1 // SPDX-License-Identifier: GPL-2.0-only 2 /*: 3 * Hibernate support specific for ARM64 4 * 5 * Derived from work on ARM hibernation support by: 6 * 7 * Ubuntu project, hibernation support for mach-dove 8 * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu) 9 * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.) 10 * https://lkml.org/lkml/2010/6/18/4 11 * https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html 12 * https://patchwork.kernel.org/patch/96442/ 13 * 14 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 15 */ 16 #define pr_fmt(x) "hibernate: " x 17 #include <linux/cpu.h> 18 #include <linux/kvm_host.h> 19 #include <linux/mm.h> 20 #include <linux/pm.h> 21 #include <linux/sched.h> 22 #include <linux/suspend.h> 23 #include <linux/utsname.h> 24 25 #include <asm/barrier.h> 26 #include <asm/cacheflush.h> 27 #include <asm/cputype.h> 28 #include <asm/daifflags.h> 29 #include <asm/irqflags.h> 30 #include <asm/kexec.h> 31 #include <asm/memory.h> 32 #include <asm/mmu_context.h> 33 #include <asm/mte.h> 34 #include <asm/pgalloc.h> 35 #include <asm/pgtable-hwdef.h> 36 #include <asm/sections.h> 37 #include <asm/smp.h> 38 #include <asm/smp_plat.h> 39 #include <asm/suspend.h> 40 #include <asm/sysreg.h> 41 #include <asm/virt.h> 42 43 /* 44 * Hibernate core relies on this value being 0 on resume, and marks it 45 * __nosavedata assuming it will keep the resume kernel's '0' value. This 46 * doesn't happen with either KASLR. 47 * 48 * defined as "__visible int in_suspend __nosavedata" in 49 * kernel/power/hibernate.c 50 */ 51 extern int in_suspend; 52 53 /* Do we need to reset el2? */ 54 #define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode()) 55 56 /* temporary el2 vectors in the __hibernate_exit_text section. */ 57 extern char hibernate_el2_vectors[]; 58 59 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */ 60 extern char __hyp_stub_vectors[]; 61 62 /* 63 * The logical cpu number we should resume on, initialised to a non-cpu 64 * number. 65 */ 66 static int sleep_cpu = -EINVAL; 67 68 /* 69 * Values that may not change over hibernate/resume. We put the build number 70 * and date in here so that we guarantee not to resume with a different 71 * kernel. 72 */ 73 struct arch_hibernate_hdr_invariants { 74 char uts_version[__NEW_UTS_LEN + 1]; 75 }; 76 77 /* These values need to be know across a hibernate/restore. */ 78 static struct arch_hibernate_hdr { 79 struct arch_hibernate_hdr_invariants invariants; 80 81 /* These are needed to find the relocated kernel if built with kaslr */ 82 phys_addr_t ttbr1_el1; 83 void (*reenter_kernel)(void); 84 85 /* 86 * We need to know where the __hyp_stub_vectors are after restore to 87 * re-configure el2. 88 */ 89 phys_addr_t __hyp_stub_vectors; 90 91 u64 sleep_cpu_mpidr; 92 } resume_hdr; 93 94 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i) 95 { 96 memset(i, 0, sizeof(*i)); 97 memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version)); 98 } 99 100 int pfn_is_nosave(unsigned long pfn) 101 { 102 unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin); 103 unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1); 104 105 return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) || 106 crash_is_nosave(pfn); 107 } 108 109 void notrace save_processor_state(void) 110 { 111 WARN_ON(num_online_cpus() != 1); 112 } 113 114 void notrace restore_processor_state(void) 115 { 116 } 117 118 int arch_hibernation_header_save(void *addr, unsigned int max_size) 119 { 120 struct arch_hibernate_hdr *hdr = addr; 121 122 if (max_size < sizeof(*hdr)) 123 return -EOVERFLOW; 124 125 arch_hdr_invariants(&hdr->invariants); 126 hdr->ttbr1_el1 = __pa_symbol(swapper_pg_dir); 127 hdr->reenter_kernel = _cpu_resume; 128 129 /* We can't use __hyp_get_vectors() because kvm may still be loaded */ 130 if (el2_reset_needed()) 131 hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors); 132 else 133 hdr->__hyp_stub_vectors = 0; 134 135 /* Save the mpidr of the cpu we called cpu_suspend() on... */ 136 if (sleep_cpu < 0) { 137 pr_err("Failing to hibernate on an unknown CPU.\n"); 138 return -ENODEV; 139 } 140 hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu); 141 pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu, 142 hdr->sleep_cpu_mpidr); 143 144 return 0; 145 } 146 EXPORT_SYMBOL(arch_hibernation_header_save); 147 148 int arch_hibernation_header_restore(void *addr) 149 { 150 int ret; 151 struct arch_hibernate_hdr_invariants invariants; 152 struct arch_hibernate_hdr *hdr = addr; 153 154 arch_hdr_invariants(&invariants); 155 if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) { 156 pr_crit("Hibernate image not generated by this kernel!\n"); 157 return -EINVAL; 158 } 159 160 sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr); 161 pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu, 162 hdr->sleep_cpu_mpidr); 163 if (sleep_cpu < 0) { 164 pr_crit("Hibernated on a CPU not known to this kernel!\n"); 165 sleep_cpu = -EINVAL; 166 return -EINVAL; 167 } 168 169 ret = bringup_hibernate_cpu(sleep_cpu); 170 if (ret) { 171 sleep_cpu = -EINVAL; 172 return ret; 173 } 174 175 resume_hdr = *hdr; 176 177 return 0; 178 } 179 EXPORT_SYMBOL(arch_hibernation_header_restore); 180 181 static int trans_pgd_map_page(pgd_t *trans_pgd, void *page, 182 unsigned long dst_addr, 183 pgprot_t pgprot) 184 { 185 pgd_t *pgdp; 186 p4d_t *p4dp; 187 pud_t *pudp; 188 pmd_t *pmdp; 189 pte_t *ptep; 190 191 pgdp = pgd_offset_pgd(trans_pgd, dst_addr); 192 if (pgd_none(READ_ONCE(*pgdp))) { 193 pudp = (void *)get_safe_page(GFP_ATOMIC); 194 if (!pudp) 195 return -ENOMEM; 196 pgd_populate(&init_mm, pgdp, pudp); 197 } 198 199 p4dp = p4d_offset(pgdp, dst_addr); 200 if (p4d_none(READ_ONCE(*p4dp))) { 201 pudp = (void *)get_safe_page(GFP_ATOMIC); 202 if (!pudp) 203 return -ENOMEM; 204 p4d_populate(&init_mm, p4dp, pudp); 205 } 206 207 pudp = pud_offset(p4dp, dst_addr); 208 if (pud_none(READ_ONCE(*pudp))) { 209 pmdp = (void *)get_safe_page(GFP_ATOMIC); 210 if (!pmdp) 211 return -ENOMEM; 212 pud_populate(&init_mm, pudp, pmdp); 213 } 214 215 pmdp = pmd_offset(pudp, dst_addr); 216 if (pmd_none(READ_ONCE(*pmdp))) { 217 ptep = (void *)get_safe_page(GFP_ATOMIC); 218 if (!ptep) 219 return -ENOMEM; 220 pmd_populate_kernel(&init_mm, pmdp, ptep); 221 } 222 223 ptep = pte_offset_kernel(pmdp, dst_addr); 224 set_pte(ptep, pfn_pte(virt_to_pfn(page), PAGE_KERNEL_EXEC)); 225 226 return 0; 227 } 228 229 /* 230 * Copies length bytes, starting at src_start into an new page, 231 * perform cache maintenance, then maps it at the specified address low 232 * address as executable. 233 * 234 * This is used by hibernate to copy the code it needs to execute when 235 * overwriting the kernel text. This function generates a new set of page 236 * tables, which it loads into ttbr0. 237 * 238 * Length is provided as we probably only want 4K of data, even on a 64K 239 * page system. 240 */ 241 static int create_safe_exec_page(void *src_start, size_t length, 242 unsigned long dst_addr, 243 phys_addr_t *phys_dst_addr) 244 { 245 void *page = (void *)get_safe_page(GFP_ATOMIC); 246 pgd_t *trans_pgd; 247 int rc; 248 249 if (!page) 250 return -ENOMEM; 251 252 memcpy(page, src_start, length); 253 __flush_icache_range((unsigned long)page, (unsigned long)page + length); 254 255 trans_pgd = (void *)get_safe_page(GFP_ATOMIC); 256 if (!trans_pgd) 257 return -ENOMEM; 258 259 rc = trans_pgd_map_page(trans_pgd, page, dst_addr, 260 PAGE_KERNEL_EXEC); 261 if (rc) 262 return rc; 263 264 /* 265 * Load our new page tables. A strict BBM approach requires that we 266 * ensure that TLBs are free of any entries that may overlap with the 267 * global mappings we are about to install. 268 * 269 * For a real hibernate/resume cycle TTBR0 currently points to a zero 270 * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI 271 * runtime services), while for a userspace-driven test_resume cycle it 272 * points to userspace page tables (and we must point it at a zero page 273 * ourselves). Elsewhere we only (un)install the idmap with preemption 274 * disabled, so T0SZ should be as required regardless. 275 */ 276 cpu_set_reserved_ttbr0(); 277 local_flush_tlb_all(); 278 write_sysreg(phys_to_ttbr(virt_to_phys(trans_pgd)), ttbr0_el1); 279 isb(); 280 281 *phys_dst_addr = virt_to_phys(page); 282 283 return 0; 284 } 285 286 #define dcache_clean_range(start, end) __flush_dcache_area(start, (end - start)) 287 288 #ifdef CONFIG_ARM64_MTE 289 290 static DEFINE_XARRAY(mte_pages); 291 292 static int save_tags(struct page *page, unsigned long pfn) 293 { 294 void *tag_storage, *ret; 295 296 tag_storage = mte_allocate_tag_storage(); 297 if (!tag_storage) 298 return -ENOMEM; 299 300 mte_save_page_tags(page_address(page), tag_storage); 301 302 ret = xa_store(&mte_pages, pfn, tag_storage, GFP_KERNEL); 303 if (WARN(xa_is_err(ret), "Failed to store MTE tags")) { 304 mte_free_tag_storage(tag_storage); 305 return xa_err(ret); 306 } else if (WARN(ret, "swsusp: %s: Duplicate entry", __func__)) { 307 mte_free_tag_storage(ret); 308 } 309 310 return 0; 311 } 312 313 static void swsusp_mte_free_storage(void) 314 { 315 XA_STATE(xa_state, &mte_pages, 0); 316 void *tags; 317 318 xa_lock(&mte_pages); 319 xas_for_each(&xa_state, tags, ULONG_MAX) { 320 mte_free_tag_storage(tags); 321 } 322 xa_unlock(&mte_pages); 323 324 xa_destroy(&mte_pages); 325 } 326 327 static int swsusp_mte_save_tags(void) 328 { 329 struct zone *zone; 330 unsigned long pfn, max_zone_pfn; 331 int ret = 0; 332 int n = 0; 333 334 if (!system_supports_mte()) 335 return 0; 336 337 for_each_populated_zone(zone) { 338 max_zone_pfn = zone_end_pfn(zone); 339 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 340 struct page *page = pfn_to_online_page(pfn); 341 342 if (!page) 343 continue; 344 345 if (!test_bit(PG_mte_tagged, &page->flags)) 346 continue; 347 348 ret = save_tags(page, pfn); 349 if (ret) { 350 swsusp_mte_free_storage(); 351 goto out; 352 } 353 354 n++; 355 } 356 } 357 pr_info("Saved %d MTE pages\n", n); 358 359 out: 360 return ret; 361 } 362 363 static void swsusp_mte_restore_tags(void) 364 { 365 XA_STATE(xa_state, &mte_pages, 0); 366 int n = 0; 367 void *tags; 368 369 xa_lock(&mte_pages); 370 xas_for_each(&xa_state, tags, ULONG_MAX) { 371 unsigned long pfn = xa_state.xa_index; 372 struct page *page = pfn_to_online_page(pfn); 373 374 /* 375 * It is not required to invoke page_kasan_tag_reset(page) 376 * at this point since the tags stored in page->flags are 377 * already restored. 378 */ 379 mte_restore_page_tags(page_address(page), tags); 380 381 mte_free_tag_storage(tags); 382 n++; 383 } 384 xa_unlock(&mte_pages); 385 386 pr_info("Restored %d MTE pages\n", n); 387 388 xa_destroy(&mte_pages); 389 } 390 391 #else /* CONFIG_ARM64_MTE */ 392 393 static int swsusp_mte_save_tags(void) 394 { 395 return 0; 396 } 397 398 static void swsusp_mte_restore_tags(void) 399 { 400 } 401 402 #endif /* CONFIG_ARM64_MTE */ 403 404 int swsusp_arch_suspend(void) 405 { 406 int ret = 0; 407 unsigned long flags; 408 struct sleep_stack_data state; 409 410 if (cpus_are_stuck_in_kernel()) { 411 pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n"); 412 return -EBUSY; 413 } 414 415 flags = local_daif_save(); 416 417 if (__cpu_suspend_enter(&state)) { 418 /* make the crash dump kernel image visible/saveable */ 419 crash_prepare_suspend(); 420 421 ret = swsusp_mte_save_tags(); 422 if (ret) 423 return ret; 424 425 sleep_cpu = smp_processor_id(); 426 ret = swsusp_save(); 427 } else { 428 /* Clean kernel core startup/idle code to PoC*/ 429 dcache_clean_range(__mmuoff_data_start, __mmuoff_data_end); 430 dcache_clean_range(__idmap_text_start, __idmap_text_end); 431 432 /* Clean kvm setup code to PoC? */ 433 if (el2_reset_needed()) { 434 dcache_clean_range(__hyp_idmap_text_start, __hyp_idmap_text_end); 435 dcache_clean_range(__hyp_text_start, __hyp_text_end); 436 } 437 438 swsusp_mte_restore_tags(); 439 440 /* make the crash dump kernel image protected again */ 441 crash_post_resume(); 442 443 /* 444 * Tell the hibernation core that we've just restored 445 * the memory 446 */ 447 in_suspend = 0; 448 449 sleep_cpu = -EINVAL; 450 __cpu_suspend_exit(); 451 452 /* 453 * Just in case the boot kernel did turn the SSBD 454 * mitigation off behind our back, let's set the state 455 * to what we expect it to be. 456 */ 457 spectre_v4_enable_mitigation(NULL); 458 } 459 460 local_daif_restore(flags); 461 462 return ret; 463 } 464 465 static void _copy_pte(pte_t *dst_ptep, pte_t *src_ptep, unsigned long addr) 466 { 467 pte_t pte = READ_ONCE(*src_ptep); 468 469 if (pte_valid(pte)) { 470 /* 471 * Resume will overwrite areas that may be marked 472 * read only (code, rodata). Clear the RDONLY bit from 473 * the temporary mappings we use during restore. 474 */ 475 set_pte(dst_ptep, pte_mkwrite(pte)); 476 } else if (debug_pagealloc_enabled() && !pte_none(pte)) { 477 /* 478 * debug_pagealloc will removed the PTE_VALID bit if 479 * the page isn't in use by the resume kernel. It may have 480 * been in use by the original kernel, in which case we need 481 * to put it back in our copy to do the restore. 482 * 483 * Before marking this entry valid, check the pfn should 484 * be mapped. 485 */ 486 BUG_ON(!pfn_valid(pte_pfn(pte))); 487 488 set_pte(dst_ptep, pte_mkpresent(pte_mkwrite(pte))); 489 } 490 } 491 492 static int copy_pte(pmd_t *dst_pmdp, pmd_t *src_pmdp, unsigned long start, 493 unsigned long end) 494 { 495 pte_t *src_ptep; 496 pte_t *dst_ptep; 497 unsigned long addr = start; 498 499 dst_ptep = (pte_t *)get_safe_page(GFP_ATOMIC); 500 if (!dst_ptep) 501 return -ENOMEM; 502 pmd_populate_kernel(&init_mm, dst_pmdp, dst_ptep); 503 dst_ptep = pte_offset_kernel(dst_pmdp, start); 504 505 src_ptep = pte_offset_kernel(src_pmdp, start); 506 do { 507 _copy_pte(dst_ptep, src_ptep, addr); 508 } while (dst_ptep++, src_ptep++, addr += PAGE_SIZE, addr != end); 509 510 return 0; 511 } 512 513 static int copy_pmd(pud_t *dst_pudp, pud_t *src_pudp, unsigned long start, 514 unsigned long end) 515 { 516 pmd_t *src_pmdp; 517 pmd_t *dst_pmdp; 518 unsigned long next; 519 unsigned long addr = start; 520 521 if (pud_none(READ_ONCE(*dst_pudp))) { 522 dst_pmdp = (pmd_t *)get_safe_page(GFP_ATOMIC); 523 if (!dst_pmdp) 524 return -ENOMEM; 525 pud_populate(&init_mm, dst_pudp, dst_pmdp); 526 } 527 dst_pmdp = pmd_offset(dst_pudp, start); 528 529 src_pmdp = pmd_offset(src_pudp, start); 530 do { 531 pmd_t pmd = READ_ONCE(*src_pmdp); 532 533 next = pmd_addr_end(addr, end); 534 if (pmd_none(pmd)) 535 continue; 536 if (pmd_table(pmd)) { 537 if (copy_pte(dst_pmdp, src_pmdp, addr, next)) 538 return -ENOMEM; 539 } else { 540 set_pmd(dst_pmdp, 541 __pmd(pmd_val(pmd) & ~PMD_SECT_RDONLY)); 542 } 543 } while (dst_pmdp++, src_pmdp++, addr = next, addr != end); 544 545 return 0; 546 } 547 548 static int copy_pud(p4d_t *dst_p4dp, p4d_t *src_p4dp, unsigned long start, 549 unsigned long end) 550 { 551 pud_t *dst_pudp; 552 pud_t *src_pudp; 553 unsigned long next; 554 unsigned long addr = start; 555 556 if (p4d_none(READ_ONCE(*dst_p4dp))) { 557 dst_pudp = (pud_t *)get_safe_page(GFP_ATOMIC); 558 if (!dst_pudp) 559 return -ENOMEM; 560 p4d_populate(&init_mm, dst_p4dp, dst_pudp); 561 } 562 dst_pudp = pud_offset(dst_p4dp, start); 563 564 src_pudp = pud_offset(src_p4dp, start); 565 do { 566 pud_t pud = READ_ONCE(*src_pudp); 567 568 next = pud_addr_end(addr, end); 569 if (pud_none(pud)) 570 continue; 571 if (pud_table(pud)) { 572 if (copy_pmd(dst_pudp, src_pudp, addr, next)) 573 return -ENOMEM; 574 } else { 575 set_pud(dst_pudp, 576 __pud(pud_val(pud) & ~PUD_SECT_RDONLY)); 577 } 578 } while (dst_pudp++, src_pudp++, addr = next, addr != end); 579 580 return 0; 581 } 582 583 static int copy_p4d(pgd_t *dst_pgdp, pgd_t *src_pgdp, unsigned long start, 584 unsigned long end) 585 { 586 p4d_t *dst_p4dp; 587 p4d_t *src_p4dp; 588 unsigned long next; 589 unsigned long addr = start; 590 591 dst_p4dp = p4d_offset(dst_pgdp, start); 592 src_p4dp = p4d_offset(src_pgdp, start); 593 do { 594 next = p4d_addr_end(addr, end); 595 if (p4d_none(READ_ONCE(*src_p4dp))) 596 continue; 597 if (copy_pud(dst_p4dp, src_p4dp, addr, next)) 598 return -ENOMEM; 599 } while (dst_p4dp++, src_p4dp++, addr = next, addr != end); 600 601 return 0; 602 } 603 604 static int copy_page_tables(pgd_t *dst_pgdp, unsigned long start, 605 unsigned long end) 606 { 607 unsigned long next; 608 unsigned long addr = start; 609 pgd_t *src_pgdp = pgd_offset_k(start); 610 611 dst_pgdp = pgd_offset_pgd(dst_pgdp, start); 612 do { 613 next = pgd_addr_end(addr, end); 614 if (pgd_none(READ_ONCE(*src_pgdp))) 615 continue; 616 if (copy_p4d(dst_pgdp, src_pgdp, addr, next)) 617 return -ENOMEM; 618 } while (dst_pgdp++, src_pgdp++, addr = next, addr != end); 619 620 return 0; 621 } 622 623 static int trans_pgd_create_copy(pgd_t **dst_pgdp, unsigned long start, 624 unsigned long end) 625 { 626 int rc; 627 pgd_t *trans_pgd = (pgd_t *)get_safe_page(GFP_ATOMIC); 628 629 if (!trans_pgd) { 630 pr_err("Failed to allocate memory for temporary page tables.\n"); 631 return -ENOMEM; 632 } 633 634 rc = copy_page_tables(trans_pgd, start, end); 635 if (!rc) 636 *dst_pgdp = trans_pgd; 637 638 return rc; 639 } 640 641 /* 642 * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit(). 643 * 644 * Memory allocated by get_safe_page() will be dealt with by the hibernate code, 645 * we don't need to free it here. 646 */ 647 int swsusp_arch_resume(void) 648 { 649 int rc; 650 void *zero_page; 651 size_t exit_size; 652 pgd_t *tmp_pg_dir; 653 phys_addr_t phys_hibernate_exit; 654 void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *, 655 void *, phys_addr_t, phys_addr_t); 656 657 /* 658 * Restoring the memory image will overwrite the ttbr1 page tables. 659 * Create a second copy of just the linear map, and use this when 660 * restoring. 661 */ 662 rc = trans_pgd_create_copy(&tmp_pg_dir, PAGE_OFFSET, PAGE_END); 663 if (rc) 664 return rc; 665 666 /* 667 * We need a zero page that is zero before & after resume in order to 668 * to break before make on the ttbr1 page tables. 669 */ 670 zero_page = (void *)get_safe_page(GFP_ATOMIC); 671 if (!zero_page) { 672 pr_err("Failed to allocate zero page.\n"); 673 return -ENOMEM; 674 } 675 676 /* 677 * Locate the exit code in the bottom-but-one page, so that *NULL 678 * still has disastrous affects. 679 */ 680 hibernate_exit = (void *)PAGE_SIZE; 681 exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start; 682 /* 683 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate 684 * a new set of ttbr0 page tables and load them. 685 */ 686 rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size, 687 (unsigned long)hibernate_exit, 688 &phys_hibernate_exit); 689 if (rc) { 690 pr_err("Failed to create safe executable page for hibernate_exit code.\n"); 691 return rc; 692 } 693 694 /* 695 * The hibernate exit text contains a set of el2 vectors, that will 696 * be executed at el2 with the mmu off in order to reload hyp-stub. 697 */ 698 __flush_dcache_area(hibernate_exit, exit_size); 699 700 /* 701 * KASLR will cause the el2 vectors to be in a different location in 702 * the resumed kernel. Load hibernate's temporary copy into el2. 703 * 704 * We can skip this step if we booted at EL1, or are running with VHE. 705 */ 706 if (el2_reset_needed()) { 707 phys_addr_t el2_vectors = phys_hibernate_exit; /* base */ 708 el2_vectors += hibernate_el2_vectors - 709 __hibernate_exit_text_start; /* offset */ 710 711 __hyp_set_vectors(el2_vectors); 712 } 713 714 hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1, 715 resume_hdr.reenter_kernel, restore_pblist, 716 resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page)); 717 718 return 0; 719 } 720 721 int hibernate_resume_nonboot_cpu_disable(void) 722 { 723 if (sleep_cpu < 0) { 724 pr_err("Failing to resume from hibernate on an unknown CPU.\n"); 725 return -ENODEV; 726 } 727 728 return freeze_secondary_cpus(sleep_cpu); 729 } 730