is_nosave(unsigned long pfn) 99 { 100 unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin); 101 unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1); 102 103 return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) || 104 crash_is_nosave(pfn); 105 } 106 107 void notrace save_processor_state(void) 108 { 109 WARN_ON(num_online_cpus() != 1); 110 } 111 112 void notrace restore_processor_state(void) 113 { 114 } 115 116 int arch_hibernation_header_save(void *addr, unsigned int max_size) 117 { 118 struct arch_hibernate_hdr *hdr = addr; 119 120 if (max_size < sizeof(*hdr)) 121 return -EOVERFLOW; 122 123 arch_hdr_invariants(&hdr->invariants); 124 hdr->ttbr1_el1 = __pa_symbol(swapper_pg_dir); 125 hdr->reenter_kernel = _cpu_resume; 126 127 /* We can't use __hyp_get_vectors() because kvm may still be loaded */ 128 if (el2_reset_needed()) 129 hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors); 130 else 131 hdr->__hyp_stub_vectors = 0; 132 133 /* Save the mpidr of the cpu we called cpu_suspend() on... */ 134 if (sleep_cpu < 0) { 135 pr_err("Failing to hibernate on an unknown CPU.\n"); 136 return -ENODEV; 137 } 138 hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu); 139 pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu, 140 hdr->sleep_cpu_mpidr); 141 142 return 0; 143 } 144 EXPORT_SYMBOL(arch_hibernation_header_save); 145 146 int arch_hibernation_header_restore(void *addr) 147 { 148 int ret; 149 struct arch_hibernate_hdr_invariants invariants; 150 struct arch_hibernate_hdr *hdr = addr; 151 152 arch_hdr_invariants(&invariants); 153 if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) { 154 pr_crit("Hibernate image not generated by this kernel!\n"); 155 return -EINVAL; 156 } 157 158 sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr); 159 pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu, 160 hdr->sleep_cpu_mpidr); 161 if (sleep_cpu < 0) { 162 pr_crit("Hibernated on a CPU not known to this kernel!\n"); 163 sleep_cpu = -EINVAL; 164 return -EINVAL; 165 } 166 167 ret = bringup_hibernate_cpu(sleep_cpu); 168 if (ret) { 169 sleep_cpu = -EINVAL; 170 return ret; 171 } 172 173 resume_hdr = *hdr; 174 175 return 0; 176 } 177 EXPORT_SYMBOL(arch_hibernation_header_restore); 178 179 static void *hibernate_page_alloc(void *arg) 180 { 181 return (void *)get_safe_page((__force gfp_t)(unsigned long)arg); 182 } 183 184 /* 185 * Copies length bytes, starting at src_start into an new page, 186 * perform cache maintenance, then maps it at the specified address low 187 * address as executable. 188 * 189 * This is used by hibernate to copy the code it needs to execute when 190 * overwriting the kernel text. This function generates a new set of page 191 * tables, which it loads into ttbr0. 192 * 193 * Length is provided as we probably only want 4K of data, even on a 64K 194 * page system. 195 */ 196 static int create_safe_exec_page(void *src_start, size_t length, 197 phys_addr_t *phys_dst_addr) 198 { 199 struct trans_pgd_info trans_info = { 200 .trans_alloc_page = hibernate_page_alloc, 201 .trans_alloc_arg = (__force void *)GFP_ATOMIC, 202 }; 203 204 void *page = (void *)get_safe_page(GFP_ATOMIC); 205 phys_addr_t trans_ttbr0; 206 unsigned long t0sz; 207 int rc; 208 209 if (!page) 210 return -ENOMEM; 211 212 memcpy(page, src_start, length); 213 caches_clean_inval_pou((unsigned long)page, (unsigned long)page + length); 214 rc = trans_pgd_idmap_page(&trans_info, &trans_ttbr0, &t0sz, page); 215 if (rc) 216 return rc; 217 218 /* 219 * Load our new page tables. A strict BBM approach requires that we 220 * ensure that TLBs are free of any entries that may overlap with the 221 * global mappings we are about to install. 222 * 223 * For a real hibernate/resume cycle TTBR0 currently points to a zero 224 * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI 225 * runtime services), while for a userspace-driven test_resume cycle it 226 * points to userspace page tables (and we must point it at a zero page 227 * ourselves). 228 * 229 * We change T0SZ as part of installing the idmap. This is undone by 230 * cpu_uninstall_idmap() in __cpu_suspend_exit(). 231 */ 232 cpu_set_reserved_ttbr0(); 233 local_flush_tlb_all(); 234 __cpu_set_tcr_t0sz(t0sz); 235 write_sysreg(trans_ttbr0, ttbr0_el1); 236 isb(); 237 238 *phys_dst_addr = virt_to_phys(page); 239 240 return 0; 241 } 242 243 #ifdef CONFIG_ARM64_MTE 244 245 static DEFINE_XARRAY(mte_pages); 246 247 static int save_tags(struct page *page, unsigned long pfn) 248 { 249 void *tag_storage, *ret; 250 251 tag_storage = mte_allocate_tag_storage(); 252 if (!tag_storage) 253 return -ENOMEM; 254 255 mte_save_page_tags(page_address(page), tag_storage); 256 257 ret = xa_store(&mte_pages, pfn, tag_storage, GFP_KERNEL); 258 if (WARN(xa_is_err(ret), "Failed to store MTE tags")) { 259 mte_free_tag_storage(tag_storage); 260 return xa_err(ret); 261 } else if (WARN(ret, "swsusp: %s: Duplicate entry", __func__)) { 262 mte_free_tag_storage(ret); 263 } 264 265 return 0; 266 } 267 268 static void swsusp_mte_free_storage(void) 269 { 270 XA_STATE(xa_state, &mte_pages, 0); 271 void *tags; 272 273 xa_lock(&mte_pages); 274 xas_for_each(&xa_state, tags, ULONG_MAX) { 275 mte_free_tag_storage(tags); 276 } 277 xa_unlock(&mte_pages); 278 279 xa_destroy(&mte_pages); 280 } 281 282 static int swsusp_mte_save_tags(void) 283 { 284 struct zone *zone; 285 unsigned long pfn, max_zone_pfn; 286 int ret = 0; 287 int n = 0; 288 289 if (!system_supports_mte()) 290 return 0; 291 292 for_each_populated_zone(zone) { 293 max_zone_pfn = zone_end_pfn(zone); 294 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 295 struct page *page = pfn_to_online_page(pfn); 296 297 if (!page) 298 continue; 299 300 if (!test_bit(PG_mte_tagged, &page->flags)) 301 continue; 302 303 ret = save_tags(page, pfn); 304 if (ret) { 305 swsusp_mte_free_storage(); 306 goto out; 307 } 308 309 n++; 310 } 311 } 312 pr_info("Saved %d MTE pages\n", n); 313 314 out: 315 return ret; 316 } 317 318 static void swsusp_mte_restore_tags(void) 319 { 320 XA_STATE(xa_state, &mte_pages, 0); 321 int n = 0; 322 void *tags; 323 324 xa_lock(&mte_pages); 325 xas_for_each(&xa_state, tags, ULONG_MAX) { 326 unsigned long pfn = xa_state.xa_index; 327 struct page *page = pfn_to_online_page(pfn); 328 329 /* 330 * It is not required to invoke page_kasan_tag_reset(page) 331 * at this point since the tags stored in page->flags are 332 * already restored. 333 */ 334 mte_restore_page_tags(page_address(page), tags); 335 336 mte_free_tag_storage(tags); 337 n++; 338 } 339 xa_unlock(&mte_pages); 340 341 pr_info("Restored %d MTE pages\n", n); 342 343 xa_destroy(&mte_pages); 344 } 345 346 #else /* CONFIG_ARM64_MTE */ 347 348 static int swsusp_mte_save_tags(void) 349 { 350 return 0; 351 } 352 353 static void swsusp_mte_restore_tags(void) 354 { 355 } 356 357 #endif /* CONFIG_ARM64_MTE */ 358 359 int swsusp_arch_suspend(void) 360 { 361 int ret = 0; 362 unsigned long flags; 363 struct sleep_stack_data state; 364 365 if (cpus_are_stuck_in_kernel()) { 366 pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n"); 367 return -EBUSY; 368 } 369 370 flags = local_daif_save(); 371 372 if (__cpu_suspend_enter(&state)) { 373 /* make the crash dump kernel image visible/saveable */ 374 crash_prepare_suspend(); 375 376 ret = swsusp_mte_save_tags(); 377 if (ret) 378 return ret; 379 380 sleep_cpu = smp_processor_id(); 381 ret = swsusp_save(); 382 } else { 383 /* Clean kernel core startup/idle code to PoC*/ 384 dcache_clean_inval_poc((unsigned long)__mmuoff_data_start, 385 (unsigned long)__mmuoff_data_end); 386 dcache_clean_inval_poc((unsigned long)__idmap_text_start, 387 (unsigned long)__idmap_text_end); 388 389 /* Clean kvm setup code to PoC? */ 390 if (el2_reset_needed()) { 391 dcache_clean_inval_poc( 392 (unsigned long)__hyp_idmap_text_start, 393 (unsigned long)__hyp_idmap_text_end); 394 dcache_clean_inval_poc((unsigned long)__hyp_text_start, 395 (unsigned long)__hyp_text_end); 396 } 397 398 swsusp_mte_restore_tags(); 399 400 /* make the crash dump kernel image protected again */ 401 crash_post_resume(); 402 403 /* 404 * Tell the hibernation core that we've just restored 405 * the memory 406 */ 407 in_suspend = 0; 408 409 sleep_cpu = -EINVAL; 410 __cpu_suspend_exit(); 411 412 /* 413 * Just in case the boot kernel did turn the SSBD 414 * mitigation off behind our back, let's set the state 415 * to what we expect it to be. 416 */ 417 spectre_v4_enable_mitigation(NULL); 418 } 419 420 local_daif_restore(flags); 421 422 return ret; 423 } 424 425 /* 426 * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit(). 427 * 428 * Memory allocated by get_safe_page() will be dealt with by the hibernate code, 429 * we don't need to free it here. 430 */ 431 int swsusp_arch_resume(void) 432 { 433 int rc; 434 void *zero_page; 435 size_t exit_size; 436 pgd_t *tmp_pg_dir; 437 void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *, 438 void *, phys_addr_t, phys_addr_t); 439 struct trans_pgd_info trans_info = { 440 .trans_alloc_page = hibernate_page_alloc, 441 .trans_alloc_arg = (void *)GFP_ATOMIC, 442 }; 443 444 /* 445 * Restoring the memory image will overwrite the ttbr1 page tables. 446 * Create a second copy of just the linear map, and use this when 447 * restoring. 448 */ 449 rc = trans_pgd_create_copy(&trans_info, &tmp_pg_dir, PAGE_OFFSET, 450 PAGE_END); 451 if (rc) 452 return rc; 453 454 /* 455 * We need a zero page that is zero before & after resume in order to 456 * to break before make on the ttbr1 page tables. 457 */ 458 zero_page = (void *)get_safe_page(GFP_ATOMIC); 459 if (!zero_page) { 460 pr_err("Failed to allocate zero page.\n"); 461 return -ENOMEM; 462 } 463 464 exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start; 465 /* 466 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate 467 * a new set of ttbr0 page tables and load them. 468 */ 469 rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size, 470 (phys_addr_t *)&hibernate_exit); 471 if (rc) { 472 pr_err("Failed to create safe executable page for hibernate_exit code.\n"); 473 return rc; 474 } 475 476 /* 477 * The hibernate exit text contains a set of el2 vectors, that will 478 * be executed at el2 with the mmu off in order to reload hyp-stub. 479 */ 480 dcache_clean_inval_poc((unsigned long)hibernate_exit, 481 (unsigned long)hibernate_exit + exit_size); 482 483 /* 484 * KASLR will cause the el2 vectors to be in a different location in 485 * the resumed kernel. Load hibernate's temporary copy into el2. 486 * 487 * We can skip this step if we booted at EL1, or are running with VHE. 488 */ 489 if (el2_reset_needed()) { 490 phys_addr_t el2_vectors = (phys_addr_t)hibernate_exit; 491 el2_vectors += hibernate_el2_vectors - 492 __hibernate_exit_text_start; /* offset */ 493 494 __hyp_set_vectors(el2_vectors); 495 } 496 497 hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1, 498 resume_hdr.reenter_kernel, restore_pblist, 499 resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page)); 500 501 return 0; 502 } 503 504 int hibernate_resume_nonboot_cpu_disable(void) 505 { 506 if (sleep_cpu < 0) { 507 pr_err("Failing to resume from hibernate on an unknown CPU.\n"); 508 return -ENODEV; 509 } 510 511 return freeze_secondary_cpus(sleep_cpu); 512 } 513