xref: /linux/arch/arm64/kernel/hibernate.c (revision 547f574fd9d5e3925d47fd44decbf6ab6df94b0e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*:
3  * Hibernate support specific for ARM64
4  *
5  * Derived from work on ARM hibernation support by:
6  *
7  * Ubuntu project, hibernation support for mach-dove
8  * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu)
9  * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.)
10  *  https://lkml.org/lkml/2010/6/18/4
11  *  https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html
12  *  https://patchwork.kernel.org/patch/96442/
13  *
14  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
15  */
16 #define pr_fmt(x) "hibernate: " x
17 #include <linux/cpu.h>
18 #include <linux/kvm_host.h>
19 #include <linux/mm.h>
20 #include <linux/pm.h>
21 #include <linux/sched.h>
22 #include <linux/suspend.h>
23 #include <linux/utsname.h>
24 
25 #include <asm/barrier.h>
26 #include <asm/cacheflush.h>
27 #include <asm/cputype.h>
28 #include <asm/daifflags.h>
29 #include <asm/irqflags.h>
30 #include <asm/kexec.h>
31 #include <asm/memory.h>
32 #include <asm/mmu_context.h>
33 #include <asm/mte.h>
34 #include <asm/pgalloc.h>
35 #include <asm/pgtable-hwdef.h>
36 #include <asm/sections.h>
37 #include <asm/smp.h>
38 #include <asm/smp_plat.h>
39 #include <asm/suspend.h>
40 #include <asm/sysreg.h>
41 #include <asm/virt.h>
42 
43 /*
44  * Hibernate core relies on this value being 0 on resume, and marks it
45  * __nosavedata assuming it will keep the resume kernel's '0' value. This
46  * doesn't happen with either KASLR.
47  *
48  * defined as "__visible int in_suspend __nosavedata" in
49  * kernel/power/hibernate.c
50  */
51 extern int in_suspend;
52 
53 /* Do we need to reset el2? */
54 #define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode())
55 
56 /* temporary el2 vectors in the __hibernate_exit_text section. */
57 extern char hibernate_el2_vectors[];
58 
59 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */
60 extern char __hyp_stub_vectors[];
61 
62 /*
63  * The logical cpu number we should resume on, initialised to a non-cpu
64  * number.
65  */
66 static int sleep_cpu = -EINVAL;
67 
68 /*
69  * Values that may not change over hibernate/resume. We put the build number
70  * and date in here so that we guarantee not to resume with a different
71  * kernel.
72  */
73 struct arch_hibernate_hdr_invariants {
74 	char		uts_version[__NEW_UTS_LEN + 1];
75 };
76 
77 /* These values need to be know across a hibernate/restore. */
78 static struct arch_hibernate_hdr {
79 	struct arch_hibernate_hdr_invariants invariants;
80 
81 	/* These are needed to find the relocated kernel if built with kaslr */
82 	phys_addr_t	ttbr1_el1;
83 	void		(*reenter_kernel)(void);
84 
85 	/*
86 	 * We need to know where the __hyp_stub_vectors are after restore to
87 	 * re-configure el2.
88 	 */
89 	phys_addr_t	__hyp_stub_vectors;
90 
91 	u64		sleep_cpu_mpidr;
92 } resume_hdr;
93 
94 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i)
95 {
96 	memset(i, 0, sizeof(*i));
97 	memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version));
98 }
99 
100 int pfn_is_nosave(unsigned long pfn)
101 {
102 	unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin);
103 	unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1);
104 
105 	return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) ||
106 		crash_is_nosave(pfn);
107 }
108 
109 void notrace save_processor_state(void)
110 {
111 	WARN_ON(num_online_cpus() != 1);
112 }
113 
114 void notrace restore_processor_state(void)
115 {
116 }
117 
118 int arch_hibernation_header_save(void *addr, unsigned int max_size)
119 {
120 	struct arch_hibernate_hdr *hdr = addr;
121 
122 	if (max_size < sizeof(*hdr))
123 		return -EOVERFLOW;
124 
125 	arch_hdr_invariants(&hdr->invariants);
126 	hdr->ttbr1_el1		= __pa_symbol(swapper_pg_dir);
127 	hdr->reenter_kernel	= _cpu_resume;
128 
129 	/* We can't use __hyp_get_vectors() because kvm may still be loaded */
130 	if (el2_reset_needed())
131 		hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors);
132 	else
133 		hdr->__hyp_stub_vectors = 0;
134 
135 	/* Save the mpidr of the cpu we called cpu_suspend() on... */
136 	if (sleep_cpu < 0) {
137 		pr_err("Failing to hibernate on an unknown CPU.\n");
138 		return -ENODEV;
139 	}
140 	hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu);
141 	pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
142 		hdr->sleep_cpu_mpidr);
143 
144 	return 0;
145 }
146 EXPORT_SYMBOL(arch_hibernation_header_save);
147 
148 int arch_hibernation_header_restore(void *addr)
149 {
150 	int ret;
151 	struct arch_hibernate_hdr_invariants invariants;
152 	struct arch_hibernate_hdr *hdr = addr;
153 
154 	arch_hdr_invariants(&invariants);
155 	if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) {
156 		pr_crit("Hibernate image not generated by this kernel!\n");
157 		return -EINVAL;
158 	}
159 
160 	sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr);
161 	pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
162 		hdr->sleep_cpu_mpidr);
163 	if (sleep_cpu < 0) {
164 		pr_crit("Hibernated on a CPU not known to this kernel!\n");
165 		sleep_cpu = -EINVAL;
166 		return -EINVAL;
167 	}
168 
169 	ret = bringup_hibernate_cpu(sleep_cpu);
170 	if (ret) {
171 		sleep_cpu = -EINVAL;
172 		return ret;
173 	}
174 
175 	resume_hdr = *hdr;
176 
177 	return 0;
178 }
179 EXPORT_SYMBOL(arch_hibernation_header_restore);
180 
181 static int trans_pgd_map_page(pgd_t *trans_pgd, void *page,
182 		       unsigned long dst_addr,
183 		       pgprot_t pgprot)
184 {
185 	pgd_t *pgdp;
186 	p4d_t *p4dp;
187 	pud_t *pudp;
188 	pmd_t *pmdp;
189 	pte_t *ptep;
190 
191 	pgdp = pgd_offset_pgd(trans_pgd, dst_addr);
192 	if (pgd_none(READ_ONCE(*pgdp))) {
193 		pudp = (void *)get_safe_page(GFP_ATOMIC);
194 		if (!pudp)
195 			return -ENOMEM;
196 		pgd_populate(&init_mm, pgdp, pudp);
197 	}
198 
199 	p4dp = p4d_offset(pgdp, dst_addr);
200 	if (p4d_none(READ_ONCE(*p4dp))) {
201 		pudp = (void *)get_safe_page(GFP_ATOMIC);
202 		if (!pudp)
203 			return -ENOMEM;
204 		p4d_populate(&init_mm, p4dp, pudp);
205 	}
206 
207 	pudp = pud_offset(p4dp, dst_addr);
208 	if (pud_none(READ_ONCE(*pudp))) {
209 		pmdp = (void *)get_safe_page(GFP_ATOMIC);
210 		if (!pmdp)
211 			return -ENOMEM;
212 		pud_populate(&init_mm, pudp, pmdp);
213 	}
214 
215 	pmdp = pmd_offset(pudp, dst_addr);
216 	if (pmd_none(READ_ONCE(*pmdp))) {
217 		ptep = (void *)get_safe_page(GFP_ATOMIC);
218 		if (!ptep)
219 			return -ENOMEM;
220 		pmd_populate_kernel(&init_mm, pmdp, ptep);
221 	}
222 
223 	ptep = pte_offset_kernel(pmdp, dst_addr);
224 	set_pte(ptep, pfn_pte(virt_to_pfn(page), PAGE_KERNEL_EXEC));
225 
226 	return 0;
227 }
228 
229 /*
230  * Copies length bytes, starting at src_start into an new page,
231  * perform cache maintenance, then maps it at the specified address low
232  * address as executable.
233  *
234  * This is used by hibernate to copy the code it needs to execute when
235  * overwriting the kernel text. This function generates a new set of page
236  * tables, which it loads into ttbr0.
237  *
238  * Length is provided as we probably only want 4K of data, even on a 64K
239  * page system.
240  */
241 static int create_safe_exec_page(void *src_start, size_t length,
242 				 unsigned long dst_addr,
243 				 phys_addr_t *phys_dst_addr)
244 {
245 	void *page = (void *)get_safe_page(GFP_ATOMIC);
246 	pgd_t *trans_pgd;
247 	int rc;
248 
249 	if (!page)
250 		return -ENOMEM;
251 
252 	memcpy(page, src_start, length);
253 	__flush_icache_range((unsigned long)page, (unsigned long)page + length);
254 
255 	trans_pgd = (void *)get_safe_page(GFP_ATOMIC);
256 	if (!trans_pgd)
257 		return -ENOMEM;
258 
259 	rc = trans_pgd_map_page(trans_pgd, page, dst_addr,
260 				PAGE_KERNEL_EXEC);
261 	if (rc)
262 		return rc;
263 
264 	/*
265 	 * Load our new page tables. A strict BBM approach requires that we
266 	 * ensure that TLBs are free of any entries that may overlap with the
267 	 * global mappings we are about to install.
268 	 *
269 	 * For a real hibernate/resume cycle TTBR0 currently points to a zero
270 	 * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI
271 	 * runtime services), while for a userspace-driven test_resume cycle it
272 	 * points to userspace page tables (and we must point it at a zero page
273 	 * ourselves). Elsewhere we only (un)install the idmap with preemption
274 	 * disabled, so T0SZ should be as required regardless.
275 	 */
276 	cpu_set_reserved_ttbr0();
277 	local_flush_tlb_all();
278 	write_sysreg(phys_to_ttbr(virt_to_phys(trans_pgd)), ttbr0_el1);
279 	isb();
280 
281 	*phys_dst_addr = virt_to_phys(page);
282 
283 	return 0;
284 }
285 
286 #define dcache_clean_range(start, end)	__flush_dcache_area(start, (end - start))
287 
288 #ifdef CONFIG_ARM64_MTE
289 
290 static DEFINE_XARRAY(mte_pages);
291 
292 static int save_tags(struct page *page, unsigned long pfn)
293 {
294 	void *tag_storage, *ret;
295 
296 	tag_storage = mte_allocate_tag_storage();
297 	if (!tag_storage)
298 		return -ENOMEM;
299 
300 	mte_save_page_tags(page_address(page), tag_storage);
301 
302 	ret = xa_store(&mte_pages, pfn, tag_storage, GFP_KERNEL);
303 	if (WARN(xa_is_err(ret), "Failed to store MTE tags")) {
304 		mte_free_tag_storage(tag_storage);
305 		return xa_err(ret);
306 	} else if (WARN(ret, "swsusp: %s: Duplicate entry", __func__)) {
307 		mte_free_tag_storage(ret);
308 	}
309 
310 	return 0;
311 }
312 
313 static void swsusp_mte_free_storage(void)
314 {
315 	XA_STATE(xa_state, &mte_pages, 0);
316 	void *tags;
317 
318 	xa_lock(&mte_pages);
319 	xas_for_each(&xa_state, tags, ULONG_MAX) {
320 		mte_free_tag_storage(tags);
321 	}
322 	xa_unlock(&mte_pages);
323 
324 	xa_destroy(&mte_pages);
325 }
326 
327 static int swsusp_mte_save_tags(void)
328 {
329 	struct zone *zone;
330 	unsigned long pfn, max_zone_pfn;
331 	int ret = 0;
332 	int n = 0;
333 
334 	if (!system_supports_mte())
335 		return 0;
336 
337 	for_each_populated_zone(zone) {
338 		max_zone_pfn = zone_end_pfn(zone);
339 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
340 			struct page *page = pfn_to_online_page(pfn);
341 
342 			if (!page)
343 				continue;
344 
345 			if (!test_bit(PG_mte_tagged, &page->flags))
346 				continue;
347 
348 			ret = save_tags(page, pfn);
349 			if (ret) {
350 				swsusp_mte_free_storage();
351 				goto out;
352 			}
353 
354 			n++;
355 		}
356 	}
357 	pr_info("Saved %d MTE pages\n", n);
358 
359 out:
360 	return ret;
361 }
362 
363 static void swsusp_mte_restore_tags(void)
364 {
365 	XA_STATE(xa_state, &mte_pages, 0);
366 	int n = 0;
367 	void *tags;
368 
369 	xa_lock(&mte_pages);
370 	xas_for_each(&xa_state, tags, ULONG_MAX) {
371 		unsigned long pfn = xa_state.xa_index;
372 		struct page *page = pfn_to_online_page(pfn);
373 
374 		mte_restore_page_tags(page_address(page), tags);
375 
376 		mte_free_tag_storage(tags);
377 		n++;
378 	}
379 	xa_unlock(&mte_pages);
380 
381 	pr_info("Restored %d MTE pages\n", n);
382 
383 	xa_destroy(&mte_pages);
384 }
385 
386 #else	/* CONFIG_ARM64_MTE */
387 
388 static int swsusp_mte_save_tags(void)
389 {
390 	return 0;
391 }
392 
393 static void swsusp_mte_restore_tags(void)
394 {
395 }
396 
397 #endif	/* CONFIG_ARM64_MTE */
398 
399 int swsusp_arch_suspend(void)
400 {
401 	int ret = 0;
402 	unsigned long flags;
403 	struct sleep_stack_data state;
404 
405 	if (cpus_are_stuck_in_kernel()) {
406 		pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n");
407 		return -EBUSY;
408 	}
409 
410 	flags = local_daif_save();
411 
412 	if (__cpu_suspend_enter(&state)) {
413 		/* make the crash dump kernel image visible/saveable */
414 		crash_prepare_suspend();
415 
416 		ret = swsusp_mte_save_tags();
417 		if (ret)
418 			return ret;
419 
420 		sleep_cpu = smp_processor_id();
421 		ret = swsusp_save();
422 	} else {
423 		/* Clean kernel core startup/idle code to PoC*/
424 		dcache_clean_range(__mmuoff_data_start, __mmuoff_data_end);
425 		dcache_clean_range(__idmap_text_start, __idmap_text_end);
426 
427 		/* Clean kvm setup code to PoC? */
428 		if (el2_reset_needed()) {
429 			dcache_clean_range(__hyp_idmap_text_start, __hyp_idmap_text_end);
430 			dcache_clean_range(__hyp_text_start, __hyp_text_end);
431 		}
432 
433 		swsusp_mte_restore_tags();
434 
435 		/* make the crash dump kernel image protected again */
436 		crash_post_resume();
437 
438 		/*
439 		 * Tell the hibernation core that we've just restored
440 		 * the memory
441 		 */
442 		in_suspend = 0;
443 
444 		sleep_cpu = -EINVAL;
445 		__cpu_suspend_exit();
446 
447 		/*
448 		 * Just in case the boot kernel did turn the SSBD
449 		 * mitigation off behind our back, let's set the state
450 		 * to what we expect it to be.
451 		 */
452 		spectre_v4_enable_mitigation(NULL);
453 	}
454 
455 	local_daif_restore(flags);
456 
457 	return ret;
458 }
459 
460 static void _copy_pte(pte_t *dst_ptep, pte_t *src_ptep, unsigned long addr)
461 {
462 	pte_t pte = READ_ONCE(*src_ptep);
463 
464 	if (pte_valid(pte)) {
465 		/*
466 		 * Resume will overwrite areas that may be marked
467 		 * read only (code, rodata). Clear the RDONLY bit from
468 		 * the temporary mappings we use during restore.
469 		 */
470 		set_pte(dst_ptep, pte_mkwrite(pte));
471 	} else if (debug_pagealloc_enabled() && !pte_none(pte)) {
472 		/*
473 		 * debug_pagealloc will removed the PTE_VALID bit if
474 		 * the page isn't in use by the resume kernel. It may have
475 		 * been in use by the original kernel, in which case we need
476 		 * to put it back in our copy to do the restore.
477 		 *
478 		 * Before marking this entry valid, check the pfn should
479 		 * be mapped.
480 		 */
481 		BUG_ON(!pfn_valid(pte_pfn(pte)));
482 
483 		set_pte(dst_ptep, pte_mkpresent(pte_mkwrite(pte)));
484 	}
485 }
486 
487 static int copy_pte(pmd_t *dst_pmdp, pmd_t *src_pmdp, unsigned long start,
488 		    unsigned long end)
489 {
490 	pte_t *src_ptep;
491 	pte_t *dst_ptep;
492 	unsigned long addr = start;
493 
494 	dst_ptep = (pte_t *)get_safe_page(GFP_ATOMIC);
495 	if (!dst_ptep)
496 		return -ENOMEM;
497 	pmd_populate_kernel(&init_mm, dst_pmdp, dst_ptep);
498 	dst_ptep = pte_offset_kernel(dst_pmdp, start);
499 
500 	src_ptep = pte_offset_kernel(src_pmdp, start);
501 	do {
502 		_copy_pte(dst_ptep, src_ptep, addr);
503 	} while (dst_ptep++, src_ptep++, addr += PAGE_SIZE, addr != end);
504 
505 	return 0;
506 }
507 
508 static int copy_pmd(pud_t *dst_pudp, pud_t *src_pudp, unsigned long start,
509 		    unsigned long end)
510 {
511 	pmd_t *src_pmdp;
512 	pmd_t *dst_pmdp;
513 	unsigned long next;
514 	unsigned long addr = start;
515 
516 	if (pud_none(READ_ONCE(*dst_pudp))) {
517 		dst_pmdp = (pmd_t *)get_safe_page(GFP_ATOMIC);
518 		if (!dst_pmdp)
519 			return -ENOMEM;
520 		pud_populate(&init_mm, dst_pudp, dst_pmdp);
521 	}
522 	dst_pmdp = pmd_offset(dst_pudp, start);
523 
524 	src_pmdp = pmd_offset(src_pudp, start);
525 	do {
526 		pmd_t pmd = READ_ONCE(*src_pmdp);
527 
528 		next = pmd_addr_end(addr, end);
529 		if (pmd_none(pmd))
530 			continue;
531 		if (pmd_table(pmd)) {
532 			if (copy_pte(dst_pmdp, src_pmdp, addr, next))
533 				return -ENOMEM;
534 		} else {
535 			set_pmd(dst_pmdp,
536 				__pmd(pmd_val(pmd) & ~PMD_SECT_RDONLY));
537 		}
538 	} while (dst_pmdp++, src_pmdp++, addr = next, addr != end);
539 
540 	return 0;
541 }
542 
543 static int copy_pud(p4d_t *dst_p4dp, p4d_t *src_p4dp, unsigned long start,
544 		    unsigned long end)
545 {
546 	pud_t *dst_pudp;
547 	pud_t *src_pudp;
548 	unsigned long next;
549 	unsigned long addr = start;
550 
551 	if (p4d_none(READ_ONCE(*dst_p4dp))) {
552 		dst_pudp = (pud_t *)get_safe_page(GFP_ATOMIC);
553 		if (!dst_pudp)
554 			return -ENOMEM;
555 		p4d_populate(&init_mm, dst_p4dp, dst_pudp);
556 	}
557 	dst_pudp = pud_offset(dst_p4dp, start);
558 
559 	src_pudp = pud_offset(src_p4dp, start);
560 	do {
561 		pud_t pud = READ_ONCE(*src_pudp);
562 
563 		next = pud_addr_end(addr, end);
564 		if (pud_none(pud))
565 			continue;
566 		if (pud_table(pud)) {
567 			if (copy_pmd(dst_pudp, src_pudp, addr, next))
568 				return -ENOMEM;
569 		} else {
570 			set_pud(dst_pudp,
571 				__pud(pud_val(pud) & ~PUD_SECT_RDONLY));
572 		}
573 	} while (dst_pudp++, src_pudp++, addr = next, addr != end);
574 
575 	return 0;
576 }
577 
578 static int copy_p4d(pgd_t *dst_pgdp, pgd_t *src_pgdp, unsigned long start,
579 		    unsigned long end)
580 {
581 	p4d_t *dst_p4dp;
582 	p4d_t *src_p4dp;
583 	unsigned long next;
584 	unsigned long addr = start;
585 
586 	dst_p4dp = p4d_offset(dst_pgdp, start);
587 	src_p4dp = p4d_offset(src_pgdp, start);
588 	do {
589 		next = p4d_addr_end(addr, end);
590 		if (p4d_none(READ_ONCE(*src_p4dp)))
591 			continue;
592 		if (copy_pud(dst_p4dp, src_p4dp, addr, next))
593 			return -ENOMEM;
594 	} while (dst_p4dp++, src_p4dp++, addr = next, addr != end);
595 
596 	return 0;
597 }
598 
599 static int copy_page_tables(pgd_t *dst_pgdp, unsigned long start,
600 			    unsigned long end)
601 {
602 	unsigned long next;
603 	unsigned long addr = start;
604 	pgd_t *src_pgdp = pgd_offset_k(start);
605 
606 	dst_pgdp = pgd_offset_pgd(dst_pgdp, start);
607 	do {
608 		next = pgd_addr_end(addr, end);
609 		if (pgd_none(READ_ONCE(*src_pgdp)))
610 			continue;
611 		if (copy_p4d(dst_pgdp, src_pgdp, addr, next))
612 			return -ENOMEM;
613 	} while (dst_pgdp++, src_pgdp++, addr = next, addr != end);
614 
615 	return 0;
616 }
617 
618 static int trans_pgd_create_copy(pgd_t **dst_pgdp, unsigned long start,
619 			  unsigned long end)
620 {
621 	int rc;
622 	pgd_t *trans_pgd = (pgd_t *)get_safe_page(GFP_ATOMIC);
623 
624 	if (!trans_pgd) {
625 		pr_err("Failed to allocate memory for temporary page tables.\n");
626 		return -ENOMEM;
627 	}
628 
629 	rc = copy_page_tables(trans_pgd, start, end);
630 	if (!rc)
631 		*dst_pgdp = trans_pgd;
632 
633 	return rc;
634 }
635 
636 /*
637  * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit().
638  *
639  * Memory allocated by get_safe_page() will be dealt with by the hibernate code,
640  * we don't need to free it here.
641  */
642 int swsusp_arch_resume(void)
643 {
644 	int rc;
645 	void *zero_page;
646 	size_t exit_size;
647 	pgd_t *tmp_pg_dir;
648 	phys_addr_t phys_hibernate_exit;
649 	void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *,
650 					  void *, phys_addr_t, phys_addr_t);
651 
652 	/*
653 	 * Restoring the memory image will overwrite the ttbr1 page tables.
654 	 * Create a second copy of just the linear map, and use this when
655 	 * restoring.
656 	 */
657 	rc = trans_pgd_create_copy(&tmp_pg_dir, PAGE_OFFSET, PAGE_END);
658 	if (rc)
659 		return rc;
660 
661 	/*
662 	 * We need a zero page that is zero before & after resume in order to
663 	 * to break before make on the ttbr1 page tables.
664 	 */
665 	zero_page = (void *)get_safe_page(GFP_ATOMIC);
666 	if (!zero_page) {
667 		pr_err("Failed to allocate zero page.\n");
668 		return -ENOMEM;
669 	}
670 
671 	/*
672 	 * Locate the exit code in the bottom-but-one page, so that *NULL
673 	 * still has disastrous affects.
674 	 */
675 	hibernate_exit = (void *)PAGE_SIZE;
676 	exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start;
677 	/*
678 	 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate
679 	 * a new set of ttbr0 page tables and load them.
680 	 */
681 	rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size,
682 				   (unsigned long)hibernate_exit,
683 				   &phys_hibernate_exit);
684 	if (rc) {
685 		pr_err("Failed to create safe executable page for hibernate_exit code.\n");
686 		return rc;
687 	}
688 
689 	/*
690 	 * The hibernate exit text contains a set of el2 vectors, that will
691 	 * be executed at el2 with the mmu off in order to reload hyp-stub.
692 	 */
693 	__flush_dcache_area(hibernate_exit, exit_size);
694 
695 	/*
696 	 * KASLR will cause the el2 vectors to be in a different location in
697 	 * the resumed kernel. Load hibernate's temporary copy into el2.
698 	 *
699 	 * We can skip this step if we booted at EL1, or are running with VHE.
700 	 */
701 	if (el2_reset_needed()) {
702 		phys_addr_t el2_vectors = phys_hibernate_exit;  /* base */
703 		el2_vectors += hibernate_el2_vectors -
704 			       __hibernate_exit_text_start;     /* offset */
705 
706 		__hyp_set_vectors(el2_vectors);
707 	}
708 
709 	hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1,
710 		       resume_hdr.reenter_kernel, restore_pblist,
711 		       resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page));
712 
713 	return 0;
714 }
715 
716 int hibernate_resume_nonboot_cpu_disable(void)
717 {
718 	if (sleep_cpu < 0) {
719 		pr_err("Failing to resume from hibernate on an unknown CPU.\n");
720 		return -ENODEV;
721 	}
722 
723 	return freeze_secondary_cpus(sleep_cpu);
724 }
725